Анализ глаза признаки активной снм 2 типа. Аббревиатуры в офтальмологии. Прогноз и лечение

14.08.2013

Субретинальная неоваскуляризация (СНМ) имеет очень вариабельный вид на оптических томограммах. Чаще всего она проявляется в виде утолщения и часто сопровождается интра-или субретинальными полостями накопления жидкости. Классическая СНМ выглядит оптически плотным гиперрефлектирующим образованием под нейроэпителием сетчатки с четкими границами. Скрытая СНМ не визуализируется за счет экранирующих свойств пигментного эпителия. Однако часто сопровождается отслойкой ПЭС, интра-и субретинальным накоплением жидкости.

Для терминальной стадии ВДМ характерно образование геморрагических отслоений ПЭС и дисциформного рубца. Геморрагическую отслойку ПЭС на томограммах достаточно сложно дифференцировать от опухолей хориоидеи, поскольку для всего этого характерна гиперрефлективность поверхности. Дисциформный рубец выглядит как гомогенный, высокорефлективный очаг, который захватывает все слои сетчатки. Сетчатка над ним истончена.

При так называемой псевдотуморозной форме проявляется куполообразная отслойка нейроэпителия над гомогенным, высокорефлективным очагом, который захватывает внешние слои сетчатки (субретинальный фиброз).

Характерным признаком классической СНМ является появление гиперфлюоресценции с четкими границами в ранней фазе (начиная с хориоидальной) с последующим нарастанием флюоресценции до поздних фаз, при этом четкость границ неоваскулярного комплекса снижается.

Характерным признаком скрытой СНМ является появление гиперфлюоресценции с нечеткими размытыми границами в поздние фазы. протекания флюоресцеина обычно определить точно не удается. В ранних фазах гиперфлюоресценция отсутствует за счет экранирующих свойств слоя пигментного эпителия сетчатки.

На ранних фазах в области отслойки пигментного эпителия обнаруживается очаг гиперфлюоресценции с четкими границами. Интенсивность гиперфлюоресценции растет в поздние фазы исследования. Однако форма и пределы очага гиперфлюоресценции не изменяются.

При отрыве листа пигментного эпителия сетчатки дефект визуализируется в виде участка гиперфлюоресценции, а зона дубликатуры пигментного эпителия гипофлюоресцентна во всех фазах ангиографического исследования.

В зоне отслойки нейроэпителия на ангиограмме формируется гиперфлюоресценция с нечеткими контурами в раннюю фазу с нарастанием очага гиперфлюоресценции в поздние фазы. В отличие от отслойки пигментного эпителия при отслойке нейроэпителия пределы очага флюоресценции размыты.

При субретинальном фиброзе во всех фазах флюоресцентной ангиографии видны множественные зоны гипер-и гипофлюоресценции, при гиперфлюоресцирующем очаге видна отслойка нейроэпителия в фазе рециркуляции.
При мультифокальной ЭРГ определяется выраженное снижение амплитуды и показателей латентности. Для этой формы макулярной дегенерации на электроретинограмме характерно значительное уменьшение колбочковой и палочковой активности в макулярной области.

Дифференциальный диагноз проводится с разрывом макроаневризмы, опухолями хориоидеи, центральной серозной хориоретинопатией.

А если же вы не знаете Как похудеть быстро и при этом кушаю все, что вам хочется, то мы подскажем вам хорошие народные средства, которые проверены уже десятками людей и показывали положительный результат.


Устраняем причину болезней глаз! Неумывакин

Изобретение относится к офтальмологии и предназначено для лечения субретинальных неоваскулярных мембран. Проводят фотодинамическую терапию путем внутривенного введения фотосенсибилизатора с последующим облучением. При этом в качестве фотосенсибилизатора используют Фотосенс в дозе 0.05-0.3 мг/кг веса. Лазерное облучение мембраны проводят транспупиллярно на третьи сутки после введения Фотосенса. Облучают при длине волны 675 нм и плотности мощности 80-200 мВт/см 2 , облучают многократно. Облучение проводят каждые 3-5 дней без дополнительного введения Фотосенса. Всего проводят от двух до десяти сеансов. Способ позволяет снизить частоту рецидивирования субретинальных неоваскулярных мембран и повысить зрительные функции. 2 з.п. ф-лы, 2 ил.

Предлагаемое изобретение относится к офтальмологии и предназначено для лечения субретинальной неоваскулярной мембраны (СНМ).

Субретинальная неоваскулярная мембрана является частым осложнением таких заболеваний, как возрастная макулярная дегенерация, миопия, псевдогистоплазмозный синдром и воспалительные заболевания заднего отрезка глаза. Причина образования СНМ до конца не выявлена. По данным многих исследователей происходит появление дефектов в пигментном эпителии, в которые начинают врастать хориоидальные новообразованные сосуды. Вследствие этого процесса под сетчаткой формируется конгломерат фиброваскулярной ткани, что приводит к кровоизлияниям и потере зрения.

Принципы медикаментозной терапии СНМ до настоящего времени не сформулированы. Лечение препаратом лютеина (лютеин-комплекс) основывалось на предположении, что каротиноиды (лютеин [(3R,3"R,6"R)-beta,epsilon-Carotene-3,3"-diol] и zeaxanthin (3R,3"R)-beta,beta-Carotene-3,3"-diol) защищают сетчатку от воздействия свободных радикалов, скапливающихся в ходе фототоксических реакций , однако медикаментозное лечение СНМ с препаратами лютеина не дало значительного эффекта.

Новое направление в лечении СНМ - УМПП - узкий протонный медицинский пучок (12-15 Гр) и брахитерапию (аппликаторы - палладиум 103 использовали Finger et all . В 58% случаев произошла стабилизация процесса, а в 42% зрение продолжало снижаться из-за активности мембраны, что говорит о неэффективности способа. Таким образом, брахитерапия и УМПП также не эффективны.

Переход на малоинвазивную технику эндовитреальной хирургии выдвинул на первый план транслокационную хирургию макулы. Этот способ хирургического лечения СНМ заключается в транслокационной 360° ретинотомии . Однако в ряде случаев проводили повторные операции из-за развития пролиферации. Выявлен широкий спектр осложнений. Среди осложнений метода отмечены: витреоретинопатия, складки сетчатки в области макулы, разрывы в макуле . Эти осложнения не позволяют рекомендовать метод в широкую практику.

Другое направление в лечении хориоретинальных дистрофий, в том числе и СНМ, - применение лазерных способов лечения. В 90-х годах применяли криптоновую лазеркоагуляцию СНМ с целью разрушения мембраны. Способ не получил широкого применения в связи с резким снижением зрения после лазерного вмешательства из-за повреждения сетчатки и снижением качества жизни пациентов. Аргоновая лазеркоагуляция оказалась неэффективной в глазах с большой зоной СНМ. Запустевание зоны новообразованных сосудов происходило в определенном количестве случаев, а снижение остроты зрения и ухудшение качества жизни пациента практически прогрессировало .

Способ транспупиллярной термотерапии (ТТТ) применяется у пациентов со скрытой СНМ. В работе используют диодный лазер с диаметром фокального пятна в плоскости воздействия от 3000 до 6000 μ и с экспозицией 60 секунд, мощность варьирует от 600 до 1000 mW. В 71% отмечалось повышение остроты зрения, в 29% - снижение остроты зрения . Однако использование данного способа приводит к формированию грубых хориоретинальных рубцов и снижению центрального зрения и не эффективно при лечении классических СНМ. Таким образом, этот метод применяется у очень узкого контингента пациентов.

Теоретическим обоснованием для применения фотодинамической терапии (ФДТ) при СНМ служит строгая избирательность лучевого воздействия на патологический очаг независимо от места его локализации. Механизмы ФДТ обусловлены способностью фотосенсибилизаторов (ФС), избирательно накапливающихся в делящихся клетках, генерировать синглетный кислород и другие активные радикалы, оказывающие цитотоксический эффект при воздействии света с длиной волны, соответствующей пику поглощения ФС [В.W.Henderson, Th. J. Dougherty. "Photodynamic therapy." // Eds. New York: Dekker. - 1992].

Наряду с этим, ФДТ вызывает фотодинамическую окклюзию новообразованных сосудов с сохранением окружающих тканей . Разработки велись одновременно несколькими исследовательскими группами в разных странах мира. Schmidt U. с соавт. в эксперименте произвели селективную окклюзию новообразованных сосудов посредством ФДТ с SnET2 . Schmidt U. и Hassan Т. провели ту же процедуру с вертепорфином (BPD) . Отмечалось разрушение новообразованных сосудов при минимальном повреждении слоя палочек и колбочек, которое могло иметь место и как следствие развития самой СНМ. Мембрана Бруха при этом оставалась интактной.

Ближайшим аналогом предлагаемого изобретения является способ того же назначения, представляющий собой фотодинамическую терапию с использованием визудина (синоним: вертепорфин) . Способ включает введение препарата в количестве 6 мг/м 2 , облучают транспупиллярно диодным лазером с плотностью мощности 500 мВт/см 2 с экспозицией 83 сек. Лечение проводят у пациентов с диаметром СНМ<5400 мкм и остротой зрения 20/40-20/200. Критериями эффективности лечения служили показатели остроты зрения, геморрагическая активность и состояние новообразованных сосудов. В ходе лечения отмечали значительное улучшение всех показателей. Однако после изучения большого клинического материала, был сделан вывод, что у большего количества пролеченных пациентов наблюдается рецидив активности СНМ в связи с реваскуляризацией облитерированных после ФДТ сосудов СНМ.

Задачей данного изобретения является разработка более эффективного способа лечения СНМ. Для решения этой задачи нами предложен способ лечения субретинальной неоваскулярной мембраны, заключающийся в проведении фотодинамической терапии путем внутривенного введения фотосенсибилизатора с последующим облучением, причем в качестве фотосенсибилизатора используют Фотосенс в дозе 0.05-0.3 мг/кг веса, а лазерное облучение мембраны проводят транспупиллярно на третьи сутки после введения Фотосенса по достижении терапевтической дозы фотосенсибилизатора в мембране при длине волны 675 нм и плотности мощности 80-200 мВт/см 2 , облучают многократно, при этом облучение может быть повторено каждые 3-5 дней, а количество сеансов доведено от 2 до 10.

Техническим результатом предлагаемого изобретения является окклюзия новообразованных сосудов в СНМ с последующим подавлением "активности" самой СНМ.

Технический результат достигается за счет использования при ФДТ фотосенсибилизатора "Фотосенс" и дробного или фракционного облучения поверхности СНМ в определенном режиме.

При однократном введении "Фотосенса" в дозе от 0.05 до 0.3 мг/кг веса терапевтическая концентрация в тканях глазного яблока человека держится в среднем от 3 до 6 недель. Последующее лазерное облучение при длине волны 675 нм инициирует фототромбоз новообразованных сосудов хориоидеи, что способствует снижению активности СНМ с последующим дозированным рубцеванием с сохранением функциональной активности сетчатки. Минимальная плотность мощности, достаточная для инициации фотодинамических явлений, составляет 80 мВт/см 2 , при облучении СНМ плотностью мощности более 200 мВт/см 2 нами выявлено, что в большинстве случаев развивается отек сетчатки. Диаметр светового пятна составляет от 1100 микрон до 6400 мм и выбирается по известным правилам . Этот показатель определяется несколькими моментами. Во-первых, минимальные размеры мембраны к моменту диагностики, как правило, достигают 100 микрон. Далее, при проведении лучевого воздействия с фиксацией на СНМ необходимо учитывать ротаторные движения глазом, которые в норме достигают 500 микрон в разные стороны. Следовательно, при облучении необходимо взять диаметр светового пятна, которое бы перекрывало СНМ со всех сторон на 500 микрон. Тогда, при ротаторных движениях глаза, в ходе ФДТ СНМ не будет периодически выходить из-под зоны облучения и сеанс ФДТ будет полноценным: СНМ получит всю расчетную дозу.

Для полной облитерации сосудов СНМ облучение можно повторять каждые 3-5 дней, всего 2-10 сеансов.

Фотосенс" состоит из смеси натриевых солей сульфированного фталоцианина оксиалюминия в дистиллированной воде с содержанием дизамещенного продукта и тризамещенного продукта, остаток представлен тетразамещенным продуктом со средней степенью сульфирования 3,0+0,2 (Патент РФ 2220722 А 61 К 31/409/2004 г). Субстанция "Фотосенс", применяемая для приготовления лекарственной инъекционной формы препарата, представляет собой натриевую соль сульфированного фталоцианина оксиалюминия и является синтетическим ФС второго поколения для ФД и ФДТ злокачественных опухолей. Субстанция "Фотосенс" - это макроциклическое соединение с замкнутым хромофором, хорошо растворимое в воде благодаря наличию в молекуле сульфогрупп. Обладает интенсивной полосой поглощения в красной области спектра с максимумом при 675 нм. Вторая, менее интенсивная полоса, расположена при 350 нм.

Как оказалось, Фотосенс по существу обладает способностью длительно персистировать в СНМ, при этом его концентрация СНМ держится на уровне терапевтической. Это позволяет уменьшить разовую световую дозу, то есть проводя облучение дробно малыми дозами за 2-10 сеансов в течение нескольких недель (3-6).

Такая методика позволяет предотвратить развитие отека сетчатки, который может появиться при облучении большой плотностью мощности одномоментно. При дробном облучении всей поверхности мембраны с захватом здоровой ткани минимизируется возможность оставления активных участков мембраны, как по длине, так и по глубине. За один сеанс это сделать невозможно, так как истинные размеры неоваскулярной мембраны порой определить невозможно из-за того, что часть ее может быть прикрыта кровью или экссудатом. Однако после нескольких сеансов развивающиеся фототромбозы в СНМ устраняют отек, геморрагии частично рассасываются, а экссудат резорбируется, происходит обнажение тех частей СНМ, которые ранее были скрыты. По мере их обнажения, мы добавляем количество сеансов облучения, включая их в зону облучения, тем самым, увеличивая эффективность фотодинамической терапии.

Способ осуществляют следующим образом. Внутривенно вводят фотосенсибилизатор "Фотосенс" в дозе от 0.05 до 0.3 мг/кг веса, которую выбирают индивидуально, в зависимости от длительности заболевания, толщины СНМ и степени пигментации глазного дна. Чем длительнее заболевание и толще СНМ, тем больше доза вводимого препарата. На протяжении последующего периода определяют концентрацию препарата в тканях с помощью спектроскопического комплекса ЛЭСА-01 Биоспек с целью уточнения присутствия терапевтической концентрации в СНМ [Лощенов В.Б., Стратонников А.А., Волкова А.И., Прохоров A.M. Портативная спектроскопическая система для флюоресцентной диагностики опухолей и контроля за фотодинамической терапией. // Российский химический журнал. - 1998. - Т.ХП. - N.5. - С.50-53.]. На глазном дне регистрируют флуоресценцию "Фотосенса" в тканях глазного дна с помощью прибора, разработанного на базе щелевой лампы ЩЛ-ГЗ (ОАО "ЗОМЗ"). Лампа дополнительно оснащалась видеоканалом, включающим цветную и высокочувствительную черно-белую видеокамеры, и персональным компьютером для обработки и отображения видеоинформации, а также лазером и оптическим адаптером, фокусирующим (с помощью дополнительной линзы Гольдмана) излучение лазера на глазное дно. На 3 сутки, когда градиент контрастности между СНМ и окружающими тканями становится максимален (количество препарата в ретинальных сосудах и здоровой хориоидее меньше, чем в зоне СНМ) и уровень "Фотосенса" достигает терапевтического, проводят фотодинамическую терапию. При этом терапевтический уровень определяют по соотношению флуоресценции ткани и стандартного образца с заведомо известной, терапевтической концентрацией. Зрачок пациента расширяют мидриатиками до максимального размера. Используя 3-зеркальную линзу Гольдмана проводят облучение зоны СНМ при длине волны 675 нм, плотностью мощности от 80 до 200 мВт/см 2 . Конкретную дозу облучения выбирают в зависимости от состояния сетчатки (отек, кистевидные изменения), толщины СНМ и степени пигментации глазного дна. Чем больше отек, тем меньше доза облучения. В течение последующего времени облучение повторяют каждые 3-5 дней, всего 2-10 сеансов в зависимости от степени выраженности отека сетчатки, площади и глубины залегания СНМ. Чем глубже залегает СНМ и более выражен отек, тем большее количество сеансов используют. При этом лазерное облучение мембраны проводят транспупиллярно.

Пример 1. Пациент Г., 68 лет, поступил в клинику с жалобами на снижение зрения, искажение предметов, появление темного пятна перед левым глазом в течение последнего месяца.

При обследовании острота зрения ОД-1.0, OS-0.2.

Офтальмоскопическая и ангиографическая картина представлены на фиг.№1. Был поставлен диагноз: Возрастная макулярная дегенерация, субретинальная неоваскулярная мембрана левого глаза.

Учитывая непродолжительный период заболевания, небольшие размеры мембраны, пациенту введен Фотосенс в дозе 0.1 мг/кг веса.

На 3 сутки концентрация препарата в тканях глаза была сопоставима с терапевтической.

Проведена ФДТ. Плотность мощности составила 100 мВт/см 2 . После первого сеанса образовался перифокальный отек сетчатки, который резорбировался на 2 сутки, после чего сеанс облучения с теми же параметрами был повторен. При этом всего проведено 4 сеанса. Достигли фототромбозов новообразованных сосудов с последующей их облитерацией.

Острота зрения повысилась, и составила OS-0.7. На офтальмоскопической и ангиографической картине (смотри фиг.2), отмечается снижение активности СНМ и резорбция геморрагии.

Пример 2. Пациентка Н., 36 лет, поступила в клинику с жалобами на снижение зрения, искажение и раздвоение предметов, появление пятен перед обоими глазами в течение последних 3-х месяцев.

РЕФЕРАТ

В статье представлена методика создания экспериментальной субретинальной неоваскулярной мембраны на глазном дне кроликов. Модель была создана у кроликов породы Шиншилла путем введения Матригеля (гелеобразной смеси белков, выделяемых клетками мышиной саркомы Энгельбрета-Холма-Сварма), содержащего рекомбинантный VEGF 165. В результате у 10 из 12 кроликов был зафиксирован рост СНМ, диаметр которых составлял 423±56 мкм. В ходе работы были изучены сроки развития, особенности течения, ангиографические и морфологические проявления развившихся СНМ.

Ключевые слова : субретинальная неоваскулярная мембрана (СНМ), экспериментальная модель СНМ на животных, морфологическое исследование СНМ.

Актуальность. Субретинальная неоваскулярная мембрана (СНМ) является основным патологическим звеном в патогенезе многих глазных патологий, ведущих к снижению или потере зрения . Распространенность подобных заболеваний с каждым годом во всем мире увеличивается .

В настоящий момент достигнут значительный успех в лечении заболеваний глаза, сопровождающихся развитием субретинальной неоваскулярной мембраны. Тем не менее, имеющиеся терапевтические подходы обладают рядом значительных недостатков, следовательно, поиск новых терапевтических подходов все еще остается актуальной проблемой.

Одним из основных инструментом для изучения механизмов формирования СНМ и оценки эффективности различных терапевтических подходов являются экспериментальные модели на животных. В настоящее время разработано большое количество методик формирования СНМ в эксперименте, отличающихся друг от друга по таким параметрам, как финансовая затратность, сроки формирования и персистирования СНМ, величина СНМ, морфологическое, биохимическое и ангиографическое соответствие патологическим процессам человеческого глаза .

Из всех разработанных моделей ни одна не является «золотым стандартом», и выбор той или иной модели всегда остается прерогативой исследователя.

Таким образом, в настоящее время все еще существует необходимость поиска оптимальных экспериментальных моделей СНМ, которые бы в наилучшей степени соответствовали выдвигаемым к ним требованиям.

Цель. Разработать и воспроизвести в эксперименте модель СНМ на глазном дне кроликов. Изучить ангиографические и морфологические особенности сформировавшихся СНМ в различные сроки развития.

Материал и методы. Исследования проведены на 12 глазах 6 пигментированных кроликов породы «Шиншилла» обоих полов весом 3,5-4,5 кг (выращенных в питомнике лабораторных животных).

Во всех опытах испытуемым являлся правый глаз (OD), парный левый (OS) глаз каждого животного служил контролем.

Модель формировалась путем имплантации (трансвитреальной инъекции) Матригеля (100 мкл), содержащего VEGF165 (0,5-1,0 мкг) в субретинальное пространство перипапиллярной зоны правого глаза (OD) экспериментального животного. Одномоментно при субретинальном введении указанной комбинации веществ проводилась механическая перфорация слоя пигментного эпителия сетчатки и мембраны Бруха.

Левый глаз (OS) служил контрольным. Каждая инъекция сопровождалась трансвитреальной лазерной коагуляцией сетчатки по краю постинъекционной элевации.

Экспериментальным животным ежедневно в течение 30 дней проводили офтальмоскопию. Клиническую картину глазного дна фотографировали на фундус-камере и с помощью флуоресцентной ангиографии оценивали наличие, распространенность, локализацию и характерные паттерны сформировавшихся СНМ. После формирования новообразованных сосудов экспериментальные животные в различные сроки выводились из эксперимента. Энуклеированные глаза кроликов со сформированной моделью подвергались гистологическому исследованию. При гистологическом исследовании оценивались толщина, распространенность, отношение к окружающим тканям, наличие и характеристики новообразованных сосудов и фиброзной ткани, а также их соотношение, кроме того оценивались наличие и состав клеточного инфильтрата в СНМ.

Результаты. При флуоресцентной ангиографии глазного дна экспериментальных животных на участке введения Матригеля с VEGF165 в субретинальное пространство были обнаружены зоны гиперфлуоресценции и просачивания красителя в поздней стадии исследования.

При макроскопическом исследовании энуклеированных глаз под бинокулярным микроскопом были обнаружены беловато-серые субретинальные проминирующие образования округлой или овальной формы. Локализация указанных образований соответствовала месту субретинального введения рекомбинантного VEGF с Матригелем с одномоментным механическим повреждением мембраны Бруха. Размер образований варьировал в пределах 300-600 мкм в диаметре.

При микроскопическом исследовании патологических изменений глазного дна, описанных выше, были выявлены следующие изменения. В субретинальном пространстве обнаружены участки роста фиброваскулярной ткани. Рост отмечался на участках с поврежденными слоями пигментного эпителия и мембраны Бруха. Источником роста фиброваскулярной мембраны являлась подлежащая хориоидея. Субретинальная фиброваскулярная ткань преимущественно состояла из фибробластов с большим светлоокрашенным ядром с отчетливо различимым ядрышком, что указывает на активность пролиферативных процессов. Вторым по значимости компонентом мембран были новообразованные микрососуды, образованные уплощенными клетками с веретеновидным ядром. В просвете некоторых из них наблюдались единичные эритроциты. В ряде случаев фиброваскулярная мембрана прорастала во внешние слои сетчатки, захватывая слой палочек и колбочек и наружный ядерный слой. При этом слой палочек и колбочек практически отсутствовал. Часто имела место выраженная инфильтрация образованных мембран воспалительными клетками. Повсеместно в фиброваскулярной мембране встречались скопления клеток пигментного эпителия. Размеры клеток в скоплениях и интенсивность пигментации варьировали в широких пределах.

Толщина обнаруженных субретинальных фиброваскулярных мембран составляла от 150 до 250 мкм. Диаметр мембран соответствовал размерам, указанным при описании морфологических находок под бинокулярным микроскопом.

Заключение. Разработанная экспериментальная модель СНМ глазного дна обладает рядом достоинств, включающих простоту воспроизведения, низкий процент осложнений, постоянный визуальный контроль во время выполнения необходимых манипуляций и, как следствие, точное позиционирование процесса в наиболее удобном месте глазного дна, простоту локализации и отслеживания динамики развития СНМ, как при офтальмоскопии, так и при ангиографии, высокую частоту развития и достаточную распространенность СНМ.

Выявленные морфологические находки убедительно демонстрируют ряд общих черт экспериментальной СНМ с таковыми при патологических процессах глаза человека. В целом разработанная модель СНМ соответствует предъявляемым требованиям и может служить инструментом для исследования патогенеза и новых терапевтических подходов для лечения СНМ.

Благодаря ряду позитивных качеств, отмеченных выше, представленная нами модель может быть с успехом использована как для изучения патогенеза СНМ, так и для способов лечения этого заболевания. Сравнивая эту методику с рядом уже существующих на настоящий момент методик формирования животной модели СНМ, можно отметить сравнительную простоту методов и доступность использующихся материалов. Впрочем, нельзя не отметить, что по ряду анатомических особенностей глаз кролика отличатся от глаза человека, например отсутствием макулы и особенностями трофики сетчатки, что отражается в некоторых особенностях развития СНМ.

Многие салоны оптики сегодня имеют в штате специалиста-офтальмолога, который на месте проведет диагностику зрения на современном оборудовании, тут же выпишет рецепт на очки и незамедлительно сдаст в работу. Порой пациент даже не успеет заглянуть в эти загадочные прописи, а ведь в них содержится полная, но кратко изложенная особыми обозначениями информация о состоянии глаз и методе его коррекции.

Первоначально давайте ознакомимся с самыми важными сокращениями – какой глаз od os. В медицинской терминологии исторически используются названия на латинском языке, чтобы у специалистов из разных стран не возникало неразберихи при изучении медицины и фармакологии.

Латинское словосочетание oculus dexter обозначает правый глаз, или сокращенно – глаз OD. Нередко еще можно встретить эту же запись кириллическими буквами – ОД.

Термин левый глаз на латыни звучит как oculus sinister – OS.

Обозначения правой и левой сторон пришло из геральдики и обозначало части щита с позиции рыцаря, который его нес. Правая рука держала оружие и соответствовала прилагательному dexter – правый, умелый, благотворный и милостивый.

Левой рукой и одноименной стороной щита воин отгораживался от противника, поэтому латинское sinister имеет значение зловещий, пагубный.

Поэтому наш собственный правый глаз для смотрящего нам в лицо будет левым.

Когда речь идет сразу об обоих органах зрения, имеющих одинаковые в чем-то показатели, то употребляют сокращение OD – oculi utriusque – каждый из двух, оба.

В офтальмологии первыми всегда будут обозначены параметры для правого глаза, а после – для левого.

Указывается вид корректирующей линзы, например, od sph – это сферическая (sphere) линза для правого глаза. Далее уточняется ее оптическая сила в диоптриях - D (dioptria).

Коррекцию фокусировки изображения за сетчаткой проводят собирательными линзами, которые обозначаются знаком плюса «+». Фокусировка изображения перед сетчаткой компенсируется рассеивающими линзами, которые имеют обозначение минуса «-».

Запись sph-2,0 D, будет обозначать, что необходимо скорректировать зрение при близорукости сферической рассеивающей линзой с силой в 2 диоптрии.

В некоторых случаях этого бывает достаточно, но при явлении астигматизма, когда преломляющие кривые глаза не симметричны, могут понадобиться и особые цилиндрические линзы. Они имеют различную силу преломления по короткой и длинной осям и обозначаются сокращением Cyl (cylinder). Знаки минуса и плюса также указывают на характер корректируемого нарушения (миопического и гиперметропического).

Особенность оптического преломления в цилиндрической линзе ставит необходимость указывать положение оси цилиндра Ах в градусах 0◦-180◦. Это очень важный показатель, поскольку корректируется преломление лучей, идущих перпендикулярно данной оси.


Оптические центры очков должны соответствовать параметрам органов зрения

Последний важный момент, без которого невозможно изготовить корректирующие очки, – это расстояние между центрами зрачков – Dp (distantio pupillorum). Оно может быть прописано как целое число и обозначать межцентровое расстояние или же как пара чисел через дробь и показывать расстояние от центра правого и левого глаз до середины носа. Именно на эти значения ориентируется мастер, выставляя оптические центры линз, подгоняя их под оправу. Они должны строго совпадать с расстоянием между зрачками. У взрослого человека обычно это величина постоянная, а для детей каждый раз должна измеряться заново, поскольку их зрительная система еще находится в процессе роста. Упущение показателя межцентрового расстояния приводит к дискомфорту в ношении очков и понижению качества видения.

Запись показателей астигматической линзы может производиться как с плюсовым, так и с минусовым цилиндром. Традиционно офтальмологи выписывают рецепт по плюсовым значениям, а оптометристы в оптиках – по минусовым. Это связано с каноничностью формы рецепта, а с другой стороны – с практической частью изготовления очков.

У астигматических линз задняя поверхность, несущая торическую составляющую, всегда отрицательна. В некоторых случаях прибегая к транспозиции цилиндра, то есть пересчете его значения с «+» на «-», офтальмолог пытается улучшить переносимость коррекции, если ее объем слишком велик.

Эта запись является примером транспозиции цилиндра:

Sph +2,0, cyl -1,0 ax 120◦ = Sph +1,0, cyl +1,0 ax 30◦

Значение для сферической линзы получают сложением ее показателя с показателем цилиндрической, значение цилиндра численно остается тем же, но со сменой знака на противоположный, а положение оси изменяется на 90◦.

Таким образом, различна лишь форма записи рецепта. Оптически и фактически это одна и та же линза.

11536 0

Определение

Миопическая дегенерация - это дегенеративное состояние сетчатки, при котором происходит истончение пигментного эпителия и хориоидеи, развивается атрофия пигментного эпителия сетчатки, ХНВ и субретинальные кровоизлияния у пациентов с прогрессирующим удлинением глазного яблока при миопии более 6 диоптрий.

Распространённость миоиической дегенерации варьирует среди различных рас и этнических групп и чаще встречается у женщин, чем у мужчин.

Анамнез

Пациенты с осложнённой миопией медленно теряют центральное зрение из-за прогрессирующей атрофии сетчатки в макулярной области. Более резкая потеря зрения может произойти из-за макулярного субре-тинального кровоизлияния или ХНВ. Если субретинальное кровоизлияние, не связанное с ХНВ, резорбируется, происходит спонтанное улучшение зрения.

Важные клинические признаки

Считается, что клинические проявления миопической дегенерации связаны с прогрессирующим удлинением глазного яблока. Отличительной чертой является так называемый миопическаий конус (атрофия) пигментного эпителия сетчатки вокруг диска зрительного нерва в виде полумесяца или кольца (рис. 2-14, А). Эта а трофическая область расположена, как правило, с височной стороны от диска, однако она может быть локализована в любом месте вокруг диска и распространяться в макулярную область.

Сам диск зрительного нерва может быть косо входящим или удлинённым в вертикальном направ-лепии, могут присутствовать оба эти признака (рис. 2-14, Б). Изменения в макулярной области могут быть причиной снижения зрения.

К таким изменениям относятся извилистые участки атрофии в заднем полюсе глазного яблока, которые могут захватывать область центральной ямки. Лаковые трещины представ-ляк)т собой спонтанные линейные разрывы мембраны Бруха (Bruch"s membrane) (см. рис. 2-14, Б) и развиваются у 4% пациентов с высокой степенью миопии; лаковые трещины считают причиной появления спонтанных субретинальных кровоизлияний, не связанных с ХНВ (рис. 2-14, В).

Очаги Фукса (Fuchs spots) представляют собой округлые участки субретинальной гиперпигментации, изредка с окружающими их участками атрофии, которые считают исходом субретинального кровоизлияния или ХНВ. Очаги Фукса (Fuchs"spots) выявляют в 10% случаев при миопии высокой степени у пациентов старше 30 лет.


Рис. 2-14, А. Мистическая дегенерация, миопический конус. Миопический конус с височной стороны. Определяется «истончение» пигментного эпителия сетчатки (на увеличенном изображении видны истинные границы диска зрительного нерва).
Б. Миопическая дегенерация, косо входящий диск зрительного нерва. Выраженное косое вхождение диска зрительного нерва с темпоральным конусом и лаковой трещиной сверху от центральной ямки (стрелка).
В. Миопическая дегенерация, ретинальная геморрагия. Спонтанное субретинальное (фовеальное) кровоизлияние из лаковой трещины без хориоидальной неоваскуляризации.
Г. Миопическая дегенерация, хориоидальная неоваскуляризация. Субретинальная хориоидальная неоваскуляризация (стрелка) с пигментацией и небольшим количеством субретинальной жидкости.

Сопутствующие клинические признаки

Хориоидальная неоваскуляризация развивается у пациентов с миопией с частотой от 5 до 10% случаев при длине переднезадней оси глаза больше 26,5 мм (рис. 2-14, Г), часто в сочетании с лаковыми трещинами. На глазном дне можно наблюдать заднюю стафилому — экскавацию в заднем полюсе, сопровождающуюся хориоретинальной атрофией (рис. 2-14, Д).



Рис. 2-14, Д. Миопическая дегенерация, задняя стафилома. Показана стафилома вокруг диска зрительного нерва.
Е. Миопическая дегенерация. Обширная хориоретинальная атрофия в заднем полюсе и на периферии сетчатки правого глаза.
Ж. Миопическая дегенерация, Обширная хориоретинальная атрофия в заднем полюсе и периферии сетчатки левого глаза.


На периферии сетчатки определяются диффузное перераспределение пигмента и пятнистые или диффузные участки хориоретинальной дегенерации (рис. 2-14, Е, Ж). Задняя отслойка стекловидного тела встречается чаще у пациентов с дегенеративной формой миопии и развивается в более молодом возрасте. Решётчатая дегенерация встречается при миопи-ческой дегенерации не чаще, чем в среднем, тем не менее такие пациенты составляют группу повышенного риска возникновения разрыва и отслойки сетчатки.

Дифференциальная диагностика

. Синдром косого входа диска зрительного нерва.
. Колобома диска зрительного нерва.
. Синдром предположительного глазного гистоплазмоза.
. Возрастная макулярная дегенерация.
. Гиратная атрофия.

Диагностика

Анамнез, определение рефракции, измерение длины глаза, а также множество офтальмоскопических признаков — всё это помогает поставить диагноз миопической дегенерации.

Для оценки ХНВ показана флюоресцентная ангиография.

Прогноз и лечение

Эффективной терапии, предупреждающей прогрессирование миопии и дегенеративное воздействие этой патологии на сетчатку, не существует. По некоторым данным, склероукре-пляющие операции и методы резекции склеры ограничивают удлинение глазного яблока, однако не обеспечивают полной стабилизации процесса или достоверного улучшения зрения.

Пациентам с миопической ХНВ рекомендовать лазерную коагуляцию следует достаточно осторожно. Без лечения ХНВ часто остаётся небольшой по размеру, а расширение площади атрофических участков после фотокоагуляции может привести к дальнейшему прогрессированию потери зрения. При субфовеальной ХНВ целесообразным может быть применение фотодинамической терапии с вертепорфином. Без лечения ХНВ при миопической дегенерации может оставаться стабильной без значительного снижения остроты зрения в отличие от возрастной макулярной дегенерации.

С.Э. Аветисова, В.К. Сургуча