Роль печени в пигментном обмене. Особенности пигментного обмена при желтухах. Наследственные пигментные гепатозы. Пигментный обмен Методы определения билирубина и его метаболитов

Желтуха не самостоятельное заболевание, а симптом многочисленных заболеваний со сложным патогенезом. Желтуха распознается по характерной окраске кожи и слизистых, плазмы крови, которая развивается в результате накопления в крови желчных пигментов - билирубина и его метаболитов. Желтуха раньше всего появляется на склерах глаз, на нижней поверхности языка, на небе.

Пигментный обмен в норме:

Билирубин - продукт метаболизма гемоглобина. За сутки у человека распадается примерно 1% циркулирующих эритроцитов и образуется 80-95% билирубина, что составляет 200-250 мг. 5-20% приходится на шунтовый билирубин, источником которого является миоглобин, цитохромы, каталаза, пероксидаза, а также процессы "неэффективного гемопоэза". Гемоглобин в клетках макрофагальной системы (печень, селезенка, костный мозг) через ряд промежуточных стадий превращается в билирубин, который поступает в кровь. В крови он практически не растворим, поэтому он соединяется с альбуминами плазмы. Следует отметить, что билирубин - жирорастворимое вещество, поэтому комплекс альбумина с липидами обладает большим сродством к билирубину, чем один альбумин: 1 молекула альбумина может связать 2 молекулы билирубина. При нормальном содержании белка в крови 0,7 мг пигмента содержится в 100 мл плазмы. Следует помнить, что многие эндогенные и экзогенные вещества конкурируют с билирубином за связь с белком. Такой способностью обладают сульфаниламиды, салицилаты, кофеин-бензоат натрия. Поэтому указанные препараты могут способствовать нарастанию желтухи. Соединение билирубина с белком носит название непрямой билирубин. Непрямой, т.к. с диазреактивом Эрлиха он взаимодействует после предварительного осаждения белков спиртом. Непрямой билирубин через почечный барьер не проходит, так как это крупномолекулярное соединение.

Обмен билирубина в печени состоит из трех этапов:

  • 1. Захват из крови пигмента почечной клеткой.
  • 2. Образование коньюгированного билирубина.
  • 3. Экскреция почечной клеткой водорастворимых коньюгатов в желчные капилляры.

Эти звенья протекают в строгой последовательности и при нарушении одного нарушаются другие. Захват билирубина печеночной клеткой - активный процесс, который осуществляется богатой АТФ мембраной васкулярного полюса гепатоцита. Это своего рода концентрирующая система. Благодаря этому уровень в крови пигмента постоянен и не превышает 17 мкмоль/л. В момент захвата билирубина его связь с альбумином разрывается.

Далее билирубин, соединяется с глюкуроновой кислотой с участием фермента глюкуронидтрансферазы. В результате образуется билирубин-моноглюкуронид (желчный пигмент-1) и билирубин-диглюкуронид (желчный пигмент-2). Активность коньюгационной системы подвержена большим колебаниям в зависимости от различных факторов. Так, в период новорожденности активность глюкуронид-трансферазы мала и достигает цифр взрослого организма в течение 2-6 недель после рождения. Билирубин, соединенный с глюкуроновой кислотой, носит название прямой (связанный) билирубин.

Экскреция билирубина почечной клеткой обеспечивается активной концентрирующей системой. Основные компоненты экскреторного аппарата - аппарат Гольджи, билиарная мембрана гепатоцита с микроворсинками и, возможно, лизосомами. Функциональные возможности этой системы ограничены и именно эта система является лимитирующим звеном внутриклеточного метаболизма билирубина. Билирубин в составе желчи находится в виде молекулярных агрегатов, состоящих из холестерина, солей желчных кислот, фосфолипидов и незначительного количества белка. В желчи в норме содержится в 100 раз больше билирубина, чем в крови.

С желчью прямой билирубин попадает в желчные пути и в желчный пузырь. Здесь небольшая часть билирубина превращается в уробилиноген, но основной процесс образования этих соединений представлен в кишечнике. В верхних отделах тонкого кишечника уробилиноген всасывается в кровь и через портальную вену снова возвращается в печень, где в гепатоцитах полностью метаболизируется до дипиррольных соединений (пендиопент), так что в кровь и мочу в норме уробилиноген не попадает. Остальная часть билирубина достигает толстого кишечника и превращается, под действием микробной флоры в стеркобилиноген. Основная часть последнего в нижних отделах кишки окисляется и превращается в стеркобилин. За сутки с калом выделяется 10--250 мг стеркобилина. Лишь небольшая часть стеркобилиногена через систему геморроидальных вен поступает в нижнюю полую вену и через почки выводится с мочой.

Желтухи классифицируются:

  • 1. Надпеченочная (гемолитическая).
  • 2. Печеночная (паренхиматозная и связанная с врожденными нарушениями обмена билирубина в печени).
  • 3. Подпеченочная (механическая).

Надпеченочная (гемолитическая) желтуха.

Связана с усиленным гемолизом эритроцитов при гемолитических анемиях, образованием большого количества непрямого билирубина и невозможностью превращения в печени всего непрямого билирубина в прямой билирубин. Максимальный почечный клиренс билирубина у здоровых людей - 38,9±8,5 мг в 1 мин/кг массы тела, но если это количество будет превышено, то наступает увеличение непрямого билирубина в крови свыше 17 мкмоль/л. Непрямой билирубин проявляет сильное токсическое действие при его концентрации свыше 18-20%. Особенно сильно повреждаются клетки мозговых ядер, развивается билирубиновая энцефалопатия. Усиление образования прямого билирубина в печени приводит к большему образованию стеркобилина и интенсивной окраске кала и моча.

При гемолитической болезни новорожденных (резус-несовместимость эритроцитов матери и плода) может развиться билирубиновая энцефалопатия. Свободный билирубин, не включенный в связь с альбумином, проникает через гематоэнцефалический барьер и окрашивает ядра головного мозга - отсюда термин «ядерная» желтуха. «Ядерная» желтуха - тяжелая форма желтухи новорожденных, при которой желчные пигменты и дегенеративные изменения обнаруживают в ядрах больших полушарий и стволах головного мозга. Характеризуется следующим: у новорожденных на 3-6 день жизни исчезают спинальные рефлексы, отмечается гипертонус мышц туловища, резкий плач, сонливость, беспокойные движения конечностей, судороги, нарушение дыхания, может наступить его остановка и смерть. Если ребенок выживает, то могут развиться глухота, параличи, отставание умственного развития

Печеночная (паренхиматозная) желтуха

Поражение паренхимы печени имеет место при развитии гепатитов под действием гепатотропных токсических и инфекционных агентов.

В гепатоцитах нарушается:

  • - превращение уробилиногена, поступающего обратно из кишечника в печень, в дипирольные соединения.
  • - из-за процесса воспаления, развития отека присоединяется механический компонент, задержка оттока желчи по желчным капиллярам. В результате повреждаются желчные капилляры и печеночные клетки. Все это проходит на фоне повышенной проницаемости микроциркуляторного русла, следовательно, создаются условия для поступления желчи в кровяное русло.
  • - нарушается функция захвата и конъюгации непрямого билирубина.

Клинико - лабораторные проявления.

В крови появляются отсутствующие в норме уробилиноген и прямой билирубин, увеличивается содержание непрямого билирубина. У больных паренхиматозной желтухой, кал обесцвечивается, т.к. в кишечник мало поступает желчи и, следовательно, мало прямого билирубина. Моча интенсивнее окрашена за счет появления в ней уробилиногена и прямого билирубина, т.к. это низкомолекулярные соединения и, следовательно, проходят через почечный барьер.

Подпеченочная (механическая) желтуха

При нарушении оттока желчи по желчным капиллярам или нарушении оттока желчи из желчного пузыря при желчекаменной болезни развивается механическая или обтурационная желтуха. В результате повышения давления желчи в желчных капиллярах, механического повреждения печеночных клеток, желчь поступает в кровяное русло. Это приводит к появлению в крови прямого билирубина, соотношение прямого и непрямого билирубина сдвигается в сторону первого. Стеркобилин в моче и кале исчезает т.к. желчь не поступает в кишечник. Кал у таких больных бесцветный из-за отсутствия стеркобилина. В моче также отсутствует стеркобилин, но ее цвет сохраняется за счет появления в ней прямого билирубина.

НАСЛЕДСТВЕННЫЕ ГЕПАТОЗЫ

К наследственным пигментным гепатозам относятся поражения печени, характеризующиеся гипербилирубинемней, связанной с врожденным дефектом метаболизма билирубина на почве генетически обусловленных энзимопатий: синдромы Жильбера, Криглера - Наджара, Дабина-Джонсона и Ротора. Большинство состояний безвредны и делают пациента «более желтым, чем больным», но синдром Криглера-Наджара может быть летальным. Функционально наследственные гепатозы проявляются в основном хронической или интермитирующей желтухой с незначительным непостоянным нарушением функций печени, у значительной части больных имеется морфологическая картина легкого гепатоза.

Пигментный обмен

К.м.н. А. В. Змызгова

Под пигментным обменом подразумевают обычно обмен важнейших пигментов крови - гемоглобина и продуктов его распада- билирубина и уробилина. В настоящее время является доказанным и общепризнанным, что разрушение эритроцитов происходит в клетках ретикуло-эндотелия (печень, костный мозг, селезенка, сосуды). Купферовские клетки печени при этом играют главную и активную роль (A. Л. Мясников, 1956). При разрушении гемоглобина от него отщепляется простетическая группа, которая теряет атом железа и далее превращается в желчные пигменты - билирубин и биливердин. В просвет желчных капилляров билирубин выводится эпителиальными клетками. Существующий кишечно-печеночный кругооборот желчных пигментов, хорошо описанный A. Л. Мясниковым, можно схематически изобразить так: печень - желчь - кишечник - портальная кровь - печень - желчь. Для исследования пигментного обмена обычно пользуются определением билирубина в сыворотке крови, уробилина в моче и стеркобилина в кале.

Билирубин сыворотки крови подвержен колебаниям как при физиологических, так и при патологических состояниях. В норме уровень билирубина крови зависит от объема физиологического гемолиза. Содержание его увеличивается при физической работе (повышенный гемолиз), при голодании. После приема пищи билирубин крови у здоровых лиц понижается вследствие его выделения с желчью (Б. Б. Коган, 3. В. Нечайкина, 1937). При поражении печени, желчных путей, повышенном гемолизе билирубин в крови повышается. Нормальные цифры билирубина крови, по данным различных авторов, варьируют в довольно значительных пределах. Так, по ван ден Бергу, они колеблются в пределах от 0,1 до 0,6 мг%, по Бокальчуку и Герцфельду - от 1,6 до 6,25 мг% и т. д. Наряду с количественным определением билирубина большое значение имеет изучение качества его. Ван ден Берг в 1910 г. сообщил, что билирубин по своему качеству неоднороден и состоит из двух фракций, отличающихся друг от друга по поведению с диазореактивами. Один билирубин он назвал "прямым", или "быстрым", а другой - "непрямым". Раньше считали, что "непрямой" билирубин превращается в "прямой" в клетках печеночного эпителия путем отщепления от "непрямого" билирубина белковых субстанций. За последнее время работами ряда авторов (Schmid, 1956; Billing a. Lathe, 1958) установлено, что "прямой" билирубин образуется из "непрямого" в результате соединения последнего с глюкуроновой кислотой. Образовавшийся в ретикулоэндотелиальной системе из протопорфирина непрямой, или так называемый свободный, билирубин (гемобилирубин) выделяется в кровь, так что у здорового человека в крови находится 0,5-0,75 мг% "непрямого" билирубина (И. Тодоров, 1960). Этот билирубин, благодаря наличию в его молекуле глобина, является соединением, нерастворимым в воде и дающим непрямую реакцию с диазореактивом. В крови гемобилирубин соединяется с альбумином, образуя коллоидный раствор, не проходящий через почечный фильтр. С током крови "непрямой" билирубин попадает в печень, где от него отщепляется альбумин и присоединяется глюкуроновая кислота, т. е. образуется глюкуронид билирубина, который является прямым билирубином или холебилирубином. Этот процесс осуществляется в паренхиме печени при участии фермента трансферазы (Schmid, 1961). Билирубинглюкуронид хорошо растворяется в воде, легко проходит почечный фильтр, свободно попадает в желчь и дает быструю реакцию с диазореактивами. Благодаря соединению с глюкуроновой кислотой жирорастворимый, ядовитый для мозговой ткани "непрямой" билирубин становится растворимым и утрачивает токсичность. При физиологических состояниях в крови и моче прямого билирубина нет, так как между кровеносными и желчными капиллярами существует барьер из печеночных клеток, который не позволяет ему перейти в кровь. При паренхиматозных и застойных желтухах этот барьер разрушается и прямой билирубин из крови переходит в мочу. Методом хроматографического исследования установлено, что прямой билирубин может присоединять к себе одну или две молекулы глюкуроновой кислоты, т. е. образовывать моно- или диглюкуронид билирубина. По данным Hoffman (1961), билирубин - диглюкуронид желчи составляет 75-80%.

В настоящее время точно еще не установлено, в каких именно клетках печени осуществляется конъюгация билирубина. По мнению 3. Д. Шварцмана (1961), образование моноглюкуронида возможно в ретикуло-эндотелиальных клетках, а диглюкуронида - в печеночных. Билирубин-глюкуронид, достигнув в составе желчи толстого кишечника, распадается на ряд переходящих друг в друга билирубиноидов, образуя в конечном итоге стеркобилин и уробилиноген. Последний всасывается кишечным эпителием в кровь и через портальную систему возвращается в печень, где почти полностью улавливается у здоровых людей купферовскими клетками. Небольшая часть уробилина попадает в большой круг кровообращения и выводится из организма с мочой. Таким образом, уробилин, хотя и является пигментом мочи, но в норме находится в ней в незначительных количествах (чаще в виде следов). По Тервену, в суточном количестве мочи у здоровых лиц содержится около 1 мг уробилина. Попадая вместе с желчью в пищеварительный тракт, желчные пигменты подвергаются здесь воздействию бактерий. При этом билирубин восстанавливается в стеркобилиноген и в таком виде выводится с калом. Под влиянием света и воздуха стеркобилиноген легко окисляется, превращаясь в стеркобилин, суточное количество которого, по Тервену, колеблется от 50 до 200 мг. Если уробилинурия отражает функциональное состояние печени, то, по мнению многих авторов, повышенное количество стеркобилина в кале свидетельствует об интенсивности гемолиза. Поэтому ряд исследователей придает большое значение отношению количества уробилина мочи к стеркобилину (коэффициент Адлера), равному в норме 1:30, 1:40.

Согласно имеющимся в литературе сообщениям, а также данным, полученным нами, пигментный обмен страдает при многих инфекционных заболеваниях, что приводит к увеличению содержания уробилина в моче и более или менее значительной гипербилирубинемии (А. М. Ярцева, 1949; А. В. Змызгова, 1957; И.К.Мусабаев, 1950; Б. Я. Падалка, 1962, и др.). Однако выраженная желтуха при этом встречается редко. Имеются только единичные указания о наличии желтухи у больных брюшным тифом (Н. И. Рагоза с соавторами, 1935), сыпным тифом (А. М. Сигал), инфекционным мононуклеозом (К. М. Лобан, 1962) и другими заболеваниями. Острые малярийные гепатиты также могут сопровождаться желтухой и осложняться острой дистрофией печени (Е. М. Тареев, 1946).

Нарушение пигментного обмена при инфекционных заболеваниях в одних случаях связывают с поражением печени и эндокринно-нервного аппарата, регулирующего ее функции, в других - с повышенным гемолизом.

Определение общего, "прямого" и "непрямого" билирубина в сыворотке имеет большое клиническое значение при дифференциальных диагнозах различных видов желтухи.

В свете новых данных о механизме образования и выделения билирубина в настоящее время по-другому трактуется и патогенез желтух. Оказалось, что прежнее деление желтух на паренхиматозные, механические и гемолитические не отражает всего многообразия патогенетических вариантов этого заболевания. По современной классификации (А. Ф. Блюгер и М. П. Синельникова, 1962) желтухи делятся на две группы:

  1. желтухи, не связанные с нарушением тока желчи
    • надпеченочные желтухи [показать]

      Надпеченочные желтухи сопровождаются накоплением в сыворотке крови свободного "непрямого" билирубина, в то время как количество "прямого" билирубина остается нормальным. К ним относят врожденную и приобретенную гемолитические желтухи. Увеличение непрямого билирубина в крови происходит вследствие усиленного распада эритроцитов с последующей гиперпродукцией билирубина. Возникает такое большое количество желчного пигмента, что нормальная выделительная способность печени оказывается недостаточной. К надпочечным желтухам относятся также следующие так называемые ретенционные желтухи, когда билирубин образуется в повышенном количестве и не выделяется из организма:

      1. Болезнь Мейленграхта - Жильбера, которая возникает в связи с врожденной недостаточностью фермента трансглюкуронидазы в клетках печени, в результате чего "непрямой" билирубин не может превратиться в "прямой" и накапливается в крови.
      2. Семейная ядерная желтуха Криглера-Наджара развивается в результате врожденного отсутствия ферментных систем, обеспечивающих связь билирубина с глюкуроновой кислотой: при этом в сыворотке крови накапливается высокая концентрация "непрямого" билирубина, оказывающего токсическое действие на ядра головного мозга.
      3. Постгепатитная функциональная гипербилирубинемия может быть связана с нарушением механизма захвата билирубина из крови (Schmid, 1959) или с повышенным гемолизом, который,по мнению Kalk (1955), развивается на почве накопления аутоантител, обнаруживаемых с помощью реакции Кумбса. Известно, что при вирусных заболеваниях изменившиеся под действием вируса эритроциты могут приобретать антигенный характер, в результате чего в организме начинают вырабатываться антитела, в том числе и гемолизины (И. Мадьяр, 1962). Надпеченочные желтухи протекают обычно с нормальной активностью альдолазы, трансаминаз и щелочной фосфатазы, с неизменной электрофореграммой и нормальными осадочными пробами. При гемолитических желтухах выражены гепатолиенальный синдром, ретикулоцитоз, сниженная резистентность эритроцитов и анемия.
    • печеночные желтухи [показать]

      Печеночные (гепатоцеллюлярные) желтухи развиваются вследствие первичного поражения печени и встречаются при болезни Боткина, циррозах печени, токсических и холангиолитических гепатитах, инфекционном мононуклеозе, холестатических гепатозах и некоторых других заболеваниях. При этих желтухах увеличивается главным образом количество прямого билирубина в крови, так как образование билирубинглюкуронида при этих желтухах страдает мало, но вследствие нарушения балочной структуры печени или закупорки билиарной системы он не может выделяться в кишечник и проникает в кровяное русло. Содержание непрямой его фракции тоже возрастает, но в значительно меньшей степени. Процесс гипербилирубинемии при паренхиматозном гепатите является сложным и может зависеть от следующих причин:

      1. от нарушения экскреции билирубина из печеночных клеток в желчные капилляры;
      2. от затрудненного оттока желчи в силу явлений внутрипеченочной обтурации глюкуронид-билирубин забрасывается в кровяное русло (регургитации желчи);
      3. от нарушения синтеза глюкуронидов в микросомах гепатоцитов (страдают трансферразные системы);
      4. от нарушения поступления билирубина в пораженные печеночные клетки.

      Страдает функция "захватывания" билирубина гепатоцитами.

  2. желтухи, связанные с нарушением тока желчи
    • подпеченочные желтухи [показать]

      Подпеченочные желтухи развиваются при желчнокаменной болезни, опухолях и стенозах в области желчных путей, а также при бактериальных холангитах. При подпеченочных или так называемых застойных желтухах также увеличивается главным образом "прямой" билирубин, что связано с переполнением желчных путей вследствие закупорки, разрыва их и последующего перехода желчи в кровяное русло. Одновременно слегка повышается содержание "непрямого" билирубина, так как последний переполняет печеночную клетку, которая не в состоянии перевести весь "непрямой" билирубин в "прямой", что вызывает его повышение в сыворотке крови (Й. Тодоров, 1960). Из сказанного ясно, что количественное определение общего "прямого" и "непрямого" билирубина в сыворотке крови имеет большое клиническое значение. Выявление повышенного "прямого" или "непрямого" билирубина служит наиболее точным методом дифференцирования гемолитических желтух от застойных и паренхиматозных. Для определения общего билирубина и его фракций в настоящее время отдают предпочтение методу Ендрассика, Клеггора и Трафа, который является более точным, чем метод ван ден Берга. При определении билирубина по ван ден Бергу для осаждения белков применяется этиловый спирт, с которым в осадок увлекается и часть адсорбированного на нем пигмента, вследствие чего показатели билирубина могут быть понижены. Принцип метода Ендрассика, Клеггора и Трафа заключается в том, что в присутствии раствора кофеина билирубин (свободный и связанный) легко образует азобилирубин, определяемый колориметрически. В одной пробирке, добавляя кофеин, определяют общий билирубин, в другой (без кофеина) - прямую его фракцию. Концентрация непрямого билирубина определяется по разности между общим и прямым билирубином. В настоящее время определенное клиническое значение придают также вычислению билирубинового показателя (уровень связанной фракции по отношению к содержанию всего билирубина, выраженный в процентах). Так, по данным А. Ф. Блюгера (1962), общий билирубин у здоровых лиц колеблется в пределах 0,44-0,60 мг%, а билирубиновый показатель у них равен нолю. При болезни Боткина в преджелтушном периоде уже можно обнаружить незначительную гипербилирубинемию за счет прямой фракции. Количество билирубина в сыворотке крови в этот период может быть и нормальным, но и тогда признаком нарушения пигментной функции печени может служить наличие прямого билирубина. На высоте желтухи билирубиновый показатель может превышать даже 50%. В периоде выздоровления связанная фракция билирубина исчезает из крови очень медленно, в связи с чем даже при нормальном уровне билирубина еще длительное время остается прямой или замедленно прямой реакция ван ден Берга, что является важным признаком неполного выздоровления. Связанная фракция билирубина нередко обнаруживается и при безжелтуш-ных формах болезни Боткина, когда уровень общего билирубина не превышает норму. Билирубиновый показатель может также значительно возрастать при под-печеночных желтухах. При гемолитических желтухах этот показатель бывает значительно ниже, чем у больных с паренхиматозной или застойной печенью, и равняется 20% и ниже. При печеночной и подпеченочной желтухах при гипербилирубинемии, превышающей 1,5-2 мг%, билирубин в виде желчных пигментов появляется в моче. Отсутствие желчных пигментов в моче при гипербилирубинемии свидетельствует о гемолитической природе желтухи. Диагностическое значение имеет также и определение билирубина в моче.

      Уробилинурия обычно наблюдается в преджелтушном периоде эпидемического гепатита, а также на спаде желтухи. Последнее обстоятельство является признаком наступившего криза. Уробилинурия может сохраняться длительное время в период реконвалесценции и свидетельствовать о наличии незаконченного патологического процесса. На высоте желтухи при эпидемическом гепатите уробилин в моче, повышенный в преджелтушном периоде, может исчезнуть. При обтурационных желтухах уробилин в моче может отсутствовать долгое время. Одним из постоянных признаков гемолитических желтух является уробилинурия, которая связана с избыточным поступлением уробилина из кишечника и относительной недостаточностью функции печени (печень не успевает избыточное количество непрямого билирубина связать с глюкуроновой кислотой).

      Стеркобилин в кале при гемолитической желтухе повышается, а при холестетической форме болезни Боткина и при подпеченочных желтухах может длительное время наблюдаться ахолия. Изучение пигментной функции печени при желтухах различной этиологии хотя и может иметь диагностическое значение, однако путем определения общего билирубина и его фракций, уробилина в моче и стеркобилина в кале не всегда бывает возможным отдифференцировать один вид желтухи от другого. Наибольшие трудности встречаются при диагностике и дифференциальной диагностике холестатических, затяжных форм болезни Боткина с желтухами, развивающимися вследствие злокачественных новообразований в области гепато-панкреато-дуоденальной зоны, с циррозами печени и желчнокаменной болезнью. Для целей диагностики и дифференциальной диагностики желтух различного генеза в настоящее время применяется комплекс лабораторных методов исследования, который включает в себя ферментные пробы, определение белка, белковых фракций сложных белковых комплексов, коллоидные пробы, определение протромбинового индекса (нагрузка витамином К), пробы, основанные на изучении липоидной, углеводной, экскреторной функций печени и др. В связи с тем, что физиологическое значение этих показателей, механизм их изменений при патологических состояниях изложены при описании соответствующих видов обмена, в настоящем разделе мы ограничимся сводной таблицей этих показателей при желтухах различной этиологии (табл. 2).

      В клинике, руководимой А. Ф. Билибиным, для дифференциальной диагностики желтух различного генеза, помимо указанных лабораторных методов, с успехом применяется исследование содержания серомукоида, ставится проба Иргла, а также определяется вязкость сыворотки и плазмы. Серомукоид представляет собой сложный белковый комплекс, состоящий из белка и углеводных компонентов (гексозы, гексозамины и их производные). Процессы образования сывороточных гликопротеидов и их углеводных компонентов сравнительно мало изучены. Однако многочисленные экспериментальные данные и наблюдения клиницистов свидетельствуют о несомненной роли печени в их синтезе. При паренхиматозных гепатитах, а также при циррозах печени концентрация серомукоида в сыворотке крови понижается (Sarin с соавторами, 1961; Musil, 1961; А. Ф. Билибин, А. В. Змызгова, А. А. Панина, 1964), в то время как при желчнокаменной болезни она остается нормальной или слегка понижается, а при желтухах, развивающихся вследствие злокачественных новообразований, прогрессивно увеличивается по мере нарастания желтухи. Pagui (1960) считает, что быстрый и инфильтрирующий рост злокачественных опухолей способствует деполимеризации основного вещества соединительной ткани, богатой сахаридными группами с последующим переходом их в кровь, что приводит к повышению содержания серомукоида. Другие авторы (Kompecher с соавторами, 1961) повышение сывороточных мукоидов объясняют метаболизмом раковой ткани, так как в растущей опухоли усиленно происходит анаэробный гликолиз, в результате чего образуются различные углеводные компоненты, которые через расширенные лимфатические сосуды в повышенном количестве поступают в кровь. По их мнению, попадая в кровь, углеводные компоненты способствуют метастазированию.

      Проба Иргла, выявляющая патологические глюколипиды, у большинства больных эпидемическим гепатитом бывает отрицательной на всем протяжении болезни. У части больных, главным образом отягощенных различными сопутствующими заболеваниями, она может выпадать положительной (+ или ++), но по мере угасания клинических симптомов быстро становится отрицательной. При злокачественных новообразованиях, сопровождающихся желтухой, наблюдается совершенно иная динамика пробы Иргла. Степень помутнения ее прогрессивно увеличивается вплоть до появления флокуляции, и у таких больных она обычно бывает резко положительной (+++).

      Вязкость сыворотки и плазмы подвержена меньшим колебаниям, чем вязкость цельной крови, так как их состав отличается более значительным постоянством. Вязкость сыворотки и плазмы зависит в первую очередь от коллоидного состояния белка, а именно от величины и формы белковых молекул, сложной глобулярной структуры, степени электрической проводимости и других физико-химических свойств сыворотки и плазмы, а также от содержания в них солей и ионов. При различных патологических процессах в организме нарушается химический состав, физические и физико-химические свойства крови, что в свою очередь влечет за собой изменение вязкости. В настоящее время сравнительная вискозиметрия используется в качестве теста для быстрой диагностики эпидемического гепатита, так как вязкость сыворотки и плазмы при болезни Боткина понижается, в то время как при желтухах другой этиологии она остается нормальной или повышается (М. Яломицяну с соавторами, 1961; А. В. Змызгова, А. А. Панина, 1963). Вискозиметрия - простой доступный метод лабораторного исследования, что является большим преимуществом его перед другими громоздкими и дорогостоящими методами лабораторных исследований.

      Из табл. 2 видно, что нет ни одного лабораторного метода исследования, который бы являлся строго специфичным для того или иного вида желтухи. Однако комплексное, динамическое их определение в сочетании с клинической картиной болезни помогает клиницисту проводить дифференциальную диагностику, оценивать тяжесть патологического процесса, глубину поражения печени и степень наступившего выздоровления.

      Как известно, у ряда лиц после перенесенной болезни Боткина иногда длительное время сохраняется гипербилирубинемия, которая может развиваться вслед за перенесенным эпидемическим гепатитом либо но прошествии нескольких недель и месяцев после выздоровления. У одних лиц гипербилирубинемия носит затяжной характер, у других периоды повышенного содержания билирубина чередуются с временным снижением или даже с нормализацией уровня его. Природа этого явления до настоящего времени полностью еще не расшифрована. Одни исследователи подобную билирубинемию считают проявлением скрыто протекающего хронического гепатита, другие связывают его с развитием холангио-холециститов, дискинезий желчных путей, рецидивов болезни, а третьи высказываются в пользу гемолитического происхождения ее. Е. М. Тареев (1958) такую гипербилирубинемию считает последствием перенесенного эпидемического гепатита и указывает на возможность ее медленного, но полного обратного развития. На основании литературных данных (М. В. Мельк, Л. Н. Осипов, 1963) можно выделить три основные группы с затяжной билирубинемией:

      1. Гипербилирубинемия после перенесенного эпидемического гепатита, связанная с предшествующим поражением печеночной паренхимы или внепеченочной билиарной системы. В клинической картине этой группы больных обращает на себя внимание выраженная желтушность кожи и склер при повышении прямого билирубина по ван ден Бергу до 3,5 мг%. Нередко желтуха сопровождается ахоличностью стула, темной окраской мочи, диспепсическими явлениями, иногда болями в области печени. При этом концентрация непрямого билирубина не повышается, а функциональные пробы печени изменяются (повышена активность ферментов, снижена сулемовая проба, наблюдается патологическая сахарная кривая, снижена проба Квика - Пытеля). Осмотическая стойкость эритроцитов и количество ретикулоцитов не отклоняются от нормы.
      2. Гемолитические желтухи различной этиологии, протекающие по типу затяжных или перемежающихся гипербилирубинемией, по поводу которых больные госпитализируются с ошибочным диагнозом эпидемического гепатита. В анамнезе этой группы больных нет указаний на перенесенный гепатит, а желтуха нередко проявляется после каких-либо перенесенных интеркуррентных заболеваний (грипп, пневмония и т. д.). Желтушность склер и кожи при этом выражена слабо, диспептические расстройства и боли в области печени встречаются редко. Налицо гепатолиенальный синдром. Содержание билирубина повышается за счет главным образом непрямой его фракции. Реакция ван ден Берга, однако, быстрая, прямая или замедленная. У многих больных снижена осмотическая стойкость эритроцитов и повышена стойкость ретикулоцитов. Печеночные пробы изменяются мало.
      3. Группа больных с постгепатитным "гемолитическим компонентом" или так называемой постгепатитной функциональной гипербилирубинемией. Гемолитический компонент у них развивается непосредственно после эпидемического гепатита или спустя несколько месяцев и даже лет. Функциональная постгепатитная гипербилирубинемия свойственна лицам преимущественно молодого возраста. Постоянными кишечными симптомами постгепатитных гемолитических желтух являются: легкая желтушность кожи и склер, увеличение печени, частое увеличение селезенки, нормально окрашенный стул и моча, преобладание "непрямой" фракции билирубина сыворотки крови, а в случае нарастания обеих фракций билирубина "непрямой" билирубин увеличивается в большей степени. Возможно снижение осмотической стойкости эритроцитов, повышение количества ретикулоцитов. Постгепатитная функциональная гипербилирубинемия протекает с неизменными функциональными пробами печени. В гемограмме таких больных наблюдается лимфоцитоз, который не встречается при другой гемолитической желтухе (Л.П. Бриедис, 1962).

      Как уже указывалось выше, гемолитические явления после перенесенного эпидемического гепатита многие исследователи связывают с явлениями аутосенсибилизации, в результате чего в крови таких больных обнаружены противоэритроцитарные аутоантитела (Hirscher, 1950; Jandl, 1955). С. О. Авсаркисян (1963), не отрицая возможности аутосенсибилизации, считает, что в развитии затяжной или перемежающейся гипербилирубинемии играет роль и неполноценность печени, что подтверждается выявлением аутоантител против ткани печени у части больных.

      Изменение лабораторных показателей при желтухах различной этиологии

      Таблица 2

      Лабораторные показатели Печеночные желтухи
      болезнь Боткина цирроз печени холестатический гепатоз
      Билирубиновый показатель Выше 50% Выше 50% Выше 50%
      Желчные пигменты Положительные Положительные Положительные
      Уробилинурия Положительная в преджелтушном периоде и на спаде желтухи, на высоте желтухи может отсутствовать Положительная
      Альдолаза Рано и значительно повышается Норма
      Рано и значительно повышаются Норма или слегка повышена Часто норма
      Коэффициент де Ритиса Меньше 1 Меньше 1 -
      Щелочная фосфатаза Слегка повышена Легкое или умеренное повышение Умеренно повышена
      Белковые фракции Небольшая гипоальбуминемия и γ-глобулинемия Значительная гипоальбуминемия, резкая γ-глобулинемия Небольшое повышение α- и β-глобулинов
      Тимоловая проба Высокая Норма Норма
      Сулемовая проба Снижена Резко снижена Норма или слегка снижена
      Реакция Таката-Ара + или ++ Резко положительная ++++ Отрицательная
      Протромбин Снижен Снижен Норма
      Не нормализуется Не нормализуется -
      Холестерин Снижен Снижен Норма
      Эфиры холестерина Значительно снижены Значительно снижены Норма
      Сывороточное железо Повышено Нормально или слегка повышено Норма
      Медь сыворотки Нормальная или слегка повышена Чаще незначительно повышена Неизвестно
      Проба Иргла Отрицательная или слабо положительная, но быстро нормализуется Слабо положительная или положительная Неизвестно
      Серомукоид Снижен Резко снижен Неизвестно
      ДФА Умеренно повышен Умеренно повышен Слегка повышен
      Бромсульфалеиновая проба Снижена Снижена Нормальна или понижена
      Вязкость сыворотки и плазмы Снижена Нормальна или повышена Неизвестно
      Картина крови Лейкопения, нормоцитоз, макроцитоз Лейкопения, тромбоцитопения, макроцитоз Не характерно
      РОЭ Нормальна или замедлена Чаще ускорена Чаще ускорена

      продолжение: Изменение лабораторных показателей при желтухах различной этиологии

      Лабораторные показатели Надпеченочные желтухи Подпеченочные желтухи
      гемолитические функциональная гиперби-лирубинемия желчнокаменная болезнь опухоли
      Билирубиновый показатель Менее 20% Менее 20% Выше 50% Выше 50%
      Желчные пигменты Отрицательные Отрицательные Положительные Положительные
      Уробилинурия Резко положительная Положительная При полной закупорке отрицательная
      Альдолаза Норма Норма Норма или незначительное повышение
      Трансаминазы (аспарагиновая, аланиновая) Норма Норма Норма или незначительное повышение Норма или незначительное повышение
      Коэффициент де Ритиса Равен 1 Равен 1 Выше 1 Выше 1
      Щелочная фосфатаза Норма Норма Резко повышена Резко повышена
      Белковые фракции Норма Норма Увеличение α 2 -глобулинов при нормальном или слегка увеличенном количестве γ-глобулинов Увеличение α 2 -глобулинов при нормальном или слегка увеличенном содержании γ-глобулинов
      Тимоловая проба Норма Норма Норма Норма
      Сулемовая проба Норма Норма Норма Норма
      Реакция Таката-Ара Норма Норма Норма Норма
      Протромбин Норма Норма Норма Норма
      Протромбин после нагрузки витамином К - - Нормализуется В случае снижения нормализуется
      Холестерин Норма Норма Повышен Повышен
      Эфиры холестерина Норма Норма Норма Норма
      Сывороточное железо Возможно незначительное повышение Норма Норма или понижение Понижено
      Медь сыворотки Норма Норма Резко повышена Резко повышена
      Проба Иргла Отрицательная Отрицательная + или ++ с быстрой нормализацией Резко положительная +++
      Серомукоид Норма Норма Норма или повышение с быстрой нормализацией в динамике Нарастание в динамике
      ДФА Норма Норма Повышен Резко повышен
      Бромсульфалеиновая проба Норма Норма Нормальна или слегка понижена
      Вязкость сыворотки и плазмы Не характерна Чаще слегка понижена Повышена Повышена
      Картина крови Понижение резистентности эритроцитов Лимфоцитоз Лейкоцитоз, нейтрофиллез Лейкоцитоз, нейтрофиллез
      РОЭ Норма Норма Ускорена Ускорена

      ЛИТЕРАТУРА [показать]

Врачи различных специализаций должны владеть знаниями касательно обмена билирубина в организме человека в нормальном режиме и при патологических нарушениях. При нарушении нормального процесса обмена билирубина происходит появление такого симптома, как желтуха. На начальных этапах нарушение обмена пигмента способны выявить только лабораторные исследования. Одним из главных таких исследований является биохимический анализ сыворотки крови.

    Показать всё

    Нормальный обмен билирубина

    Билирубин - это желчный пигмент. Является продуктом распада гемсодержащих соединений организма, который путем множественных превращений экскретируется из организма человека почками и ЖКТ.

    У взрослого человека за сутки образуется около 250-400 мг билирубина. В норме билирубин образуется из гема в органах РЭС (ретикуло-эндотелиальной системы), преимущественно в селезенке и костном мозге, путем гемолиза. Более 80% пигмента образуется из гемоглобина, а остальные 20% из других гемсодержащих соединений (миоглобина, цитохромов).

    Порфириновое кольцо гема под действием фермента гемоксигеназы окисляется, теряя атом железа, превращается в вердоглобин. А затем в биливердин, который восстанавливается (с помощью фермента биливердинредуктаза) до непрямого билирубина (НБ), являющегося нерастворимым в воде соединением (синоним: неконъюгированный билирубин, т. е. не связанный с глюкуроновой кислотой).

    В плазме крови непрямой билирубин связывается в прочный комплекс с альбумином, который транспортирует его в печень. В печени НБ превращается в прямой билирубин (ПБ). Наглядно это можно увидеть на рисунке 2. Весь этот процесс протекает в 3 этапа:

    1. 1. Происходит захват гепатоцитом (клетка печени) непрямого билирубина после отщепления от альбумина.
    2. 2. Затем протекает конъюгация НБ с превращением в билирубин-глюкуронид (прямой или связанный билирубин).
    3. 3. И в самом конце экскреция образовавшегося прямого билирубина из гепатоцита в желчные канальцы (оттуда в желчевыводящие пути).

    Второй этап проходит с помощью фермента - УДФГТ (уридиндифосфатглюкуронилтрансфераза или, говоря простым языком, глюкуронилтрансфераза).

    Попав в двенадцатиперстную кишку в составе желчи, от прямого билирубина отщепляется 2-УДФ-глюкуроновая кислота и образуется мезобилирубин. В конечных отделах тонкого кишечника мезобилирубин под действием микрофлоры восстанавливается до уробилиногена.

    20% последнего всасывается через мезентериальные сосуды и попадает снова в печень, где полностью разрушается до пиррольных соединений. А остальная часть уробилиногена в толстом кишечнике восстанавливается до стеркобилиногена.

    80% стеркобилиногена выделяется с калом, который под действием воздуха превращается в стеркобилин. А 20% стеркобилиногена всасывается через средние и нижние геморрагические вены в кровоток. Оттуда уже соединение покидает организм в составе мочи и в виде стеркобилина.

    Сравнительная характеристика непрямого и прямого билирубина:

    Обтурационная желтуха

    Обмен билирубина при различных патологических состояниях

    В клинической практике почти каждый специалист сталкивался с нарушением процесса обмена билирубина, который проявляется в виде симптома желтухи.

    Желтуха - это синдром окрашивания в желтый цвет слизистых оболочек, склер и кожи, в основе которого лежит нарушение обмена билирубина с избыточным содержанием его в крови.

    Специалисты выделяют 3 вида желтухи - надпеченочная, печеночная и подпеченочная.

    Надпеченочная (гемолитическая) желтуха

    Развивается при заболеваниях, связанных с усиленным гемолизом эритроцитов:

    1. 1. Корпускулярные (гемолиз связан с нарушением структуры и функции самого эритроцита; врожденного и приобретенного характера) - аутоиммунные анемии, талассемия, серповидно-клеточная анемия, микросфероцитоз (болезнь Минсковского-Шоффара), мегалобластные анемии (неэффективный эритропоэз) и др.
    2. 2. Экстракорпускулярные (гемолиз связан с воздействием различных факторов на эритроцит, приводит к его гибели) - переливание несовместимой крови, резус-конфликт матери и плода, вирусные инфекции, сепсис, малярия, краснуха, укусы ядовитых змей, воздействие мышьяка, фосфора, сульфаниламидов и др.
    3. 3. Гемолитические желтухи, обусловленные усиленным внесосудистым гемолизом - рассасывание массивных гематом, инфаркты легких и других внутренних органов, кровоизлияние в брюшную и плевральную полость.

    Характеристика желтухи

    Печень при гемолитической желтухе здорова. Она старается избыток непрямого билирубина, который образуется при усиленном гемолизе, превратить в прямой билирубин и отправить его в кишечник. Поэтому в кале и моче увеличивается количество стеркобилина, в крови повышается количество непрямого билирубина, потому что гепатоциты не успевают его обезвредить.

    Кожа принимает лимонно-желтый цвет (пациенты больше бледны, чем желты из-за гибели эритроцитов). Кал становится черного или темно-коричневого цвета (как темный шоколад), а моча приобретает буро-коричневую окраску. Биохимический анализ сыворотки крови, мочи и кала помогает обнаружить изменение концентраций желчных пигментов.

    При расшифровке общего анализа крови (ОАК) обнаруживается анемия (уменьшение гемоглобина и эритроцитов), ретикулоцитоз и, возможно, патологические эритроциты (например, микросфероциты), а также другие показатели, указывающие на какой-то определенный вид наследственной гемолитической анемии.

    Все зависит от того, где происходит гемолиз эритроцита - внутрисосудисто или внутриклеточно (в селезенке). При внутриклеточном гемолизе обнаруживается увеличение концентрации непрямого билирубина в крови, повышение уровня стеркобилина в моче и кале. При внутрисосудистом гемолизе наблюдается повышение уровня свободного гемоглобина плазмы крови, гемоглобинурия, гемосидеринурия, понижение уровня гаптоглобина в плазме крови.

    Печеночная (паренхиматозная) желтуха

    Такой тип желтухи наблюдается при повреждении или гибели гепатоцитов, в результате чего печень не может участвовать в метаболизме билирубина. Гепатиты (острые и хронические) вирусной или аутоиммунной природы, гепатозы, циррозы печени, лептоспироз, токсические поражения печени (свинец, ртуть, мышьяк, бензол и его производные, ядовитые грибы), лекарственные или алкогольные поражения печени, амилоидоз, саркоидоз, гепатоцеллюрный рак (карцинома) являются причиной этого. Сюда относятся ферментативные нарушения в гепатоците - синдром Жильбера, Ротора, Дабина-Джонсона, Криглера-Найяра.

    Печень больна, поэтому можно сделать следующие выводы:

    1. 1. Так как гепатоциты поражены, то они не успевают превратитьнепрямой билирубин в прямой. Повышается уровень НБ в крови.
    2. 2. Уробилиноген не разрушается полностью в печени, попадает в кровоток и мочу, его концентрация увеличивается.
    3. 3. Прямой билирубин эффективно не выводится в кишечник, а начинает попадать в кровь. Наблюдается обратная диффузия ПБ из кишечника в кровь. Концентрация последнего резко увеличивается в крови и он появляется в моче.
    4. 4. Так как прямого билирубина мало в кишечнике, то это значит, что содержание стеркобилина в кале и моче ничтожно.

    Кожа принимает шафраново-желтый или красноватый цвет (красновато-желтый). Кал становится светло-коричневого цвета (как молочный шоколад), а моча принимает желто-бурый окрас. Наблюдаются симптомы заболевания, которые привели к поражению печени, и признаки поражения органа. Биохимический анализ сыворотки крови, мочи и кала помогает обнаружить изменение концентраций желчных пигментов.

    Подпеченочная (механическая, обтурационная) желтуха

    В основе желтухи лежит обтурация желчевыводящих путей - сдавливание протока опухолью головки поджелудочной железы, увеличенными лимфатическими узлами. Возможен рак желчного пузыря или протоков, опухоль фатерова соска, желчекаменная болезнь (ЖКБ).

    Большой вред наносят гельминты (клубок глистов), атрезия или гипоплазия желчных протоков, рубцовые сужения (после операций или перенесенного воспалительного процесса), холангиты (например, первично-склерозирующий холангит).

    Так как прямому билирубину не удается попасть в кишечник, он всасывается в кровь, потому что рвутся от повышенного давления желчные капилляры. Повышается концентрация билирубина в крови и моче.

    В связи с избытком последнего, активность ферментов по принципу обратной связи снижается и непрямой билирубин не успевает метаболизироваться. Поэтому в крови повышается его концентрация. Так как ПБ не попадает в кишечник, стеркобилина в кале и моче нет.

    Кожа пациентов окрашивается в зеленый или темно-оливковый цвет. Кал становится ахоличный (как белый шоколад), а моча приобретает желто-зеленую окраску. Биохимический анализ сыворотки крови, мочи и кала помогает обнаружить изменение концентрации желчных пигментов.

    Желтуха бывает:

    • истинная обусловлена гипербилирубинемией;
    • ложная - это желтушное прокрашивание кожи в результате приема лекарств (окрихиновая желтуха) или естественных красителей (каротин).

    Можно встретить различные характеристики окраски кожи, мочи и кала. Описание при различных видах желтухи носит субъективный характер и может отличаться. При дифференциальной диагностике желтухи первым делом необходимо решить вопрос: истинная желтуха или ложная.

    И немного о секретах...

    Здоровая печень - залог вашего долголетия. Этот орган выполняет огромное количество жизненно необходимых функций. Если были замечены первые симптомы заболевания желудочно-кишечного тракта или печени, а именно: пожелтение склер глаз, тошнота, редкий или частый стул, вы просто обязаны принять меры.

Билирубин образуется при распаде старых эритроцитов вретикулоэндотелиальной системе. Освобождающийся при этом изгемоглобина гем разлагается. Железо реутилизируется, а изтетрапиррольного кольца путем комплекса сложных окислительно-восстановительных реакций образуется билирубин. Другими егоисточниками являются миоглобин, цитохромы. Этот процесс происходит вклетках РЭС, в основном в печени, селезенке, костном мозге, которыевыделяют в кровь свободный или непрямой билирубин, нерастворимый вводе. За сутки распадается около 1% эритроцитов и образуется 100-250 мг билирубина, 5-20% его образуется из незрелых, преждевременно разрушенных эритроцитов. Это так называемый ранний (шунтовой) билирубин.

Значительно, от 30 до 80% увеличивается доля раннего билирубинапри заболеваниях и поражениях с неэффективным эритропоэзом. Этосвинцовое отравление, железодефицитная анемия, пернициозная анемия,талассемия, эритропоэтическая порфирия, сидеробластическая анемия.

При этих заболеваниях имеет место увеличенная экскреция уробилинас калом, вследствие увеличенного общего оборота желчных пигментов, безукорочения жизни эритроцитов периферической крови. Кроме того раннийбилирубин образуется из неэритроцитарного гема, источником которогослужат, печеночные протеиды (миоглобин, каталаза, триптофанпирролаза

печени). Транспортируется прямой билирубин в связанной с альбуминомформе.

Обмен билирубина, В обмене билирубина печень выполняет 3функции: захват (клиренс) гепатоцитом из крови синусоида билирубина;связывание билирубина с глюкуроновой кислотой (конъюгация); выделениесвязанного (прямого) билирубина из печеночной клетки в желчныекапилляры (экскреция).

Рис. 7. Схема транспорта билирубина в печеночной клетке .

А - разрушенные эритроциты; Б -ранний билирубин; В - свободный (непрямой)билирубин. 1 - синусоид; 2 - гладкаяэндоплазматическая сеть; 3 - ядро; 4 -пластинчатый комплекс; 5 - желчный каналец; 6 ~ кишка; 7 - цитоплазматические протеины.

Непрямой (свободный) билирубин(рис.7) отделяется от альбумина вЦитоплазменной мембране, внутриклеточныепротеины (V и Z) захватывают билирубин.

Печеночная мембрана активно участвует взахвате билирубина из плазмы. Затем непрямой билирубин в клеткепереносится в мембраны гладкой эндоплазматической сети, где билирубинсвязывается с глюкуроновой кислотой. Катализатором этой реакции являетсяспецифический для билирубина фермент уридилдифосфат (УДФ) -глюкуронилтрансферраза. Соединение билирубина с глюкуроновой кислотойделает его рстворимым в воде, что обеспечивает переход его в желчь,фильтрацию в почках и быструю (прямую) реакцию с диазореактивом,почему и называется прямым (связанным) билирубином.

Транспорт билирубина. Выделение билирубина в желчь - этоконечный этап обмена билирубина в гепатоцитах. Печень ежедневно выделяет до 300 мг билирубина и способна вылелить пигмента в 10 раз

больше, чем его образуется, т.е. в норме имеется значительный функциональный резерв для экскреции билирубина. При ненарушенномсвязывании переход билирубина из печени в желчь зависит от скоростисекреции желчи. Он переходит в желчь на билиарном полюсе гепатоцита спомощью цитоплазматических мембран, лизосом и пластинчатогокомплекса. Связанный билирубин в желчи образует макромолекулярный сложнй коллоидный раствор (мицеллу) с холестерином, фосфолипидами и солями желчных кислот. С желчью билирубин попадает в тонкийкишечник. Кишечные бактерии восстанавливают его с образованием бесцветного уробилиногена. Из тонкого кишечника часть уробилиногенавсасывается и попадает в воротную вену и вновь поступает в печень(кишечно-печеночная циркуляция уробилиногена). В печени пигментполностью расщепляется.

Печень поглощает его не полностью, и небольшое количествоуробилиногена попадает в системную циркуляцию и выводится с мочой.Большая часть образующегося в кишечнике уробилиногена окисляется впрямой кишке до коричневого пигмента уробилина, который экскретируетсяс фекалиями.

В норме присутствующий в плазме билирубин по большей части(примерно 95%) не конъюгирован и, поскольку он связан с белками, он не фильтруется почечными клубочками и в моче здоровых людей не обнаруживается. Билирубинурия отражает повышение концентрацииконъюгированного билирубина в плазме, и это всегда - признак патологии.

Частое проявление заболевания печени - желтуха, пожелтение тканейиз-за отложения билирубина. Клинически желтуха может не определяться до тех пор, пока концентрация билирубина в плазме не превысит ве рхний предел нормы более чем в 2,5 раза, т.е. не станет выше 50 мкмоль/л. Гипербилирубинемия может быть результатом повышенного образования билирубина, нарушения его метаболизма, снижения экскреции или сочетания этих факторов.

ОБМЕН ЖЕЛЕЗА, ПОРФИРИНОВ, ГЕМОПРОТЕИНОВ

Обмен железа.

В сутки в организм человека с пищей поступает около 20 г (0,36 мМоль) железа, но всасывается около 10% (2 мг). При железодефицитнойанемиии оно повышается до 3 мг. Основным местом всасывания являетсятощая кишка. Всасывание определяется состоянием запасов железа в организме. Оно увеличивается при уменьшении резервов железа ворганизме, уменьшается когда запасы его достаточны. Но всасывание железа может увеличиваться независимо от его запасов в организме при усиленном эритропоэзе.

Железо лучше всасывается в двухвалентной форме, но с пищейпоступает трехвалентное железо. Под влиянием желудочного сока железоосвобождается из пищи и превращается из трехвалентного в двухвалентное.Аскорбиновая кислота облегчает всасывание железа, а содержащаяся в сухих завтраках фитиковая кислота, фосфаты и оксалаты снижают его всасывание, образуя с железом нерастворимые комплексы.

Общее содержание железа в организме 4 г (70 мМоль). Две трети еговключены в гемоглобин. 35% депонировано в печени, селезенке, костноммозге. Основное депо - печень, содержащая до 500 мг железа.Депонирующим железо белком является ферритин, транспортирующим - трансферин. Около 15% железа содержится в миоглобине. Минимальноеколичество в железосодержащих ферментах: каталазе (антиоксидант) ицитохромах - гемопротеинах, являющихся ферментами, катализирующимимногие окислительные процессы в организме. Только 0,1% железа содержится в плазме, где оно связано с транспортным белком - трансферрином, каждая молекула которого связывает два иона железа. В плазме трансферрин насыщен железом на одну треть. В тканях он находится в форме ферритина. Свободное железо очень токсично исвязывание его с белками делает его нетоксичным, что обеспечиваетбезопасный транспорт и хранение железа в организме. При нормальном

обмене железо, откладывающееся в гепатоцитах в форме ферритина, в реакции Перлеа не выявляется.

Здоровый человек теряет в сутки около 1 мг железа, а женщины вовремя менструации еще 15-20 мг в месяц. До 70% железа выделяется черезпищеварительный тракт, остальное - с мочой и через кожу.

Метаболизм порфиринов

Гем - железосодержащее тетропиррольное красящее вещество. Он я вляется составной частью кислородсвязывающих белков и различныхкоферментов оксидоредуктаз. Почти 85% биосинтеза тема осуществляется в костном мозге, остальное в печени. В синтезе гема участвуютмитохондрии и цитоплазма. Начиная с реакции соединения глицина исукцинил КоА через ряд химических превращений, начинающихся вмитохондриях, продолжающихся в цитоплазме с участием ее ферментов, азатем вновь в митохондриях до образования протопорфириногена IX . Послечего посредством специального фермента феррохелатазы в молекулувключается атом двухвалентного железа. Образованный гем или феррум-протопорфирин IX включается в гемоглобин или миоглобин, где он связаннековалентно, или в цитохром, с которым связывается ковалентно.

Гемопротеины.

Гемопротеины представлены гемоглобином, миоглобином и цито хромами.

Гемоглобин - пигмент крови, переносящий кислород, содержится в эритроцитах . Он состоит из белка глобина и четырех молекул гема. Гемоглобин взрослого (НвА) содержит две пары полипептидных цепей - альфа и бета, каждая из которых связана с одной молекулой гема. Гем в процессе транспорта обратимо связывается с кислородом. Миоглобин связывает кислород в скелетной мускулатуре, Цитохромы - ферменты, катализирующие многие окислительные процессы в организме.

Гемоглобин - переносчик кислорода в организме, находится в эритроците. Главная функция эритроцитов - транспорт кислорода от легких в ткани и углекислого газа от тканей обратно в легкие. Высшиеорганизмы нуждаются для этого в специальной транспортной системе, таккак молекулярный кислород плохо растворим в воде: в 1 л плазмы крови растворимо только около 3,2 мл кислорода. Содержащийся в эритроцитах белок гемоглобин способен связать в 70 раз больше - 220 мл кислорода в литре. Содержание Нв в крови составляет 140-180 г/л у мужчини 120-160 г/л у женщин, т.е. вдвое выше по сравнению с белками плазмы (60- 80 г/л). Поэтому Нв вносит наибольший вклад в образование рН-буфернойемкости крови.

При связывании кислорода с атомом железа в геме (оксигенация Нв) и отщеплении кислорода (дезоксигенация) степень окисления атома железа неменяется. Окисление двухвалентного железа до трехвалентного в геме носитслучайный характер. Окисленная форма Нв, метгемоглобин, не способнапереносить кислород. Доля метгемоглобина поддерживается ферментами(редуктаза) на низком уровне и составляет 1-2%.

В первые три месяца внутриутробной жизни образуетсяэмбриональные Нв. Затем до рождения доминирует фетальный Нв (НвF),который постепенно заменяется на первом месяце жизни на НвА.Эмбриональный и фетальный Нв обладают более высоким сродством ккислороду по сравнению с НвА, так как они должны переносить кислород изсистемы материнского кровообращения.

ОБМЕН МЕДИ За сутки с пищей поступает 2-3 г меди. Она всасывается в

кишечнике и поступает в печень. 80-90% меди связывается c образующимся в печени церулоплазмином. Частично входит в состав некоторых других ферментов: супероксиддисмутазы,

цитохромоксидазы. Незначительная часть может находиться в связи с

белком (купропротеиды) в печени, в плазме крови в виде лабильного к омплекса с альбумином и выводится с мочой.

Церулоплазмин является основным переносчиком меди в кровь, откуда он избирательно захватывается нуждающимися в нем органами, В ыделяется медь в основном с желчью.

Помимо высокой оксидазной и антиоксидантной активностицерулоплазмин выступает катализатором при образовании гема, с пособствуя переходу неактивного, несвязывающего кислород т рехвалентного железа в активное двухвалентное железо. То есть п ринимает большое участие в процессах кроветворения - в образовании г емоглобина.

УЧАСТИЕ ПЕЧЕНИ В ЭНЕРГООБМЕНЕ Печень стоит на пути движения веществ из пищеварительного т ракта в общий кровоток, что позволяет этому органу регулировать в крови концентрацию метаболитов, прежде всего глюкозы, липидов, а минокислот. Печень поглощает большое количество глюкозы, превращая ее в гликоген. Это обеспечивает запасание энергетического материала, способного отдать организму 400 кКал. В присутствии кислорода большинство клеток организма получают энергию за счет полного окисления питательных веществ (углеводов, аминокислот, липидов). При этом часть энергии сохраняется. Наиболее важной формой сохранения химической энергии в клетке является нуклеотидныйкофермент - аденозинтрифосфат (АТФ). Он образуется за счетокислительного фосфорилирования (АДФ + фосфат), с расходованиемэнергии (эндоэргическая реакция), тогда как на расщепление АТФ на АДФи фосфат высвобождается энергия (высоко экзоэргическая реакция).

Рис.8 Запасание и использование энергии в животном организме энергия, высвобождающаяся при окислении мономеров (аминокислот,моносахаров, жирных кислот и глицерола), используется на синтез АТФ изАДФ и Н 3 Р0 4, а запасенная в АТФ энергия затрачивается на выполнение всехвидов работ, свойственных животному организму (механическойхимической, осмотической и электрической) (цит. По Бышовскому А.Ш.Терсеневу О.А., 1994).

Рис. 9 Реакция высвобождения энергии

Высвобождение энергии происходит при взаимодействии АТФ с ионом+НОН (рис. 9)

Менее активно образуется АТФ при анаэробном гликолизе. Прианаэробном разрушении глюкозы образуется лактат и незначительная часть энергии идет на синтез АТФ но это дает возможность клетке длясуществования в условиях недостатка или отсутствия кислорода. При

аэробном гликолизе окисление одной молекулы глюкозы сопровождаетсясинтезом 32 молекул АТФ.

Значительным источником энергии являются жирные кислоты. В виде ацил-карнитина они попадают в митохондриальный матрикс. где под вергаются бета-окислению с образованием ацил-КоА. В результате по следующих реакций деградации жирной кислоты синтезируется 106 моле кул АТФ. что соответствует свободной энергии 3300 кДж/моль. что значительно выше в сравнении с распадом глюкозы.

Поэтому жиры представляют собой очень выгодную форму сохраненияэнергии.

При недостаточном энергообеспечении (сахарный диабет,интенсивные энергозатраты, не восполняемые за счет поступления глюкозыизвне, голодание) в печени ускоряются процессы распада жирных к ислот, сопровождающиеся интенсификацией кетогенеза. Источник ж ирных кислот - липолиз в жировых депо. Кетоновые тела, в основном, ацетоацетат , служат источником энергии для других тканей, прежде всего для мышц, мозга. При достаточном энергообеспечении организма

жирные кислоты используются для синтеза в печени триацилглицеридов,

фосфолипидов, которые активнее включаются в транспортные формы

Свои энергетические потребности печень обеспечивает главным о бразом за счет кетокислот, образующихся при дезаминировании и пе реаминировании аминокислот. Использовать в качестве энергетического м атериала ацетоацетат печень не может, т.к. отсутствует трансфераза, обеспечивающая образование его активной формы - ацетоацктил-КоА.

По мнению Л. Страйр печень, не используя в качестве источника энергии ацетоацетат является «альтруистическим органом».

Примерно 80% неконъюгированного (непрямого) билирубина происходит из обветшалого гемоглобина, причем из 1 г гемоглобина образуется около 35 мг билирубина. Разрушение состарившихся эритроцитов осуществляется в селезенке, костном мозге и печени. Главная роль в разрушении эритроцитов принадлежит макрофагам; 20% неконъюгированного билирубина синтезируется из тема иного происхождения (эритробласты, ретикулоциты, миоглобин, цитохром и др.). Его относят к так называемому шунтовому билирубину.

Всего за сутки синтезируется около 300 мг билирубина. Неконъ-югированный (свободный или непрямой) билирубин практически нерастворим в воде, но растворим в жирах. У взрослого здорового человека пигмент связан целиком с альбумином (транспортным белком-лигандином). В таком виде он не может преодолевать почечный и гематоэнцефалический барьер. Один моль альбумина связывает два моля билирубина. При значительной гипербилирубине-мии (более 171,0-256,5 мкмоль/л, или 10-15 мг/дл) мощностей альбумина не хватает, и часть неконъюгированного билирубина оказывается несвязанной. То же происходит при гипоальбуминемии, при блокаде альбумина жирными кислотами и лекарствами (сали-цилаты, сульфаниламиды и др.). При наличии не связанного с альбумином неконъюгированного билирубина возрастает угроза повреждения головного мозга.

В последние годы большая роль в связывании и транспортировке неконъюгированного билирубина отводится также глутатионтранс-феразе.

Неконъюгированный (свободный, непрямой) билирубин, поступающий с кровью в синусоиды с помощью рецепторов, захватывается гепатоцитами. Следует заметить, что неконъюгированный билирубин под влиянием света претерпевает изменения - образуются фотоизомеры и циклобилирубины, которые могут выделяться с желчью.

Внутриклеточный транспорт неконъюгированного билирубина в основном идет по непрямой дороге, т. е. используется как цитоплазма, так и ГЭРЛ. Перемещение происходит с использованием лигандинов - транспортных белков X и Y, а также глутатиотранс-феразы. Продвигаясь по системе ГЭРЛ, неконъюгированный билирубин попадает в гладкий эндоплазматический ретикулум. Именно здесь с помощью билирубингликозилтрансферазы происходит конъюгация (соединение) глюкуроновой кислоты и билирубина и образуется конъюгированный (прямой, связанный) билирубин.

Конъюгированный билирубин соединен либо с одной, либо с двумя молекулами глюкуроновой кислоты. В первом случае это билирубинмоноглюкуронид (около 15% от общего билирубина), во втором - билирубиндиглюкуронид (около 85% от общего билирубина). Билирубинмоноглюкуронид может частично образовываться и вне печени. Известно, что диглюкуронид имеет только печеночное происхождение. Конъюгированный билирубин водорастворим, но нерастворим в жирах, может проникать через почечный барьер. Этот вид пигмента относительно мало токсичен для головного мозга. Однако его высокие стабильные концентрации повышают чувствительность почек к эндотоксинам. Хуже, чем неконъюгированный билирубин, он связываемся с сывороточным альбумином.

Образовавшийся в гладком эндоплазматическом ретикулуме конъюгированный билирубин активно транспортируется к билиарной мембране гепатоцита и после определенных энергетических затрат (в основном за счет преобразования АТФ) экскретируется в желчный капилляр. Этот процесс является компонентом секреции желчи. Небольшая часть конъюгированного билирубина выводится в плазму. Механизм этого выведения (по сути - рефлюкса) изучен недостаточно.

Система конъюгации билирубина в печени обычно использует примерно 2% мощности гепатоцита, экскреции - 10%.

Билирубинглюкуронид с желчью поступает в кишечник. Кишечные микробы, особенно в толстой кишке, осуществляют отщепление

глюкуроновой кислоты и образование мезобилирубина и мезобили-

Далее происходит восстановление мезобилирубина и мезобилиногена (уробилиногена). Часть мезобилиногена всасывается в кишечнике и по воротной вене поступает в печень, где полностью расщепляется до дипирролов. При повреждении паренхимы печени процесс расщепления мезобилиногена нарушается, и этот пигмент поступает в общий ток крови, а затем через почки - в мочу.

Большая часть мезобилиногена из тонкой кишки продвигается в толстую, где при участии анаэробной микрофлоры восстанавливается до стеркобилиногена. Основная часть последнего в нижних отделах кишки окисляется и превращается в стеркобилин. За сутки с калом выделяется 10-250 мг стеркобилина. Лишь небольшая часть стеркобилиногена через систему геморроидальных вен поступает в нижнюю полую вену и через почки выводится с мочой.

Под уробилинурией подразумевают выделение с мочой уробилино-идов. Уробилиноиды включают уробилиновые (уробилиногены, уробилины) и стеркобилиновые (стеркобилиноген, стеркобилин) тела. Разграничение их не получило в клинической практике широкого распространения. Уробилиногенурия и уробилинурия, с одной стороны, и стеркобилиногенурия и стеркобилинурия - с другой, обусловлены по существу одними и теми же химическими веществами, которые встречаются в двух формах - восстановленной и окисленной.

Гипербилирубинемия может развиваться преимущественно за счет неконъюгированного билирубина, как, например, при болезни Жильбера (семейная негемолитическая гипербилирубинемия, или пигментный гепатоз), гемолитической анемии, некоторых формах хронического гепатита. Другая большая группа гипербилирубинемий связана с преимущественным повышением концентрации конъюги-роваиного билирубина и встречается при острых гепатитах (вирусных, алкогольных, лекарственных), при обострениях циррозов печени и хронических гепатитов, а также при подпеченочных желтухах, обусловленных камнем или опухолью крупных желчных протоков. Определение содержания конъюгированного и неконъюгированного билирубина важно для диагностики заболеваний печени, а также контроля за их течением.