Зрительные возможности слепых с остаточным форменным зрением. Исследование остроты центрального зрения Светоощущение. Методы определения

Зрение - самый мощный источник информации о внешнем мире. 85-90% информации поступает в мозг через зрительный анализатор, и частичное или глубокое нарушение его функций вызывает ряд от­клонений в физическом и психическом развитии ребенка.

Зрительный анализатор обеспечивает выполнение сложнейших зрительных функций. Принято различать пять основных зрительных функций: 1) центральное зрение; 2) периферическое зрение; 3) бино­кулярное зрение; 4) светоощущение; 5) цветоощущение.

Как отмечают В.И. Белецкая, А.Н. Гнеушева (1982), Г.Г. Де-мирчоглян (1996) и др., центральное зрение требует яркого света и предназначено для восприятия цветов и объектов малых размеров. Особенностью центрального зрения является восприятие формы предметов. Поэтому эта функция иначе называется форменным зре­нием. Состояние центрального зрения определяется остротой зрения. В медицинской терминологии острота зрения обозначается Visus. Еди­ница измерения оптической среды глаза - диоптрия (D). Острота зрения правого глаза - Vis OD, левого - Vis OS. Зрение, при мотором глаз различает две точки под углом зрения в одну минуту, принято считать нормальным, равным единице (1,0). Форменное зрение раз­вивается постепенно: оно обнаруживается на 2-3-м месяце жизни ребенка; перемещение взора за движущимся предметом формируется в возрасте 3-5 месяцев; на 4-6-м месяце ребенок узнает ухаживаю­щих за ним родственников; после 6 месяцев ребенок различает иг­рушки - Vis 0,02-0,04, от года до двух лет Vis 0,3-0,6. Узнавание формы предмета у ребенка появляется раньше (в 5 месяцев), чем узнавание цвета.

Бинокулярное зрение - способность пространственного восприя­тия объема и рельефа предметов, видение двумя глазами. Его разви­тие начинается на 3-4-м месяце жизни ребенка, а формирование заканчивается к 7-13 годам. Совершенствуется оно в процессе накоп­ления жизненного опыта. Нормальное бинокулярное восприятие воз­можно при взаимодействии зрительно-нервного и мышечного аппа­ратов глаза. У слабовидящих детей бинокулярное восприятие чаще всего нарушено. Одним из признаков нарушения бинокулярного зре­ния является косоглазие - отклонение одного глаза от правильного симметричного положения, что осложняет осуществление зрительно-пространственного синтеза, вызывает замедленность темпов выполне­ния движений, нарушение координации и т.д. Нарушение бинокуляр­ного зрения приводит к неустойчивости фиксации взора. Дети часто бывают не в состоянии воспринимать предметы и действия во взаи­мосвязи, испытывая сложности в слежении за движущимися предме­тами (мячом, воланом и др.), определении степени их удаленности. В связи с этим таким детям надо давать больше времени для рассмат­ривания предметов и динамического восприятия, а также словесного описания тех предметов и действий, которые учащимся предстоит наблюдать самостоятельно. Важным средством развития бинокуляр­ного зрения являются различные виды бытового труда и игровой деятельности: игра в мяч, кегли и др., моделирование и конструиро­вание из бумаги (оригами), картона, занятия с мозаикой, плетение и т.п. Развитие зрительно-пространственного синтеза способствует улуч­шению ориентировки в пространстве во время игровой деятельности, занятий физкультурой и спортом.

Периферическое зрение действует в сумерках, оно предназначено для восприятия окружающего фона и крупных объектов, служит для ориентировки в пространстве. Этот вид зрения обладает высокой чувствительностью к движущимся предметам. Состояние перифери­ческого зрения характеризуется полем зрения. Поле зрения - это пространство, которое воспринимается одним глазом при его непод­вижном положении. Изменение поля зрения (скотома) может быть ранним признаком некоторых глазных заболеваний и поражения го­ловного мозга. Различаются они по месту их расположения. Сравни­тельно небольшое сужение границ поля зрения обычно детьми не замечается. При более выраженных изменениях границ поля зрения дети испытывают трудности во время ориентации и зрительно-про­странственного анализа. Наличие в поле зрения скотом ведет к воз­никновению темных пятен, теней, кругов и других видов нарушений поля зрения, осложняя восприятие предметов, действий, окружаю­щей действительности.

У слабовидящих детей отмечаются различные состояния полей зрения, обусловленные характером и степенью зрительной патологии. Дети с сужением поля зрения до 10° уже могут быть признаны инвалидами по зрению и направляются для обучения в школы III-IV вида. Учителю физкультуры важно иметь сведения о состоянии как центрального, так и периферического зрения у каждого ученика. На уроках физкультуры, ЛФК, ритмики, в процессе пространственной ориентировки используется периферическое зрение, а при чтении, рассмотрении рисунков, наглядных пособий на уроках химии, биоло­гии и др. - центральное. Эти сведения следует учитывать в процессе пространственной ориентировки, в передвижениях, в играх, при вы­полнении метания в цель. ТА Зельдович (1964), В.В. Васильева (1966) и др. отмечают, что в условиях специального обучения, под воздей­ствием подвижных и спортивных игр у занимающихся улучшается поле обзора, пространственное зрение, улучшается зрительный и ося­зательный контроль выполнения движений.

Благодаря цветовому зрению человек способен воспринимать и различать все многообразие цветов в окружающем мире. Появление реакции на различение цвета у маленьких детей происходит в опре­деленном порядке. Быстрее всего ребенок начинает узнавать красный, желтый, зеленый цвета, а позднее - фиолетовый и синий. Глаз чело­века способен различать разнообразные цвета и оттенки при смеши­вании трех основных цветов спектра: красного, зеленого и синего (или фиолетового).

Выпадение или нарушение одного из компонентов называется дихромазией. Впервые это явление описал английский ученый-химик Дальтон, который сам страдал этим расстройством. Поэтому наруше­ния цветового зрения в некоторых случаях называют дальтонизмом. При нарушении восприимчивости красного цвета красные и оранже­вые оттенки детям кажутся темно-серыми или даже черными. Жел­тый и красный сигнал светофора для них - один цвет.

Тона цветного спектра отличаются друг от друга по трем призна­кам: цветовому тону, яркости (светлоте) и насыщенности. Развитие контрастности в обучении детей с нарушениями зрения имеет важное значение. Усиление яркости, насыщенности и контрастности обеспе­чит более четкое восприятие изображаемых предметов и явлений.

У слабовидящих детей расстройства цветоразличения зависят от клинических форм слабовидения, их происхождения, локализации и течения. У незрячих вместо зрения управление движениями рук осуществляется мышечным чувством. В.П. Ермаков, Г.А. Якунин (2000), ссылаясь на работы В.М. Бехтерева, Е.С. Либман (1974) и др., отмечают как у нормальновидящих, так и у незрячих, слабовидящих наличие кожно-оптической чувствительности («кожного зрения») - способности кожных покровов реагировать на световое и цветовое воздействие. Различение цветовых оттенков, по мнению авторов, про­исходит благодаря разным качествам цветоощущения. Цветовые тона делятся на: 1) «гладкие» и «скользкие» - голубой и желтый цвета;

2) «притягивающие», или «вязкие», - красный, зеленый, синий;

3) «шероховатые», или «тормозящие» движения рук, - оранжевый и фиолетовый. Самым «гладким» воспринимается белый цвет, а «тор­мозящим» - черный.

Учителям необходимо иметь сведения о цветоразличительных возможностях учащихся. Это важно при демонстрации и использова­нии цветного спортивного инвентаря (мячи, обручи, скакалки, лыжи и пр.), наглядных пособий, рассматривании репродукций и т.д. При изготовлении наглядных пособий для детей с нарушением зрения используются преимущественно красный, желтый, оранжевый и зеле­ный цвета.

Светоощущение - способность сетчатки воспринимать свет и различать его яркость. Различают световую и темновую адаптацию. Нормально видящие глаза обладают способностью приспосабливать­ся к разным условиям освещения.

Световая адаптация - приспособление органа зрения к высоко­му уровню освещения. Световая чувствительность появляется у ре­бенка сразу же после рождения. Дети, у которых нарушена световая адаптация, в сумерках видят лучше, чем на свету. У некоторых детей с нарушением зрения отмечается светобоязнь. В этом случае дети пользуются темными очками. Такому ребенку следует предложить место для занятий физкультурой в теневой части зала, спортивной площадки или стать спиной к солнцу (источнику света).

Расстройство темновой адаптации приводит к потере ориента­ции в условиях пониженного освещения. Освещенность спортивного зала (помещения) в школах III-IV вида должна быть намного выше (не менее 600 люкс), чем для учащихся с нормальным зрением.

ОПРЕДЕЛЕНИЕ ОСТРОТЫ ЗРЕНИЯ

Наиболее важным элементом зрительной функции является форменное (центральное) зрение, характеризующееся способностью различать форму, детали и др. Форменное зрение обеспечивается за счет небольшого участка сетчатой оболочки, носящего название центральной ямки желтого пятна. Говоря об остроте зрения, мы имеем в виду остроту центрального зрения.

Острота зрения характеризуется минимальным углом, под которым глаз способен различать две точки раздельно. Для большинства глаз пороговый угол зрения составляет угол величиной в 1ґ. На этом принципе построены таблицы для определения остроты зрения, состоящие из 12 рядов букв или знаков. Детали самых крупных букв видны под углом в 1ґ с расстояния 50 м, а детали самых мелких – с расстояния 2,5 м.

Острота зрения определяется по формуле:

где V – острота зрения, d – расстояние от исследуемого до таблицы (обычно это расстояние равно 5 м), D – расстояние, с которого детали букв данной строчки различимы под углом в 1ґ. Если обследуемый с 5 м читает только первую строчку, то его зрение составляет 0,1. Человек с нормальным зрением различает детали букв с расстояния 50 м. Нормальная острота зрения у большинства людей 1,0, т, е. при такой остроте зрения с расстояния 5 м свободно различаются буквенные изображения 10-го ряда.

При исследовании остроты зрения следует соблюдать методику и тщательно выполнять все правила.

Во время определения остроты зрения медицинская сестра следит, чтобы больной не наклонял голову, не прищуривался, не надавливал на не исследуемый глаз рукой и т. д. При прищуривании вследствие уменьшения кругов светорассеивания близорукие показывают более высокую остроту зрения. Надавливание рукой на не исследуемый глаз ухудшает кровообращение в нем и рефлекторно в исследуемом глазу. Обычно исследуется острота зрения каждого глаза раздельно. Для исключения не исследуемого глаза из бинокулярного зрения удобно пользоваться специальным непрозрачным щитком белого цвета. При этом больной прикладывает щиток к спинке носа, а наружный край щитка несколько отдаляет от глаза. При таком способе исключаются недостатки, проявляющиеся при закрытии глаза ладонью. В начале исследования показывают мелкие знаки (10-го ряда), а затем переходят к более крупным.

Допускается неправильное называние или неузнавание двух знаков в строках, соответствующих остроте зрения 0,7; 0,8; 0,9 и 1,0, но об этом должна быть отметка в истории болезни.

Если неправильно называется или не узнается большее количество знаков, то острота зрения оценивается по вышестоящему ряду с более крупными знаками.

В строках таблицы, соответствующих остроте зрения 0,6; 0,5; 0,4 и 0,3 допускается одна ошибка в ответе. В первых двух верхних строках таблицы должны быть правильно определены все знаки.

Если обследуемый не может определить буквы верхней строки таблицы или определяет их с ошибками, следует попросить его приблизиться к таблице до расстояния, с которого он четко видит первую строку, и определить зрение по вышеуказанной формуле. Например, если больной читает буквы верхней строки таблицы только с 3,5 м, то острота зрения равна 0,07.

Чтобы определить остроту зрения меньше 0,1, рекомендуется на полу или стене глазного кабинета нанести метки через каждые 0,5 м.

Следует учитывать также, что два знака верхней строки легко запоминаются больными, и это может затруднить правильную оценку остроты зрения. В таких случаях удобно пользоваться оптотипами Ландольта или набором оптотипов Поляка. Размеры оптотипов рассчитаны так, что толщина линии и ширина просветов соответствуют остроте зрения 0,09; 0,08; 0,07; 0,06; 0,05 и 0,04 для расстояния 5 м. При определении остроты зрения оптотип помещают в аппарат для освещения таблиц. Если острота зрения исследуемого ниже 0,04, ее проверяют на тех же оптотипах с более близкого расстояния (2,5 м и меньше).

Остроту зрения ниже 0,1 иногда определяют путем показа пальцев с расстояния меньше 5 м. При этом условно допускают, что ширина пальца руки и ширина знака 1-го ряда таблицы приблизительно одинаковы. Определение проводится следующим образом. Больной сидит на стуле и смотрит прямо перед собой исследуемым глазом. Медицинская сестра показывает ему несколько пальцев на темном фоне картонки или дощечки и постепенно подходит к больному на расстояние, с которого он может правильно определить, сколько пальцев ему показывают. В зависимости от этого расстояния (d) по приведенной выше формуле определяют остроту зрения. При этом считают, что человек с нормальным зрением может сосчитать пальцы на расстоянии 50 м (D = 50 м). Так, если больной может сосчитать пальцы только с 2 м, то острота зрения равна 0,04.

Трудности возникают при определении остроты зрения у детей дошкольного возраста, В таких случаях пользуются таблицей с картинками. Перед началом исследования ребенка подводят к таблице и просят назвать изображенные на ней картинки, чтобы он мог освоиться и понять, что от него потребуется.

Исследование начинают с верхней строки и показывают по одной картинке, учитывая, что при исследовании дети устают. Если ребенок не сможет назвать картинку, для опознания предлагают все остальные картинки данной строки, выше расположенной строки и т. д., пока не будет правильно названо большинство картинок в данной строке. По этой строке и определяется острота зрения у ребенка.

В настоящее время для определения остроты зрения применяются более совершенные приборы, например проекторы испытательных знаков.

Человек обладает также периферическим зрением. Оно имеет большое значение. Благодаря периферическому зрению возможно ориентирование и свободное перемещение в пространстве. При утрате периферического зрения (даже при сохранности нормальной остроты зрения) человек оказывается инвалидом и ведет себя как слепой. Периферическое зрение менее четкое, и острога его во много раз меньше центрального. Это объясняется тем, что количество клеток, обеспечивающих четкость центрального видения, по направлению от центральной ямки к периферии значительно уменьшается. При ряде заболеваний (глаукома, заболевания зрительного нерва, сетчатки и др.) важное значение имеет определение периферического зрения.

Периферическое зрение характеризуют величиной поля, которое оно охватывает при фиксации какой-либо точки неподвижным глазом, т. е. под полем зрения понимают совокупность всех точек пространства, которые одновременно воспринимаются неподвижно стоящим глазом. Поле зрения каждого глаза имеет определенные границы. Нормальными границами поля зрения от центральной точки фиксации считаются следующие: кнаружи – 90°, кнутри – 55°, кверху – 50–55°, книзу – 65–70°.

Для точного определения границ поля зрения их проецируют на сферическую поверхность. На этом способе основано исследование поля зрения на периметре. В настоящее время техника периметрии значительно обогатилась новыми, совершенными приборами.

Изменение поля зрения может проявляться не только в сужении его границ, но и в выпадении половин поля зрения на обоих глазах (гемианопсия) или появления ограниченных дефектов, носящих название скотом.

Для нахождения этих скотом, расположенных вблизи центра, проводятся исследования на плоскости (кампиметрия). Обследуемого помещают на расстоянии 1 м перед черной доской размером 2х2 м и просят неподвижно фиксировать исследуемым глазом белую точку в центре доски. При этом от периферии к центру перемещают белый квадрат размером 3x3 мм или 5x5 мм и отмечают момент исчезновения и появления объекта. Следует учитывать, что и в норме в каждом поле зрения есть дефект, соответствующий диску зрительного нерва. Эго место носит название слепого пятна. Находится оно примерно в 15° от точки фиксации в сторону виска, размеры его в горизонтальном направлении равны приблизительно 6 дуговым градусам. При глаукоме, застойном диске зрительного нерва и ряде других заболеваний размеры слепого пятна значительно больше, что имеет значение в диагностике этих заболеваний.

ЦВЕТООЩУЩЕНИЕ

Цветоощущение, или способность глаза различать цвета, имеет важное практическое значение, особенно для таких профессий, как водитель, художник и др., которым необходимо наличие цветового зрения. Восприятие цветов обусловлено деятельностью колбочконесущих клеток, находящихся в основном в центральной ямке желтого пятна сетчатки. Количество цветных оттенков, воспринимаемых глазом, очень велико. Однако при смешивании в различных пропорциях трех цветов – красного, зеленого и фиолетового – можно получить все разнообразие цветовых оттенков. Первым о трехкомпонентности цветового зрения высказался великий русский ученый М. В. Ломоносов. Его исследования подтверждены и дополнены работами Юнга и других ученых. Согласно разработанной теории, допускается, что в сетчатке существуют три цветоощущающих компонента, каждый из которых, будучи специфичен для одного цвета, раздражается, но в меньшей степени, и двумя другими указанными цветами. Если у человека выпадает какой-либо цветоощущающий компонент, то нарушается все цветоощущение.

Человек, у которого функционируют все три компонента, считается нормальным трихроматом. Если функционирует два или один компонент, то этот человек называется цветоаномалом. Цветовая аномалия разделяется на цветовую слепоту на красный цвет – протаномалию, на зеленый цвет – дейтераномалию и на синий цвет – тританомалию. -

Исследование цветового зрения проводится при помощи полихроматических таблиц по следующей методике. Если исследование проводится при дневном освещении, обследуемого сажают спиной к окну. При искусственном освещении источник света располагается сзади и слева от обследуемого с таким расчетом, чтобы получить хорошее освещение таблиц. Освещенность при пользовании таблицами должна быть не ниже 200 лк. Медицинская сестра показывает таблицы с расстояния 0,5–1,0 м от исследуемого, держа их в строго вертикальной плоскости на уровне глаз обследуемого. При этом время экспозиции каждой таблицы составляет 5 с. Ответы обследуемого заносятся в специальную карточку для регистрации данных исследований цветоощущения. Оценка ответов производится для каждой таблицы отдельно.

СВЕТООЩУЩЕНИЕ

Светоощущение, или способность человеческого глаза воспринимать свет и различать степень световой яркости, является важным компонентом зрительной функции.

Эта способность имеет прямое отношение к процессу сумеречного и ночного зрения. Известно, что в темноте в первое время глаза не различают предметов. В дальнейшем происходит приспособление глаз (адаптация) к видению в новых условиях. Темновая адаптация, или способность различать предметы в темноте, важна для шоферов, летчиков, людей других профессий.

В акте светоощущения основная роль принадлежит клеткам сетчатки, в которых концентрируются специальные зрительные вещества. В темноте распад зрительных веществ не происходит так быстро, как на свету, и за счет этого усиливается световая чувствительность. Расстройства темновой адаптации отмечаются при некоторых заболеваниях. У лиц, страдающих гемералопией, или куриной слепотой, резко снижается способность ориентироваться в пространстве при пониженном освещении.

Исследуют светоощущения и темновую адаптацию при помощи специальных приборов – адаптометров. Принцип работы адаптометров основан на известном явлении, которое заключается в том, что в условиях сумеречного зрения происходит перемещение максимума яркости цветового спектра от красной к голубой части. Наиболее простой адаптометр представляет собой темную камеру, внутри которой находится цветная таблица из 4 квадратов: зеленого, голубого, желтого и красного. Яркость света, освещающего эту таблицу, постепенно усиливается. По мере наступления темновой адаптации обследуемый различает сначала желтый и голубой квадраты. При нормальном цветовом зрении и нормальной темновой адаптации это время колеблется между 15 и 60 с. Таким образом, о состоянии светоощущения судят по времени, которое требуется исследуемому на темновую адаптацию и различение квадратов таблицы.

БИНОКУЛЯРНОЕ ЗРЕНИЕ

Под бинокулярным зрением понимается координированная деятельность обоих глаз, обеспечивающаяся одновременным направлением зрительных осей на объект фиксации, слиянием зрительных изображений, получаемых в каждом глазу, в единый зрительный образ и локализацией этого образа в соответствующем месте пространства.

Благодаря бинокулярному зрению расширяется поле зрения в горизонтальном направлении до 180° (полуокружности) и достигается более четкое восприятие зрительных образов в результате суммирования раздражений. Бинокулярное зрение – это стереоскопическое зрение, позволяющее определить третье измерение или глубину расположения предметов окружающего нас мира.

Бинокулярное зрение особенно необходимо водителям, летчикам и др. Определение бинокулярного зрения проводится на цветовом приборе Белостоцкого – Фридмана. Прибор основан на принципе разделения полей зрения обоих глаз при помощи цветовых фильтров. В приборе два светящихся зеленых отверстия, расположенных по вертикали, между ними расположено отверстие белого цвета. Сбоку от него по горизонтали – отверстие красного цвета. На глаза исследуемого надевают очки с красным и зеленым стеклами. При рассмотрении цветных отверстий приборов через красно-зеленые очки обследуемый при отсутствии бинокулярного зрения видит отверстия только одного цвета (красного или зеленого), а при бинокулярном зрении – обоих.

ПОДБОР КОРРИГИРУЮЩИХ ОЧКОВ

Глаз имеет свою оптическую систему, в которой основными преломляющими элементами являются роговица и хрусталик, они выполняют роль линзы. Проходя через эти оптически более плотные, чем воздух, среды, свет отклоняется от прямолинейного направления и собирается в фокусе на определенном расстоянии от этих сред на оптической оси глаза. Роговица и хрусталик имеют выпуклую сферическую поверхность. Как известно, выпуклая линза состоит как бы из двух призм, соединенных вместе основаниями. Каждая призма, преломляя падающие на нее лучи, будет отклонять их в сторону основания, т. е. к оптической оси линзы, где и будут собираться в фокусе преломленные лучи.

Преломляющая сила измеряется в диоптриях. За единицу измерения, равную 1 диоптрии (1D), берется преломляющая способность стекла с фокусным расстоянием 1 м. Преломляющая способность обратно пропорциональна фокусному расстоянию.

Различают рефракцию физическую и клиническую. Под физической рефракцией глаза понимается преломляющая сила оптической системы глаза, выраженная в диоптриях. У разных людей рефракция разная. Исследования позволили рассчитать преломляющую силу для усредненного схематического глаза – она равна 58, 64 D.

Надо помнить, что диоптрийная система глаза величина не постоянная. При рассматривании близко расположенных предметов рефракция усиливается, глаз как бы приспосабливается (аккомодирует) к новым условиям зрительного процесса. Отсюда различают рефракцию динамическую (при участии аккомодации) и статическую (когда глаз смотрит вдаль, или как говорят, глаз находится в покое).

Итак, аккомодация – это способность глаза усиливать преломляющую силу своей оптической системы и за счет этого обеспечивать ясное видение на различных расстояниях. В ее основе лежит способность хрусталика изменять свою кривизну. Под влиянием нервных импульсов, возникающих в глазу, в зависимости от расстояния до рассматриваемого предмета происходит сокращение цилиарной мышцы и расслабление волокон цинновой связки, поддерживающей хрусталик. Вследствие своей эластичности хрусталик становится более выпуклым, т. е. его преломляющая сила увеличивается.

Если приближать текст к глазу при закрытом втором глазе, то на определенном близком расстоянии произойдет максимальное напряжение аккомодационного аппарата. При дальнейшем приближении буквы расплывутся, чтение будет невозможно. То наименьшее расстояние, на котором возможно чтение мелкого шрифта при максимальном напряжении аккомодации, называется ближайшей точкой ясного зрения. Точка, с которой оптически установлен глаз при полном покое аккомодации, называется дальнейшей точкой ясного зрения. Лучи, исходящие из этой точки, после преломления оптическими средами глаз фокусируются на сетчатке.

Под клинической рефракцией понимается оптическая установка глаза к дальнейшей точке ясного зрения при полном покое аккомодации. Она характеризуется также не длиной фокусного расстояния, а положением главного фокуса по отношению к сетчатке.

Встречаются три варианта клинической рефракции:

– эмметропия, когда дальнейшая точка ясного зрения находится на бесконечно далеком расстоянии, а главный фокус – на сетчатке. Человек с такой рефракцией хорошо видит далекие и близкие предметы. Соотношение физической рефракции и длины оптической оси глаза соразмерны;

– миопия, или близорукость, – сильная рефракция, когда дальнейшая точка ясного зрения находится на определенном, довольно близком расстоянии от глаза. Например, для близорукости 4,0 D расстояние равно 25 см. Главный фокус параллельных лучей находится впереди сетчатки. Поэтому на сетчатке фокусируется расплывчатый круг. Для человека с такой рефракцией трудно, а чаще всего невозможно видение отдаленных предметов;

– дальнозоркость, или гиперметропия, – слабый тип рефракции. При гиперметропии дальнейшая точка ясного зрения является условной и находится за глазом. Она показывает ту степень схождения лучей, которую они должны были бы иметь, чтобы после преломления оптическими средами глаза соединяться на сетчатке. Условной она является потому, что в природе сходящихся лучей нет. Главный фокус в гиперметропическом глазу расположен за сетчаткой. Человек с такой рефракцией чаще испытывает затруднение при рассматривании близких предметов, а зрение вдаль может быть хорошим. Следует отметить, что большинство новорожденных являются гиперметропами (врожденная миопия встречается при пороках развития глазного яблока в целом). Только по мере роста организма и глаза степень гиперметропии или уменьшается, или переходит в эмметропию и миопию.

Умение определять клиническую рефракцию необходимо для подбора корригирующих стекол. Существует два метода определения рефракции: субъективный, основанный на показаниях исследуемого, и объективный, – по регистрации движения тени в области зрачка (скиаскопия). Тень появляется при поворачивании зеркала вокруг горизонтальной или вертикальной оси при исследовании глаза в проходящем свете при помощи офтальмоскопа.

При скиаскопическом методе определения рефракции необходим набор скиаскопических линеек. Для более точного определения статической рефракции глаза проводится объективное скиаскопическое исследование в условиях медикаментозного паралича аккомодации.

Для определения объективной рефракции существуют приборы: рефрактометры и офтальмометры. С их помощью удается провести более точное определение рефракции.

Медицинская сестра сталкивается с субъективным методом определения рефракции. Сначала определяют остроту зрения, затем из глазного набора стекол берут линзу +0,5D и приставляют к глазу. При этом могут быть следующие варианты:

– зрение ухудшилось по сравнению с предыдущим исследованием (можно предположить, что у исследуемого эмметропия или миопия). Приставляют к глазу линзу – 0,5 D (при миопии – улучшение, при эмметропии – без изменения или ухудшение);

– зрение не измелилось или улучшилось (можно предположить гиперметропию). Приставляют более сильные линзы, повышая их силу на 0,25-0,5 D до тех пор, пока линза не ухудшит зрение. Самая сильная линза, еще не ухудшившая зрения, определяет степень гиперметропии и одновременно является коррегирующим стеклом.

При миопии приставляют рассеивающие линзы (со знаком минус), постепенно повышая их силу на 0,25D, пока острота зрения не станет наилучшей. Самая слабая рассеивающая линза, с которой зрение станет наилучшим, определит степень миопии глаза и также будет корригирующим стеклом.

Иногда в одном глазу может быть неодинаковая степень рефракции или разные рефракции в вертикальном или горизонтальном меридианах или в меридианах, расположенных под углом к оптической оси глаза. В таких случаях ясного изображения светящейся точки на сетчатке не будет. Название этого явления – астигматизм, что означает «отсутствие единой фокусной точки».

Для исправления астигматизма служат цилиндрические стекла, т. е. стекла, изменяющие силу оптических сред глаза только в одном меридиане. Нередко подбор таких стекол бывает сложным, требует много времени и проводится специалистами при помощи приборов. В некоторых случаях можно пользоваться и субъективным методом определения астигматизма. Для этого перед глазом в специальной градуированной оправе ставят экран со щелевидным отверстием. Экран вращают до того момента, когда исследуемый покажет наилучшую остроту зрения. Заметив положение меридиана по градусной шкале оправы, определяют рефракцию в данном меридиане при помощи сферических стекол. Далее поворачивают щель на 90° и по тем же правилам определяют рефракцию в перпендикулярном меридиане.

Для исправлений астигматизма надо ликвидировать разницу в рефракции главных меридианов. С этой целью цилиндрическое стекло ставят так, чтобы его ось совпала с направлением того меридиана, рефракцию которого хотят оставить неизменной.

Например, мы определено, что рефракция глаза в вертикальном меридиане миопическая и равна 2,0 D (М 2,0 D), в горизонтальном – М 1,0 D. Ставим цилиндрическое стекло 1,0 D так, чтобы его ось совпала с горизонтальным меридианом. В результате в глазу с такой коррекцией останется миопия 1,0 D, которую можно исправить с помощью простой рассеивающей линзы 1,0 D.

Расстояние между центрами зрачков измеряют при помощи сантиметровой линейки или специального измерителя – лупилометра от наружного лимба роговицы одного глаза до внутреннего лимба другого глаза.

ПРИМЕНЕНИЕ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Методы применения лекарственных веществ включают промывание, закапывание растворов и суспензий, закладывание мазей, глазных лекарственных пленок в конъюнктивальный мешок, подконъюнктивальные инъекции, введение лекарственных веществ при помощи электрофореза и др.

Более распространенным методом местного лечения является закапывание капель (инстилляция). Больному предлагают посмотреть вверх, оттягивают нижнее веко влажным ватным тампоном, который держат в левой руке. Пипетку держат правой рукой под углом к глазу, чтобы кончик ее не касался ресниц, век или слизистой оболочки глаза. Впускают 1–2 капли лекарственного раствора или суспензии в нижний свод конъюнктивальной полости.

Промывание – это орошение конъюнктивального мешка струей жидкости, оно показано при ожогах глаз, наличии поверхностных инородных тел, отделяемого и т. д.

Промывают из специальной ундинки, резинового баллона или прикладывают к глазу ванночку (небольшой стакан или рюмка с неострыми краями), наполненную лекарственным раствором.

Мази закладывают следующим образом: большим и указательным пальцами левой руки раздвигают веки, кладут стеклянную палочку с мазью на внутреннюю поверхность нижнего века, просят больного закрыть глаз и плавным продольным движением вытягивают палочку.

В мазях обычно вводят плохо растворимые лекарственные вещества.

Для смазывания краев век кусочек стерильной ваты, намотанный на тонкий зонд, смачивают лекарственным раствором и слегка отжимают, затем смазывают ресничный край век.

Субконъюнктивальными инъекциями называют введение лекарственного вещества под конъюнктиву глаза, инъекции проводятся после предварительной анестезии глаза. Таким путем вводят растворы антибиотиков, новокаина, кортизона и других лекарственных средств. Подконъюнктивально вводят 0,2–0,3 мл лекарственного вещества.

Электрофорез лекарственных веществ обеспечивает более длительный, чем при инстилляции капель, контакт лекарственного препарата с патологическим очагом. В офтальмологической практике применяют электрофорез на закрытые веки, ванночковую и эндоназальную методики.

Электрофорез на закрытые веки состоит в следующем: на нижнее веко закладывают ватный тампончик, смоченный лекарственным веществом. Индифферентный электрод представляет собой пластинку из прокатного свинца размером 6х10 см с матерчатой прокладкой. Его помещают на шею сзади и фиксируют эластичным бинтом. Сила тока составляет до 2,0 мА, продолжительность процедуры составляет 10–20 мин.

При ванночковой методике электрод-ванночку наполняют нужным лекарством и фиксируют эластичным бинтом.

При эндоназальной методике электрофореза на концы раздвоенного электрода наматывают вату, смоченную вводимым лекарственным препаратом. Индифферентный электрод располагают так, как и при методике на закрытые веки.

ЗАБОЛЕВАНИЯ САЛЬНЫХ ЖЕЛЕЗ. ЯЧМЕНЬ

Это довольно распространенное заболевание, представляет собой гнойное воспаление сальной железы у края века или в толще. Чаще ячмень образуется у ослабленных людей, страдающих авитаминозом, при охлаждении организма, при попадании стафилококковой инфекции в устье выводного протока сальных желез. Основной симптом заболевания – резкая локальная болезненность ресничного края припухшего, отечного, гиперемированного века.

Следует помнить, что при ячмене нельзя выдавливать гной из гнойного очага, так как инфекция может распространиться по венозной системе орбиты и возникнет опасность тромбоза орбитальных вен и кавернозного синуса.

Лечение ячменя. Инсталляция 20 % раствора сульфацилнатрия или 10 % раствора сульфапиридазиннатрия 3 раза в день, закладывание 1 % тетрациклиновой или эритромициновой мази на ночь. В начальных стадиях – физиотерапия УВЧ.

ЗАБОЛЕВАНИЯ СЛИЗИСТОЙ ОБОЛОЧКИ ГЛАЗА (КОНЪЮНКТИВЫ)

Наиболее распространенные воспалительные заболевания слизистой оболочки глаз – конъюнктивиты. Заболевания конъюнктивы по частоте занимают одно из первых мест в структуре глазной патологии. Больные с конъюнктивитами составляют 30–50 % от всех больных, обращающихся к окулисту за медицинской помощью на амбулаторном приеме. Этиологические факторы этих заболеваний разнообразны.

Различают следующие формы конъюнктивитов:

1. Бактериальные:

– гнойные (возбудители: золотистый стафилококк, пневмококк, гонококк, палочка Коха-Уикса и др.);

– негнойные (возбудители: диплобацилла Моракса-Аксенфельда, бацилла дифтерии и др.).

2. Вирусные.

3. Аллергические.

4. Конъюнктивиты, вызванные механическими, химическими и физическими факторами.

5. Заболевания конъюнктивы, вызванные агентами группы пситтакоз – венерическая лимфогранулема – трахома (ТРКВ).

6. Другие (в том числе неизвестной этиологии).

По клиническому течению конъюнктивиты могут быть острые и хронические.

УХОД ЗА БОЛЬНЫМИ КОНЪЮНКТИВИТОМ

Главная цель ухода за такими больными – исключить распространение инфекции среди других лиц. Больного следует обеспечить индивидуальным полотенцем, подушкой, а также пипеткой и склянкой с лекарством. В глазном стационаре при обнаружении больного аденовирусным или эпидемическим геморрагическим конъюнктивитом объявляют карантин, чтобы максимально уменьшить контакт с другими больными.

Перед каждой глазной манипуляцией медицинская сестра обязательно моет руки. Больному конъюнктивитом не рекомендуется производить тонометрию, отменяют также физиотерапевтические процедуры.

Большое значение имеют влажная уборка помещения 2 % раствором хлорамина и обеззараживание воздуха ультрафиолетовым облучением, хорошая вентиляция.

Больным аллергическим конъюнктивитом в ряде случаев назначают специальные диеты, исключающие раздражающие пищевые аллергены. Ребенку с аллергическим конъюнктивитом не рекомендуется ношение одежды из синтетической ткани.

КАТАРАКТА

Основным изменением хрусталика является нарушение его прозрачности. Помутнение хрусталика называется катарактой. В большинстве случаев катаракта сопровождается понижением зрения, степень которого зависит от расположения помутнения и его интенсивности. При полном помутнении хрусталика зрение резко падает, но сохраняется способность глаза к правильному светоощущению.

Различают две группы катаракт: врожденные и приобретенные.

Врожденные катаракты нередко сочетаются с другими врожденными изменениями глаз – микрофтальмом, аниридией. Возникновение этих катаракт в значительной мере связано с внутриутробными заболеваниями. Здесь особая роль принадлежит вирусным инфекциям. Как правило, врожденные катаракты – заболевания стационарного типа. Наличие у ребенка врожденной слоистой или полной катаракты может сочетаться с косоглазием и нистагмом.

Оперативное вмешательство при слоистых и полных врожденных катарактах рекомендуется в раннем детском возрасте (от 1 года до 2 лет).

Приобретенные катаракты с возрастом прогрессируют. По этиологическому фактору их разделяют на: возрастные, или старческие; осложнения (обусловленные каким-либо заболеванием самого глаза); катаракты, вызванные механическими и химическими повреждениями хрусталика (травматические); лучевые; катаракты при общих страданиях – диабетические, тетанические, дерматогенные и др. Наиболее распространенными являются возрастные, или старческие, катаракты, которые развиваются у людей старше 50 лет.

По степени развития катаракты делят на стадии: начальную, незрелую или набухающую, зрелую или перезрелую. Начальная стадия катаракты характеризуется образованием спицеобразных помутнений под капсулой в передних и задних кортикальных слоях хрусталика. При исследовании в проходящем свете они представляются в виде черных спиц на фоне красного зрачка.

При прогрессировании процесса начинающаяся катаракта переходит во вторую стадию своего развития – незрелую катаракту. В этой стадии помутнения увеличиваются и сливаются друг с другом, закрывая постепенно область зрачка. Передние кортикальные слои хрусталика остаются прозрачными.

Зрелой катаракта считается в том случае, если все кортикальные слои мутнеют, вплоть до передней капсулы хрусталика. При этом предметное зрение утрачивается полностью.

Иногда при незрелой или зрелой катаракте происходит увеличение объема хрусталика (набухающая катаракта), становится мельче передняя камера, повышается внутриглазное давление. В таких случаях показана операция.

Медицинская сестра следит, чтобы больные с катарактой постоянно находились под наблюдением окулиста, и систематически измеряет у них внутриглазное давление.

Перезрелая стадия катаракты характеризуется дальнейшими изменениями. Хрусталик уменьшается в объеме и сморщивается, мутные кортикальные массы становятся плотными, а в капсуле хрусталика откладывается холестерин и известь. Кортикальное вещество хрусталика разжижается и превращается в жидкость подобную на молоко, в которой плотное ядро хрусталика в силу тяжести опускается книзу.

В начальной стадии катаракты показаны витаминотерапия, инстилляции вицеина 3 раза в день, в зрелой стадии – экстракция катаракты. Экстракция катаракты показана также в случаях значительного понижения зрения на оба глаза (ниже 0,1) и при незрелых катарактах.

ГЛАУКОМА

Название заболевания объясняется тем, что во время острого приступа заболевания зрачок кажется желтовато-зеленоватым. Еще в древности было замечено, если глаз приобретает цвет морской волны, то ему угрожает слепота. Отсюда и народное название заболевания – «зеленая вода».

Глаукома – это тяжелое и распространенное заболевание среди населения старше 40 лет, в детском и юношеском возрасте встречается сравнительно редко. Глаукома характеризуется следующими основными симптомами: постоянным или периодическим повышением внутриглазного давления, развитием типичных дефектов поля зрения и атрофии диска зрительного нерва.

Наружные оболочки глаза (склера, роговица) образуют замкнутое пространство, содержимое которого представляют внутренние оболочки с богатой разветвленной сетью кровеносных сосудов. Продукция их – водянистая влага, заполняющая в нормальных условиях переднюю и заднюю камеры.

Отток внутриглазной жидкости происходит через дренажную систему глаза: угол передней камеры и структуры, которые ограничивают его.

Внутриглазным давлением называют давление внутриглазной жидкости на стенки глаза. Оно характеризует напряжение глаза, или его тонус. Величина внутриглазного давления определяется рядом непостоянных факторов: степенью эластичности стенок глазного яблока и объемом его содержимого, зависящим от кровенаполнения внутриглазных сосудов, продукции и оттока водянистой влаги, а также обменных и других процессов. Поэтому нормальный диапазон величины внутриглазного давления у разных людей неодинаков и находится в пределах 18–26 мм рт. ст. Но и у одного человека внутриглазное давление не остается постоянным, в течение суток наблюдаются его колебания в пределах 2–4 мм рт. ст. При заболевании глаукомой величина внутриглазного давления повышается и увеличивается размах колебаний в течение суток.

Указанные цифры так называемого тонометрического внутриглазного давления фактически выше истинных значений. Определение истинного внутриглазного давления может быть осуществлено только на животных, так как при этом нарушается целостность стенки глаза, и его полость соединяется с манометром.

В клинических условиях о величине внутриглазного давления судят косвенно по сопротивлению глаза к вдавливанию или сплющиванию. Чем больше внутриглазное давление, тем труднее произвести сплющивание. На этом принципе построено обычно производимое медицинской сестрой в поликлинических условиях измерение внутриглазного давления при помощи тонометра Маклакова, который состоит из металлического полого цилиндра, заканчивающегося площадками из молочно-белого стекла диаметром 1 см, и поддерживающей рукоятки. Внутри цилиндра находится подвижной шарик из свинца (для придания прибору большей устойчивости). Масса цилиндра вместе с грузом 10 г. В наборе имеются цилиндры массой 5 г, 7,5 г, 15 г.

Измерение внутриглазного давления . Исследуемого укладывают на кушетку на спину. В конъюнктивальный мешок закапывают 0,5 % раствор дикаина для анестезии роговицы. Площадки цилиндра смазывают тонким слоем краски. Спустя 3–5 мин с момента закапывания дикаина производят измерение внутриглазного давления. Больному предлагают смотреть прямо перед собой. Фиксируя взгляд на кончике указательного пальца, ставят на центр роговицы тонометр. Петлю рукоятки, поддерживающую прибор, опускают до половины высоты цилиндра (в этот момент прибор своей тяжестью давит на роговицу и сплющивает ее). Затем поднимают петлю в исходное положение и снимают прибор с роговицы. Краска остается, с площадки тонометра она переходит на роговую оболочку, где произошло сплющивание. Диаметр площадки сплющивания при постоянной массе цилиндра соответствует определенному внутриглазному давлению в миллиметрах ртутного столба. Чтобы определить диаметр диска сплющивания, делают диск площадки на хорошей писчей бумаге, смоченной спиртом. По диаметру оттиска рассчитывают величину внутриглазного давления с помощью линейки, которую предложил Б.Л. Поляк.

Лечение первичной глаукомы . Основная задача – ликвидировать нарушение внутриглазного давления. Для этого назначают инстилляции 1–2% раствора пилокарпина или закладывание 2 % мази. Нередко применение пилокарпина сочетают с препаратами антихолинэстеразного действия: 0,25 % раствором физостигмина салицилата, 0,02 % раствором фосфакола, 0,005 % раствором армина и др. Следует учитывать, что длительное использование препаратов антихолинэстеразного действия может способствовать развитию катаракты. Частота применения указанных препаратов зависит от формы, стадии и степени компенсации глаукомы.

При непереносимости пилокарпина его можно заменить 3 % раствором карбохолина или 2 % раствором ацеклидина. Проводится также терапия, направленная на улучшение трофических процессов, кровообращения и т. д. (никотиновая кислота, витамин РР, витамины группы В, метионин, липокаин, АТФ и др.).

Если медикаментозная терапия неэффективна или недостаточна, прибегают к хирургическому лечению.

ПОВРЕЖДЕНИЯ ГЛАЗА И ПЕРВАЯ ПОМОЩЬ

При ранениях или тупых травмах придатков глаза возможны повреждения век различной степени – от маленьких разрезов до полного размозжения тканей, кровоизлияния в толщу век, подкожная эмфизема (наличие воздуха в толще век), повреждения слезной железы и слезоотводящих путей.

Раны века могут быть сквозные и несквозные. При расположении параллельно глазной щели они мало зияют, при перпендикулярном расположении раны век зияют широко, особенно при разрыве всей толщи края век. В слезные точки иногда попадают ресницы или другие инородные тела (волоски, мелкие насекомые и т. д.), которые торчат из верхней или нижней слезной точки и вызывают раздражение конъюнктивы и роговицы.

Инородные тела конъюнктивы век – это обычно мелкие песчинки, кусочки угля, камня, металла и т. д. Чаще всего инородные тела располагаются под верхним веком, поэтому при ощущении «песчинки в глазу», сопровождающемся светобоязнью, слезотечением, раздражением глаза, необходимо тщательно обследовать конъюнктиву верхнего века.

Ожоги различают химические, термические и лучевые, а также 4 степени ожогов век и конъюнктивы.

При ожогах I степени (легкие) наблюдаются гиперемия и припухлость кожи век и гиперемия конъюнктивы век.

При ожогах II степени (средние) наблюдаются образование пузырей на коже век и поверхностный некроз слизистой оболочки с наличием легко снимаемых беловатых пленок.

Ожоги III и IV степени (тяжелые) сопровождаю тяжелыми изменениями век и конъюнктивы с некрозом и обугливанием тканей.

При ожогах гашеной и негашеной известью частички ее нередко внедряются в конъюнктиву век и глазного яблока.

Для ожогов анилиновым карандашом характерны окрашивание конъюнктивы в фиолетовый цвет и некроз, вследствие чего могут образоваться глубокие язвы.

Неотложная помощь при повреждениях придаточного аппарата глаза . При ранении век кожу обрабатывают бриллиантовым зеленым или йодной настойкой, удаляют поверхностные инородные тела и промывают рану перекисью водорода, накладывают асептическую повязку. Вводят противостолбнячную сыворотку и больного направляют в глазной стационар.

При повреждениях век необходима ранняя хирургическая обработка (в течение первых 24 ч после ранения), которая при легких ранениях (поверхностные, несквозные раны) может быть проведена в амбулаторных условиях, а в более тяжелых случаях пострадавший нуждается в госпитализации.

При тупых травмах век, сопровождающихся эмфиземой и гематомой, пострадавшему необходимо сделать рентгенографию черепа для исключения переломов костей черепа.

Инородные тела конъюнктивы удаляют ватным тампоном, смоченным в растворе оксицианистой ртути, после предварительной анестезии.

Если удалить соринку ватным тампоном не удается, пользуются иглой для удаления инородных тел или желобоватым долотом. В конъюнктивальный мешок закапывают 10 % раствор сульфапиридазиннатрия или закладывают 1 % синтомициновую эмульсию.

При ожогах удаление химических веществ производят путем обильного и длительного промывания (в течение 10–15 мин) водой. После промывания водой рекомендуется промыть глаза 2 % раствором гидрокарбоната натрия (соды) при кислотных ожогах или 2 % раствором борной кислоты при щелочных ожогах. Затем закапывают 30 % раствор сульфацила или закладывают 2 % синтомициновую эмульсию для профилактики развития инфекции. Обязательно вводят противостолбнячную сыворотку.

Офтальмология: учебник для вузов

Офтальмология: учебник для вузов/ Под ред. Е.А. Егорова - 2010. - 240 с.

http :// vmede . org / sait /? page =10& id = Oftalmologija _ uschebnik _ egorov _2010& menu = Oftalmologija _ uschebnik _ egorov _2010

ГЛАВА 3. ЗРИТЕЛЬНЫЕ ФУНКЦИИ

Общая характеристика зрения

Центральное зрение

Острота зрения

Цветоощущение

Периферийное зрение

Поле зрения

Светоощущение и адаптация

Бинокулярное зрение

ОБЩАЯ ХАРАКТЕРИСТИКА ЗРЕНИЯ

Зрение - сложный акт, направленный на получение информации о величине, форме и цвете окружающих предметов, а также их взаиморасположении и расстояниях между ними. До 90% сенсорной информации мозг получает благодаря зрению.

Палочки высокочувствительны к очень слабому свету, но не способны передавать ощущение цветности. Они отвечают за периферическое зрение (название обусловлено локализацией палочек), которое характеризуется полем зрения и светоощущением.

Колбочки функционируют при хорошем освещении и способны дифференцировать цвета. Они обеспечивают центральное зрение (название связано с их преимущественным расположением в центральной области сетчатки), которое характеризуется остротой зрения и цветоощущением.

Виды функциональной способности глаза

Дневное, или фотопическое, зрение (греч.photos- свет иopsis- зрение) обеспечивают колбочки при большой интенсивности освещения; характеризуется высокой остротой зрения и способностью глаза различать цвета (проявление центрального зрения).

Сумеречное, или мезопическое зрение (греч.mesos- средний, промежуточный) возникает при слабой степени освещенности и преимущественном раздражении палочек. Оно характеризуется низкой остротой зрения и ахроматичным восприятием предметов.

Ночное, или скотопическое зрение (греч.skotos- темнота) возникает при раздражении палочек пороговым и надпороговым уровнем света. При этом человек способен лишь различать свет и темноту.

Сумеречное и ночное зрение преимущественно обеспечивают палочки (проявление периферического зрения); оно служит для ориентации в пространстве.

ЦЕНТРАЛЬНОЕ ЗРЕНИЕ

Колбочки, расположенные в центральной части сетчатки, обеспечивают центральное форменное зрение и цветоощущение. Центральное форменное зрение - способность различать форму и детали рассматриваемого предмета благодаря остроте зрения.

Острота зрения

Острота зрения (visus) - способность глаза воспринимать две точки, расположенные на минимальном расстоянии друг от друга, как отдельные. Минимальное расстояние, при котором две точки будут видны раздельно, зависит от анатомо-физиологических свойств сетчатки. Если изображения двух точек попадают на две соседние колбочки, то они сольются в короткую линию. Две точки будут восприниматься раздельно, если их изображения на сетчатке (две возбужденные колбочки) будут разделены одной невозбужденной колбочкой. Таким образом, диаметр колбочки определяет величину максимальной остроты зрения. Чем меньше диаметр колбочек, тем больше острота зрения (рис. 3.1).

Рис. 3.1. Схематическое изображение угла зрения

Угол, образованный крайними точками рассматриваемого предмета и узловой точкой глаза (находится у заднего полюса хрусталика), называют углом зрения. Угол зрения -универсальная основа для выражения остроты зрения. Предел чувствительности глаза большинства людей в норме равен 1 (1 угловой минуте). В том случае, если глаз видит раздельно две точки, угол между которыми составляет не менее 1, остроту зрения считают нормальной и определяют ее равной одной единице. Некоторые люди имеют остроту зрения 2 единицы и более. С возрастом острота зрения меняется. Предметное зрение появляется в возрасте 2-3 мес. Острота зрения у детей в возрасте 4 мес.составляет около 0,01. К году острота зрения достигает 0,1-0,3. Острота зрения, равная 1,0 формируется к 5-15 годам.

Центральное зрение - это способность человека различать не только форму и цвет рассматриваемых предметов, но и их мелкие детали, что обеспечивается центральной ямкой желтого пятна сетчатки. Центральное зрение характеризуется его остротой, то есть способностью человеческого глаза воспринимать раздельно точки, расположенные друг от друга на минимальном расстоянии. Для большинства людей пороговый угол зрения соответствует одной минуте. На этом принципе построены все таблицы для исследования остроты зрения для дали, в том числе и принятые в нашей стране таблицы Головина-Сивцева и Орловой, которые состоят соответственно из 12 и 10 рядов букв или знаков. Так, детали самых крупных букв видны с расстояния в 50, а самых мелких - с 2,5 метра.

Нормальная острота зрения у большинства людей соответствует единице. Это значит, что при такой остроте зрения мы можем с расстояния в 5 метров свободно различать буквенные или другие изображения 10-го ряда таблицы. Если человек не видит самой крупной первой строки, ему показывают знаки одной из специальных таблиц. При очень низкой остроте зрения проверяют светоощущение. Если человек не воспринимает свет, он слеп. Довольно часто встречается и превышение общепринятой нормы зрения. Как показали исследования отделения адаптации зрения Научно-исследовательского института медицинских проблем Севера Сибирского отделения Академии медицинских наук СССР, проводимые под руководством доктора медицинских наук В. Ф. Базарного, в условиях Крайнего Севера у детей в возрасте 5-6 лет острота зрения вдаль превышает общепринятую условную норму, достигает в ряде случаев двух единиц.

На состояние центрального зрения оказывают влияние ряд факторов: интенсивность света, соотношение яркости и фона рассматриваемого объекта, время экспозиции, степень соразмерности между фокусным расстоянием преломляющей системы и длиной оси глаза, ширина зрачка и т. п., а также общее функциональное состояние центральной нервной системы, наличие различных заболеваний.

Острота зрения каждого глаза исследуется отдельно. Начинают с мелких знаков, постепенно переходят к более крупным. Существуют и объективные методы определения остроты зрения. Если острота зрения одного глаза значительно выше, чем другого, в головной мозг поступает изображение рассматриваемого объекта только от лучше видящего глаза, второй же глаз может обеспечить только периферическое зрение. В связи с этим хуже видящий глаз периодически выключается из зрительного акта, что приводит к амблиопии - снижению остроты зрения.

Определение остроты зрения. Для определения остроты зрения используют специальные таблицы, содержащие буквы, цифры или знаки (для детей используют рисунки - машинка, елочка и др.) различной величины. Эти знаки называют оптотипами. В основу создания оптотипов положено международное соглашение о величине их деталей, составляющих угол в 1", тогда как весь оптотип соответствует углу в 5 "с расстояния 5 м. (рис. 3.2).

Рис. 3.2. Принцип построения оптотипа Снеллена

У маленьких детей остроту зрения определяют ориентировочно, оценивая фиксацию ярких предметов различной величины. Начиная с трех лет остроту зрения у детей оценивают с помощью специальных таблиц. В нашей стране наибольшее распространение получила таблица Головина-Сивцева (рис. 3.3), которую помещают в аппарат Рота - ящик с зеркальными стенками, обеспечивающий равномерное освещение таблицы. Таблица состоит из 12 строк.

Рис. 3.3. Таблица Головина-Сивцева: а) взрослая; б) детская

Пациент садится на расстоянии 5 м от таблицы. Исследование каждого глаза проводят отдельно. Второй глаз закрывают щитком. Сначала обследуют правый (ОD-oculusdexter), затем левый (OS-oculussinister) глаз. При одинаковой остроте зрения обоих глаз используют обозначениеOU(oculiutriusque). Знаки таблицы предъявляют в течение 2-3 с. Сначала показывают знаки из десятой строки. Если пациент их не видит, дальнейшее обследование проводят с первой строки, постепенно предъявляя знаки следующих строк (2-й, 3-й и т.д.). Остроту зрения характеризуют оптотипы наименьшего размера, которые исследуемый различает.

Для расчета остроты зрения используют формулу Снеллена: visus=d/D, гдеd- расстояние, с которого пациент читает данную строку таблицы, аD- расстояние, с которого читает данную строку человек с остротой зрения 1,0 (это расстояние указано слева от каждой строки). Например, если обследуемый правым глазом с расстояния 5 м различает знаки второго ряда (D= 25 м), а левым глазом различает знаки пятого ряда (D= 10 м), то

visusOD= 5/25 = 0,2

visusOS= 5/10 = 0,5

Для удобства справа от каждой строки указана острота зрения, соответствующая чтению данных оптотипов с расстояния 5 м. Верхняя строка соответствует остроте зрения 0,1, каждая последующая - увеличению остроты зрения на 0,1, и десятая строка соответствует остроте зрения 1,0. В последних двух строках этот принцип нарушается: одиннадцатая строка соответствует остроте зрения 1,5, а двенадцатая - 2,0. При остроте зрения менее 0,1 следует подвести пациента на расстояние (d), с которого он сможет назвать знаки верхней строки (D= 50 м). Затем остроту зрения также рассчитывают по формуле Снеллена. Если пациент не различает знаки первой строки с расстояния 50 см (т.е. острота зрения ниже 0,01), то остроту зрения определяют по расстоянию, с которого он может сосчитать раздвинутые пальцы руки врача. Пример:visus= счет пальцев с расстояния 15 см. Если исследуемый не может сосчитать пальцы, но видит движение руки у лица, то данные об остроте зрения записываются следующим образом:visus= движение руки у лица. Самая низкая острота зрения - способность глаза отличать свет от темноты. В этом случае исследование проводят в затемненном помещении при освещении глаза ярким световым пучком. Если исследуемый видит свет, то острота зрения равна светоощущению (perceptiolucis). В данном случае остроту зрения обозначают следующим образом:visus= 1/??: Направляя на глаз пучок света с разных сторон (сверху, снизу, справа, слева), проверяют способность отдельных участков сетчатки воспринимать свет. Если обследуемый правильно определяет направление света, то острота зрения равна светоощущению с правильной проекцией света (visus= 1/??proectioluciscerta, илиvisus= 1/??p.l.c.); если обследуемый неправильно определяет направление света хотя бы с одной стороны, то острота зрения равна светоощущению с неправильной проекцией света (visus= 1/??proectiolucisincerta, илиvisus= 1/??p.l.incerta). В том случае, когда больной не способен отличить свет от темноты, его острота зрения равна нулю (visus= 0).

В основу создания оптотипов положено международное соглашение о величине их деталей, различаемых под углом зрения Г, тогда как весь оптотип соответствует углу зрения 5 градусов. В нашей стране наиболее распространенным является метод определения остроты зрения по таблице Головина - Сивцева (рис. 4.3), помешенной в аппарат Рота. Нижний край таблицы должен находиться на расстоянии 120 см от уровня пола. Пациент сидит на расстоянии 5 м от экспонируемой таблицы. Сначала определяют остроту зрения правого, затем - левого глаза. Второй глаз закрывают заслонкой.

Таблица имеет 12 рядов букв или знаков, величина которых постепенно уменьшается от верхнего ряда к нижнему. В построении таблицы использована десятичная система: при прочтении каждой последующей строчки острота зрения увеличивается на 0,1- Справа от каждой строки указана острота зрения, которой соответствует распознавание букв в этом ряду. Слева против каждой строки указано то расстояние, с которого детали этих букв будут видны под углом зрения Г, а вся буква - под углом зрения 5". Так, при нормальном зрении, принятом за 1,0, верхняя строка будет видна с расстояния 50 м, а десятая - с расстояния 5 м.

При остроте зрения ниже 0,1 обследуемого нужно приближать к таблице до момента, когда он увидит ее первую строку. Расчет остроты зрения следует производить по формуле Снеллена:

где d - расстояние, с которого обследуемый распознает оптотип; D - расстояние, с которого данный оптотип виден при нормальной остроте зрения. Для первой строки D равно 50 м. Например, пациент видит первую строку таблицы на расстоянии 2 м. В этом случае

Поскольку толщина пальцев руки примерно соответствует ширине штрихов онтотинов первой строки таблицы, можно демонстрировать обследуемому раздвинутые пальцы (желательно на темном фоне) с различного расстояния и соответственно определять остроту зрения ниже 0,1 также по приведенной выше формуле. Если острота зрения ниже 0,01, но обследуемый считает пальцы на расстоянии 10 см (или 20, 30 см), тогда Vis равна счету пальцев на расстоянии 10 см (или 20, 30 см). Больной может быть не способен считать пальцы, но определяет движение руки у лица, это считается следующей градацией остроты зрения.

Минимальной остротой зрения является светоощущение (Vis = l/oo) с правильной (pioectia lucis certa) или неправильной (pioectia lucis incerta) светопроекцией. Светопроекцию определяют путем направления в глаз с разных сторон луча света от офтальмоскопа. При отсутствии светоощущения острота зрения равна нулю (Vis = 0) и глаз считается слепым.

Для определения остроты зрения ниже 0,1 применяют оптотипы, разработанные Б. Л. Поляком, в виде штриховых тестов или колец Ландольта, предназначенных для предъявления на определенном близком расстоянии с указанием соответствующей остроты зрения (рис. 4.4). Данные оптотипы специально созданы для военно-врачебной и медикосоциальной экспертизы, проводимой при определении годности к военной службе или гуппы инвалидности.

Существует и объективный (не зависящий от показаний пациента) способ определения остроты зрения, основанный на оптокинетическом нистагме. С помощью специальных аппаратов обследуемому демонстрируют движущиеся объекты в виде полос или шахматной доски. Наименьшая величина объекта, вызвавшая непроизвольный нистагм (увиденный врачом), и соответствует остроте зрения исследуемого глаза.

В заключение следует отметить, что в течение жизни острота зрения изменяется, достигая максимума (нормальных величин) к 5-15 годам и затем постепенно снижаясь после 40-50 лет.

Острота зрения - важная зрительная функция для определения профессиональной пригодности и групп инвалидности. У маленьких детей или при проведении экспертизы для объективного определения остроты зрения используют фиксацию нистагмоидных движений глазного яблока, которые возникают при рассматривании движущихся объектов.

Цветоощущение

Острота зрения основывается на способности воспринимать ощущение белого цвета. Поэтому употребляемые для определения остроты зрения таблицы представляют изображение черных знаков на белом фоне. Однако не менее важная функция - способность видеть окружающий мир в цвете. Вся световая часть электромагнитных волн создает цветовую гамму с постепенным переходом от красного до фиолетового (цве- товой спектр). В цветовом спектре принято выделять семь главных цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый, из них приято выделять три основных цвета (красный, зеленый и фиолетовый), при смешении которых в разных пропорциях можно получить все остальные цвета.

Человек в состоянии воспринимать около 180 цветовых тонов, а с учетом яркости и насыщенности - более 13 тысяч. Это происходит благодаря смешению в разных сочетаниях красного, зеленого и синего цветов. Человек с правильным ощущением всех трех цветов считается нормальным трихроматом. Если функционируют два или один компонент, наблюдается цветоаномалия. Отсутствие восприятия красного цвета называется протаномалией, зеленого - дейтераномалией и синего - тританомалией.

Известны врожденные и приобретенные расстройства цветового зрения. Врожденные расстройства называются дальтонизмом по имени английского ученого Дальтона, который сам не воспринимал красный цвет и впервые описал это состояние.

При врожденных нарушениях цветового зрения может быть полная цветовая слепота, и тогда все предметы человеку кажутся серыми. Причиной такого дефекта является недоразвитие или отсутствие в сетчатке колбочек.

Довольно распространена частичная цветовая слепота, особенно на красный и зеленый цвета, которая, как правило, передается по наследству. Слепота на зеленый цвет встречается вдвое чаще, чем на красный; на синий - сравнительно редко. Частичная цветовая слепота наблюдается примерно у каждого двенадцатого из ста мужчин и одной, из двухсот женщин. Как правило, это явление не сопровождается нарушением других зрительных функций и выявляется только при специальном исследовании.

Врожденная цветовая слепота неизлечима. Нередко люди с аномальным цветоощущением могут и не знать о своем состоянии, так как привыкают различать окраску предметов не по цвету, а по яркости.

Приобретенные расстройства цветоощущения наблюдаются при заболеваниях сетчатки и зрительного нерва, а также при расстройствах центральной нервной системы. Они могут быть как в одном, так и в обоих глазах и сопровождаться расстройствами других зрительных функций. В отличие от врожденных, приобретенные расстройства могут изменяться в процессе заболевания и его лечения.

Способность глаза воспринимать всю цветовую гамму только на основе трех основных цветов была открыта И. Ньютоном и М.М. Ломоносовым. Т. Юнг предложил трехкомпонентную теорию цветового зрения, согласно которой сетчатка воспринимает цвета благодаря наличию в ней трех анатомических компонентов: одного - для восприятия красного цвета, другого - для зеленого и третьего - для фиолетового. Однако эта теория не могла объяснить, почему при выпадении одного из компонентов (красного, зеленого или фиолетового) страдает восприятие остальных цветов. Г. Гельмгольц развил теорию трехкомпонентного цветового зрения. Он указал, что каждый компонент, будучи специфичен для одного цвета, вместе с тем раздражается и остальными цветами, но в меньшей степени, т.е. каждый цвет образуется всеми тремя компонентами. Цвет воспринимают колбочки. Нейрофизиологи подтвердили наличие в сетчатке трех типов колбочек (рис. 3.4). Каждый цвет характеризуется тремя качествами: тоном, насыщенностью и яркостью.

Рис. 3.4. Схема трехкомпонентного цветового зрения

Тон - основной признак цвета, зависящий от длины волны светового излучения. Тон эквивалентен цвету.Насыщенность цвета определяется долей основного тона среди примесей другого цвета.Яркость или светлота определяется степенью близости к белому цвету (степень разведения белым цветом).

В соответствии с трехкомпонентной теорией цветового зрения восприятие всех трех цветов называется нормальной трихромазией, а люди, их воспринимающие, - нормальными трихроматами.

Исследование цветового зрения

Для оценки цветоощущения применяют специальные таблицы (наиболее часто - полихроматические таблицы Е.Б. Рабкина) и спектральные приборы - аномалоскопы. Исследование цветоощущения с помощью таблиц. При создании цветных таблиц используют принцип уравнивания яркости и насыщенности цвета. В предъявляемых тестах нанесены кружки основного и дополнительного цветов. Используя различную яркость и насыщенность основного цвета, составляют различные фигуры или цифры, которые легко различают нормальные трихроматы. Люди, имеющие различные расстройства цветоощущения, не способны их различить. В то же время в тестах имеются таблицы, которые содержат скрытые фигуры, различаемые только лицами с нарушениями цветоощущения (рис. 3.5).

Рис. 3.5. Таблицы из набора полихроматических таблиц Рабкина

Методика исследования цветового зрения по полихроматическим таблицам Е.Б. Рабкина следующая. Обследуемый сидит спиной к источнику освещения (окну или лампам дневного света). Уровень освещенности должен быть в пределах 500-1000 лк. Таблицы предъявляют с расстояния 1 м, на уровне глаз исследуемого, располагая их вертикально. Длительность экспозиции каждого теста таблицы 3-5 с, но не более 10 с. Если исследуемый пользуется очками, то он должен рассматривать таблицы в очках.

Оценка результатов.

Все таблицы (27) основной серии названы правильно - у обследуемого нормальная трихромазия.

Неправильно названы таблицы в количестве от 1 до 12 - аномальная трихромазия.

Неправильно названы более 12 таблиц - дихромазия.

Для точного определения вида и степени цветоаномалии результаты исследования по каждому тесту регистрируют и согласуют с указаниями, имеющимися в приложении к таблицам Е.Б. Рабкина.

Исследование цветоощущения с помощью аномалоскопов. Методика исследования цветового зрения с помощью спектральных приборов заключается в следующем: обследуемый сравнивает два поля, одно из которых постоянно освещают желтым цветом, другое - красным и зеленым. Смешивая красный и зеленый цвета, пациент должен получить желтый цвет, который по тону и яркости соответствует контролю.

Нарушение цветового зрения

Расстройства цветоощущения могут быть врожденными иприобретенными . Врожденные нарушения цветового зрения обычно двухсторонние, а приобретенные - односторонние. В отличие от приобретенных, при врожденных расстройствах отсутствуют изменения других зрительных функций, и заболевание не прогрессирует. Приобретенные расстройства возникают при заболеваниях сетчатки, зрительного нерва и центральной нервной системы, в то время как врожденные обусловлены мутациями генов, кодирующих белки рецепторного аппарата колбочек.

Виды нарушений цветового зрения. Цветоаномалия, или аномальная трихромазия - аномальное восприятие цветов, составляет около 70% среди врожденных расстройств цветоощущения. Основные цвета в зависимости от порядка расположения в спектре принято обозначать порядковыми греческими цифрами: красный - первый (protos), зеленый - второй (deuteros), синий - третий (tritos). Аномальное восприятие красного цвета называется протаномалией, зеленого - дейтераномалией, синего - тританомалией.

Дихромазия - восприятие только двух цветов. Различают три основных типа дихромазии:

Протанопия - выпадение восприятия красной части спектра;

Дейтеранопия - выпадение восприятия зеленой части спектра;

Тританопия - выпадение восприятия фиолетовой части спектра.

Монохромазия - восприятие только одного цвета, встречается исключительно редко и сочетается с низкой остротой зрения.

К приобретенным расстройствам цветоощущения относят также видение предметов, окрашенных в какой-либо один цвет. В зависимости от тона окраски различают эритропсию (красный), ксантопсию (желтый), хлоропсию (зеленый) и цианопсию (синий). Цианопсия и эритропсия нередко развиваются после удаления хрусталика, ксантопсия и хлоропсия - при отравлениях и интоксикациях, в том числе лекарственными средствами.

ПЕРИФЕРИЧЕСКОЕ ЗРЕНИЕ

Палочки и расположенные на периферии колбочки отвечают за периферическое зрение, которое характеризуется полем зрения и светоощущением. Острота периферического зрения во много раз меньше, чем центрального, что связано с уменьшением плотности расположения колбочек по направлению к периферическим отделам сетчатки. Хотя очертание предметов, воспринимаемое периферией сетчатки весьма неотчетливо, но и этого вполне достаточно для ориентации в пространстве. Периферическое зрение особенно восприимчиво к движению, что позволяет быстро замечать и адекватно реагировать на возможную опасность.

Возможность зрительной работы определяется не только состоянием остроты зрения вдаль и на близком расстоянии от глаз. Большую роль в жизни человека играет периферическое зрение. Оно обеспечивается периферическими отделами сетчатки и определяется величиной и конфигурацией поля зрения - пространства, которое воспринимается глазом при неподвижном взоре. На периферическое зрение оказывает влияние освещенность, величина и цвет рассматриваемого предмета или объекта, степень контрастности между фоном и объектом, а также общее функциональное состояние нервной системы.

Поле зрения каждого глаза имеет определенные границы. В норме средние его границы на белый цвет 90-50° в том числе: кнаружи и книзу-кнаружи - по 90°, кверху-кнаружи - 70°; книзу и кнутри - по 60°, кверху и кверху-кнутри - по 55°, книзу-кнутри - 50°.

Для точного определения границ поля зрения их проецируют на сферическую поверхность. На этом способе основано исследование на специальном аппарате - периметре. Исследуется каждый глаз в отдельности не менее чем в 6 меридианах. Градус дуги, на котором испытываемый впервые увидел объект, отмечается на специальной схеме.

Крайняя периферия сетчатки, как правило, не воспринимает цвета. Так, ощущение синего цвета возникает лишь в 70-40" от центра, красного - 50 -25°, зеленого-в 30-20°.

Формы изменений периферического зрения весьма многогранны, а причины разнообразны. В первую очередь это опухоли, кровоизлияния и воспалительные заболевания головного мозга, болезни сетчатки и зрительного нерва, глаукома и др. Нередки и так называемые физиологические скотомы (слепые пятна). Примером является слепое пятно - место проекции в пространстве диска зрительного нерва, поверхность которого лишена светочувствительных клеток. Увеличение размеров слепого пятна имеет диагностическое значение, являясь ранним признаком глаукомы и некоторых заболеваний зрительного нерва.

Поле зрения

Поле зрения - пространство, видимое глазом при фиксированном взоре. Размеры поля зрения определяются границей оптически деятельной части сетчатки и выступающими частями лица: спинкой носа, верхним краем глазницы, щеками. Исследование поля зрения. Существует три метода исследования поля зрения: ориентировочный способ, кампиметрия и периметрия. Ориентировочный метод исследования поля зрения. Врач садится напротив пациента на расстоянии 50-60 см. Исследуемый закрывает ладонью левый глаз, а врач - свой правый глаз. Правым глазом пациент фиксирует находящийся против него левый глаз врача. Врач перемещает объект (пальцы свободной руки) от периферии к центру на середину расстояния между врачом и пациентом до точки фиксации сверху, снизу, с височной и носовой сторон, а также в промежуточных радиусах. Затем аналогичным образом обследуют левый глаз. При оценке результатов исследования необходимо учитывать, что эталоном служит поле зрения врача (оно не должно иметь патологических изменений). Поле зрения пациента считают нормальным, если врач и пациент одновременно замечают появление объекта и видят его во всех участках поля зрения. Если пациент заметил появление объекта в каком-то радиусе позже врача, то поле зрения оценивают как суженное с соответствующей стороны. Исчезновение объекта в поле зрения больного на каком-то участке указывает на наличие скотомы.

Центральное или форменное зрение осуществляется наиболее высокодифференцированной областью сетчатки — центральной ямкой желтого пятна, где сосредоточены только колбочки. Центральное зрение измеряется остротой зрения. Исследование остроты зрения очень важно для суждения о состоянии зрительного аппарата человека, о динамике патологического процесса.

Под остротой зрения понимается способность глаза различать раздельно две точки в пространстве, находящиеся на определенном расстоянии от глаза.

При исследовании остроты зрения определяется минимальный угол, под которым могут быть раздельно восприняты два световых раздражения сетчатой оболочки глаза. На основании многочисленных исследований и измерений установлено, что нормальный глаз человека может раздельно воспринять два раздражения под углом зрения в одну минуту.

Эта величина угла зрения принята за интернациональную единицу остроты зрения. Такому углу на сетчатке соответствует линейная величина в 0,004 мм, приблизительно равная поперечнику одной колбочки в центральной ямке желтого пятна. Для раздельного восприятия двух точек глазом, оптически правильно устроенным, необходимо чтобы на сетчатке между изображениями этих точек существовал промежуток не менее чем в одну колбочку, которая не раздражается совсем и находится в покое. Если же изображения точек упадут на смежные колбочки, то эти изображения сольются и раздельного восприятия не получится.

Острота зрения одного глаза, могущего воспринимать раздельно точки, дающие на сетчатке изображения под углом в одну минуту, считается нормальной остротой зрения, равной единице (1,0). Есть люди, у которых острота зрения выше этой величины и равна 1,5-2,0 единицам и больше.

При остроте зрения выше единицы минимальный угол зрения меньше одной минуты. Самая высокая острота зрения обеспечивается центральной ямкой сетчатки. Уже на расстоянии от нее на 10 градусов острота зрения в 5 раз меньше.

Для исследования остроты зрения предложены различные таблицы с расположенными на них буквами или знаками различной величины. Впервые специальные таблицы предложил в 1862 году Снеллен. На принципе Снеллена строились все последующие таблицы. В настоящее время для определения остроты зрения пользуются таблицами Сивцева и Головина.

Таблицы состоят из 12 рядов букв. Каждая из букв в целом видна с определенного расстояния под углом в 50, а каждый штрих буквы под углом зрения в 10. Первый ряд таблицы виден при нормальной остроте зрения равной 1,0 с расстояния 50 м, буквы десятого ряда с расстояния 5 м.

Исследование остроты зрения проводится с расстояния 5 м и для каждого глаза отдельно. Справа в таблице стоит цифра, указывающая остроту зрения при проверке с расстояния 5 м, а слева цифра, указывающая расстояние, с которого этот ряд должен видеть исследуемый при нормальной остроте зрения.

Острота зрения может быть вычислена по формуле Снеллена:

где V (Visus) — острота зрения, d — расстояние, с которого видит больной, D — расстояние, с которого должен видеть глаз с нормальной остротой зрения знаки данного ряда на таблице.

Если исследуемый читает буквы 10 ряда с расстояния 5 м, то Visus = 5/5 = 1,0. Если же он читает только первую строчку таблицы, то Visus = 5/50 = 0,1 и т.д. Если острота зрения ниже 0,1, т.е. больной не видит первую строчку таблицы, то можно больного подводить к таблице пока он не увидит первую строчку и затем остроту зрения определить с помощью формулы Снеллена.

На практике пользуются показам раздвинутых пальцев врача, учитывая что толщина пальца приблизительно равна ширине штриха первого ряда таблицы, т.е. не больного подводят к таблице, а врач подходит к больному, показывая раздвинутые пальцы или оптотипы Поляка. И также, как в первом случае, остроту зрения рассчитывают по формуле. Если больной считает пальцы с расстояния 1 м, то его острота зрения равна 1:50 = 0,02, если с расстояния двух метров, то 2:50 = 0,04 и т.д. Если больной считает пальцы на расстоянии меньше 50 см, то острота зрения равна счету пальцев на расстоянии 40, 30, 20, 10 см, счету пальцев у лица. Если отсутствует даже такое минимальное форменное зрение, а сохраняется способность отличать свет от тьмы, зрение обозначается как бесконечно малое зрение — светоощущение 1/бесконечность.

При светоощущении с правильной проекцией света Visus = 1/бесконечность proectia lucis certa. Если глаз исследуемого неправильно определяет проекцию света хотя бы с одной стороны, то острота зрения расценивается как светоощущение с неправильной светопроекцией и обозначается Visus = 1/бесконечность рг. 1. incerta. При отсутствии даже светоощущения, зрение равно нулю и обозначается так: Visus = 0.

Правильность проекции света определяется при помощи источника света и зеркала офтальмоскопа. Больной садится, как при исследовании глаза методом проходящего света, и в глаз, который проверяют, направляется с разных сторон пучок света, который отражается от зеркала офтальмоскопа. Если функции сетчатки и зрительного нерва сохранились на всем протяжении, то больной говорит точно, с какой стороны на глаз направлен свет (сверху, снизу, справа, слева).

Определение наличия светоощущения и состояния проекции света очень важно для решения вопроса о целесообразности некоторых видов оперативного лечения. Если, например, при помутнении роговицы и хрусталика зрение равно правильному светоощущению, это указывает, что сохранены функции зрительного аппарата и можно рассчитывать на успех операции.

Зрение, равное нулю, свидетельствует об абсолютной слепоте. Более точно состояние сетчатки и зрительного нерва можно определить с помощью электрофизиологических методов исследования.

Для определения остроты зрения у детей служат детские таблицы, принцип построения которых такой же, как и для взрослых. Показ картинок или знаков начинают с верхних строчек. При проверки остроты зрения детям школьного возраста, также как и взрослым, буквы в таблице Сивцева и Головина показывают, начиная с самых нижних строк.

При оценке остроты зрения у детей надо помнить о возрастной динамике центрального зрения. В 3 года острота зрения равна 0,6-0,9, к 5 годам — у большинства 0,8-1,0.

На первой неделе жизни о наличии зрения у ребенка можно судить по зрачковой реакции на свет. Надо знать, что зрачок у новорожденных узкий и вяло реагирует на свет, поэтому проверять его реакцию надо путем сильного засвета глаза и лучше в затемненной комнате. На 2-й 3-й неделе — по кратковременной фиксации взглядом источника света или яркого предмета. В возрасте 4-5 недель движения глаз становятся координированными и развивается устойчивая центральная фиксация взора. Если зрение хорошее, то ребенок в этом возрасте способен долго удерживать взгляд на источнике света или ярких предметах. Кроме того, в этом возрасте появляется рефлекс смыкания век в ответ на быстрое приближение к его лицу какого-либо предмета. Количественно определить остроту зрения и в более позднем возрасте почти невозможно.

В первые годы жизни об остроте зрения судят по тому, с какого расстояния он узнает окружающих людей, игрушки. В возрасте 3, а у умственно хорошо развитых детей и 2 лет, часто можно определить остроту зрения по детским таблицам. Таблицы чрезвычайно разнообразны по своему содержанию.

В России довольно широкое распространение получили таблицы П.Г. Алейниковой, Е.М. Орловой с картинками и таблицы с оптотипами кольцами Ландольта и Пфлюгера. При исследовании зрения у детей от врача требуется большое терпение, повторное или многократное исследование.

Цветоощущение, методы исследования и диагностика его расстройств

Человеческий глаз различает не только форму, но и цвет предмета. Цветоощущение, также как и острота зрения, является функцией колбочкового аппарата сетчатки и связанных с ним нервных центров. Человеческий глаз воспринимает цвета с длиной волны от 380 до 800 нм.

Богатство цветов сводится к 7 цветам спектра, на которые разлагается, как показал еще Ньютон, солнечный свет, пропущенный через призму. Лучи длиной более 800 нм являются инфракрасными и не входят в состав видимого человеком спектра. Лучи менее 380 нм являются ультрафиолетовыми и не вызывают у человека оптического эффекта.

Все цвета разделяются на ахроматические (белые, черные и всевозможные серые) и хроматические (все цвета спектра, кроме белого, черного и серого). Человеческий глаз может различать до 300 оттенков ахроматического цвета и десятками тысяч хроматических цветов в различных сочетаниях. Хроматические цвета отличаются друг от друга по трем основным признакам: по цветовому тону, яркости (светлоте) и насыщенности.

Цветовой тон — качество цвета, которое мы обозначаем словами красный, желтый, зеленый и т.д., и характеризуется он длиной волны. Ахроматические цвета цветового тона не имеют.

Яркость или светлота цвета — это близость его к белому цвету. Чем ближе цвет к белому, тем он светлее.

Насыщенность — это густота тона, процентное соотношение основного тона и примесей к нему. Чем больше в цвете основного тона, тем он насыщенней.

Цветовые ощущения вызываются не только монохроматическим лучом с определенной длиной волны, но и совокупностью лучей с различной длиной волн, подчиненной законам оптического смещения цветов. Каждому основному цвету соответствует дополнительный, от смешения с которым получается белый цвет.

Пары дополнительных цветов находятся в диаметрально противоположных точках спектра: красный и зеленый, оранжевый и голубой, синий и желтый. Смешение цветов в спектре, расположенных близко друг от друга, дает ощущение нового хроматического цвета. Например, от смешения красного с желтым получается оранжевый, синего с зеленым — голубой. Все разнообразие ощущения цветов может быть получено путем смешения только трех основных цветов: красного, зеленого и синего. Т.к. существует три основных цвета, то в сетчатке глаза должны существовать специальные элементы для восприятия этих цветов.

Трехкомпонентную теорию цветоощущения предложил в 1757 году М.В. Ломоносов и в 1807 году английский ученый Томас Юнг. Они высказали предположение, что в сетчатке имеются троякого рода элементы, каждый из которых специфичен только для одного цвета и не воспринимает другого. Но в жизни оказывается, что потеря одного цвета связана с изменением всего цветного миросозерцания.

Если нет ощущения красного цвета, то и зеленый и фиолетовый цвета становятся несколько измененными. Через 50 лет Гельмгольц, выступивший со своей теорией трехкомпонентности, указал, что каждый из элементов, будучи специфичен для одного основного цвета, раздражается и другими цветами, но в меньшей степени. Например, красный цвет раздражает сильнее всего красные элементы, но в небольшой степени зеленые и фиолетовые. Зеленые лучи — сильно зеленые, слабо — красные и фиолетовые. Фиолетовый цвет действует очень сильно на элементы фиолетовые, слабее — на зеленые и красные. Если все три рода элементов раздражены в строго определенных отношениях, то получается ощущение белого цвета, а отсутствие возбуждения дает ощущение черного цвета.

Возбуждение только двух или всех трех элементов двумя или тремя раздражителями в различных степенях и соотношениях ведет к ощущению всей гаммы имеющихся в природе цветов. Люди с одинаковым развитием всех трех элементов имеют, согласно этой теории, нормальное цветоощущение и называются нормальными трихроматами. Если элементы не одинаково развиты, то наблюдается нарушение восприятия цветов.

Расстройство цветового зрения бывает врожденным и приобретенным, полным или неполным. Врожденная цветовая слепота встречается чаще у мужчин (8%) и значительно реже — у женщин (0,5%).

Полное выпадение функции одного из компонентов называется дихромазией. Дихроматы могут быть протанопами, при выпадении красного компонента, дейтеранопами — зеленого, тританопами — фиолетового. Врожденная слепота на красный и зеленый цвета встречается часто, а на фиолетовый — редко. Протанопией страдал знаменитый физик Дальтон, который в 1798 году впервые точно описал цветослепоту на красный цвет.

У некоторых лиц наблюдается ослабление цветовой чувствительности к одному из цветов. Это цветоаномалы. Ослабление восприятия красного цвета называется протаномалией, зеленого — дейтераномалией и фиолетового — тританомалией.

По степени выраженности цветоаномалии различают аномалии типа А, В, С. К цветоаномалиям А относятся более далекие от нормы формы, к С — более тяготеющие к норме. Промежуточное положение занимают цветоаномалы В.

Крайне редко встречается ахромазия — полная цветовая слепота. Никакие цветовые тона в этих случаях не различают, все воспринимается в сером цвете, как на черно-белой фотографии. При ахромазии обычно бывают и другие изменения глаз: светобоязнь, нистагм, центральное зрение не бывает выше 0,1 из-за аплазии центральной ямки, никтолапия (улучшение зрения при пониженном освещении).

Полная цветовая слепота большей частью проявляется как семейное страдание с рецессивным типом наследования (цветовая астенопия). Цветовую астенопию у отдельных людей следует рассматривать как явление физиологическое, свидетельствующее о недостаточной устойчивости хроматического зрения.

На характер цветового зрения оказывают влияние слуховые, обонятельные, вкусовые и многие другие раздражения. Под влиянием этих непрямых раздражителей цветовое восприятие может в одних случаях угнетаться, в других — усиливаться. Для диагностики расстройств цветового зрения у нас в стране пользуются специальными полихроматическими таблицами профессора Е.Б. Рабкина .

Таблицы построены на принципе уравнивания яркости и насыщенности. Кружочки основного и дополнительного цветов имеют одинаковую яркость и насыщенность и расположены так, что некоторые из них образуются на фоне остальных цифру или фигуру. В таблицах есть также скрытые цифры или фигуры, распознаваемые цветослепыми.

Исследование проводится при хорошем дневном или люминесцентном освещении таблиц, т.к. иначе изменяются цветовые оттенки. Исследуемый помещается спиной к окну, на расстоянии 0,5-1 м от таблицы. Время экспозиции каждой таблицы 5-10 с. Показания испытуемого записывают и по полученным данным устанавливают степень аномалии или цветослепоты. Исследуется раздельно каждый глаз, т.к. очень редко возможна односторонняя дихромазия. В детской практике ребенку младшего возраста предлагают кисточкой или указкой провести по цифре или фигуре, которую он различает. Кроме таблиц, для диагностики расстройств и более точного определения качества цветового зрения пользуются специальными спектральными аппаратами — аномалоскопами. Исследование цветоощущения имеет большое практическое значение.

Существует ряд профессий, для которых нормальное цветоощущение является необходимым. Это транспортная служба, изобразительное искусство, химическая, текстильная, полиграфическая промышленности. Цветоразличительная функция имеет большое значение в различных областях медицины: для врачей инфекционистов, дерматологов, офтальмологов, стоматологов; в познании окружающего мира и т.д.

Возможны приобретенные нарушения цветового зрения, которые по сравнению с врожденными более разнообразны и не укладываются в какие-либо схемы. Раньше и чаще нарушается красно-зеленое восприятие и позже — желто-синее. Иногда наоборот. Приобретенным нарушениям цветоощущения сопутствуют и другие нарушения: снижение остроты зрения, поля зрения, появление скотом и т.д. Приобретенная цветовая слепота может быть при патологических изменениях в области желтого пятна, папилломакулярном пучке, при поражении более высоких отделов зрительных путей и т.д. Приобретенные расстройства весьма изменчивы в динамике. Для диагностики приобретенных расстройств цветового зрения Е.Б. Рабкин предложил специальные таблицы.

Острота зрения - это способность органа зрения различать форму предметов в пространстве, величина которого определяется восприятием двух светящихся точек, расположенных под наименьшим углом зрения .

Величина остроты зрения выражается в относительных величинах с помощью специальных таблиц, предложенных Г. Снелленом. Способ определения остроты зрения, построенного на принципе нахождения наименьшей величины изображения, видимой глазом . В качестве физиологического принят угол в 1 градус. для этого использована определённая зависимость между величиной видимого предмета и расстоянием, на котором он находится от исследуемого.

Под нормальной остротой зрения понимается способность глаза различать раздельно две светящиеся точки под углом зрения в 1 ° .

Совершенно очевидно, что величина изображения предмета на сетчатке будет тем больше, чем больше предмет и чем ближе он находится к глазу.

Острота зрения обозначается в условных единицах. Нормальная острота зрения равно единице - 1,0 .

Острота центрального зрения у новорождённых низкая, она становится нормальной к 3,5-7 годам:

5 м = 50 м = 0,1

Это значит, что глаз только в том случае видит раздельно простейшие предметы, если их изображение на сетчатке имеет протяжение не меньшее, чем дуга угла в 1°. Расчёты показали, что этому углу соответствует линейная величина в 0,004 мм. Следовательно, нормальный глаз увидит две светящиеся точки раздельно, если расстояние между их изображениями на сетчатке будет не менее 0,004 мм, что приблизительно соответствует диаметру одной колбочки.

Остроту зрения (visus) исследуют для дали и для близи с помощью метрических таблиц, предложенных Головиным - Сивцевым . Таблицы состоят из ряда букв разной величины и толщины, соответствующих при рассматривании с 5 м остроте зрения от 0,1 до 2,0 колец с разрывами в четырёх направлениях - оптотипов Ландольта. Слева от каждого ряда букв обозначено расстояние, с которого штрихи или толщина этих знаков видны под углом в 1°, а вся буква - под углом зрения в 5°. Справа указана острота зрения.

Исследование острот зрения производится в комнате длиною 5 м. Такое расстояние считается достаточным для расслабления аккомодации. Таблица помещается в открытом спереди деревянном ящике, стенки которого изнутри облицованы зеркалами для равномерного освещения таблицы. Перед таблицей расположена электрическая лампа в 40 Вт, закрытая экраном, для постоянного освещения таблиц, или в боковых стенках ящика находятся прикрытые лампы люминесцентного освещения.

Пациент усаживается на расстоянии 5 м напротив таблиц, которые должны быть чистыми, гладкими. Каждый глаз его исследуется отдельно, для чего другой глаз в это время закрывают непрозрачным экраном. Остроту зрения определяют по формуле Дондерса: V - Visus = острота зрения; d - расстояние, на котором ведётся исследование (5 м), и D - расстояние, с которого данную строку различают глаз при нормальном зрении :

d = 5
D D

То расстояние, с которого ведётся исследование пациента, делим на расстояние, с которого пациент должен видеть в норме.

Нормальная острота зрения обозначается 1,0 и соответствует распознаванию пациентом 10-го ряда таблиц с расстояния в 5 м. Зрение 0,1 определяется с 50 м. Возможна и наиболее высокая острота зрения, для определения которой пользуются 10-м и 12-м рядами букв в таблице, что соответствует остроте зрения в 1,5 и 2,0.

Лицам с низкой остротой зрения , не различающим и первого ряда букв, предлагают приблизиться к таблице на более близкое расстояние, пока не буден виден чётко первый ряд . В этих случаях определение остроты зрения производится по формуле. Счёт пальцев на более близком расстоянии отмечается как острота зрения, равная счёту пальцев на расстоянии 20 см, 30 см. При отсутствии форменного зрения определяется возможность восприятия света и правильность его проекции. Для этого в тёмной комнате сзади и слева от испытуемого помещают источник света. Зеркалом офтальмоскопа направляют луч света в глаз больного с разных направлений, и он должен сказать, видит ли свет и его направление. Если сохранены светоощущение и его правильная проекция, испытуемый даст правильный ответ, а его глаз совершит движение к источнику света.

О зрении новорождённого можно судить по прямой и содружественной реакции зрачков на свет, рефлекторному повороту головы ребёнка к источнику света, по общей двигательной реакции при освещении каждого глаза.

У детей 1-2 месяцев жизни отмечается довольно продолжительное фиксированное слежение двумя глазами за ярким предметом, рефлекс смыкания век при приближении предмета к каждому глазу. Проверка остроты зрения у детей 3-4 лет проводится с таблицей Е. М. Орловой, на которой изображены детские рисунки .

Для объективного исследования остроты зрения и количественного её определения применяется метод оптокинетического нистагма , основанный на регистрации движений глаз в ответ на движения удалённых на расстояние и разных по величине тест-объектов .

См. функции зрительного анализатора и методы их исследования

Саенко И. А.


Источники:

  1. Рубан Э. Д., Гайнутдинов И. К. Сестренское дело в офтальмологии. - Ростов н/Д: Феникс, 2008.
  2. Справочник медицинской сестры по уходу/Н. И. Белова, Б. А. Беренбейн, Д. А. Великорецкий и др.; Под ред. Н. Р. Палеева.- М.: Медицина, 1989.