Молекулярная физика. Плавление и кристаллизация. Тема: «Плавление и кристаллизация. Удельная теплота плавления и кристаллизации

http://sernam. ru/book_phis_t1.php? id=272

§ 269. Удельная теплота плавления

Мы видели, что сосуд со льдом и водой, внесенный в теплую комнату, не нагревается до тех пор, пока весь лед не растает. При этом из льда при получается вода при той же температуре. В это время к смеси лед — вода притекает теплота и, следовательно, внутренняя энергия этой смеси увеличивается. Отсюда мы должны сделать вывод, что внутренняя энергия воды при больше, чем внутренняя энергия льда при той же температуре. Так как кинетическая энергия молекул, воды и льда при одна и та же, то приращение внутренней энергии при плавлении является приращением потенциальной энергии молекул

Опыт обнаруживает, что сказанное справедливо для всех кристаллов. При плавлении кристалла необходимо непрерывно увеличивать внутреннюю энергию системы, причем температура кристалла и расплава остается неизменной. Обычно увеличение внутренней энергии происходит при передаче кристаллу некоторого количества теплоты. Той же цели можно достигнуть и путем совершения работы, например трением. Итак, внутренняя энергия расплава всегда больше, чем внутренняя энергия такой же массы кристаллов при той же температуре. Это означает, что упорядоченное расположение частиц (в кристаллическом состоянии) соответствует меньшей энергии, чем неупорядоченное (в расплаве).

Количество теплоты, необходимое для перехода единицы массы кристалла в расплав той же температуры, называют удельной теплотой плавления кристалла. Она выражается в джоулях на килограмм .

При затвердевании вещества теплота плавления выделяется и передается окружающим телам.

Определение удельной теплоты плавления тугоплавких тел (тел с высокой температурой плавления) представляет нелегкую задачу. Удельная теплота плавления такого легкоплавкого кристалла, как лед, может быть определена при помощи калориметра. Налив в калориметр, некоторое количество воды определенной температуры и бросив в нее известную массу льда, уже начавшего таять, т. е. имеющего температуру , выждем, пока весь лед не растает и температура воды в калориметре примет неизменяющееся значение. Пользуясь законом сохранения энергии, составим уравнение теплового баланса (§ 209), позволяющее определить удельную теплоту плавления льда.

Пусть масса воды (включая водяной эквивалент калориметра) равна масса льда — , удельная теплоемкость воды — , начальная температура воды — , конечная — , удельная теплота плавления льда — . Уравнение теплового баланса имеет вид

.

В табл. 16 приведены значения удельной теплоты плавления некоторых веществ. Обращает на себя внимание большая теплота плавления льда. Это обстоятельство очень важно, так как оно замедляет таяние льда в природе. Будь удельная теплота плавления значительно меньше, весенние паводки были бы во много раз сильнее. Зная удельную теплоту плавления, мы можем рассчитать, какое количество теплоты необходимо для расплавления какого-либо тела. Если тело уже нагрето до точки плавления, то надо затратить теплоту только на плавление его. Если же оно имеет температуру ниже точки плавления, то надо еще потратить теплоту на нагревание. Таблица 16.

269.1. В сосуд с водой, хорошо защищенный от притока теплоты извне, бросают кусочки льда при . Сколько можно бросить льда для того, чтобы он полностью растаял, если в сосуде имеется 500 г воды при ? Теплоемкость сосуда можно считать ничтожно малой по сравнению с теплоемкостью воды в нем. Удельная теплоемкость льда равна

http://earthz.ru/solves/Zadacha-po-fizike-641

2014-06-01 В ведре находится смесь воды со льдом массой m=10кг. Ведро внесли в комнату и сразу же начали измерять температуру смеси. Получившаяся зависимость температуры от времени T(ф) изображена на рис.. Удельная теплоемкость воды равна cв=4,2Дж/(кг⋅К), удельная теплота плавления льда л=340кДж/кг.

Определите массу mл льда в ведре, когда его внесли в комнату. Теплоемкостью ведра пренебречь. Решение: Как видно из графика, первые 50 минут температура смеси не менялась и оставалась равной 0∘C. Все это время теплота, получаемая смесью из комнаты, шла на таяние льда. Через 50 минут весь лед растаял и температура воды начала повышаться. За 10 минут (от ф1=50 до ф2=60мин) температура повысилась на ДT=2∘C. Теплота, поступившая к воде из комнаты за это время, равна q=cвmвДT=84кДж. Значит, за первые 50 минут к смеси из комнаты поступило количество теплоты Q=5q=420кДж. Эта теплота и пошла на таяние массы mл льда: Q=лmл. Таким образом, масса льда в ведре, внесенном в комнату, равна mл=Q/л≈1,2кг.

http://www.msuee.ru/html2/med_gidr/l3_4.html

Энергия, которую получает или теряет тело при теплопередаче, называется количеством теплоты. Количество теплоты зависит от массы тела, от разности температур тела и от рода вещества.

[Q]=Дж или калориях

1 кал – это количество теплоты, которое необходимо для нагревания 1 г воды на 1 о С.

Удельная теплоемкость – физическая величина, равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 о С.

[C] = Дж/кг о С

Удельная теплоемкость воды 4200 Дж/кг о С. Это значит, что для нагревания воды массой 1 кг на 1 о С необходимо затратить 4200 Дж теплоты.

Удельная теплоемкость вещества, находящегося в различных агрегатных состояниях, различна. Так, теплоемкость льда 2100 Дж/кг о С. Удельная теплоемкость воды самая большая. В связи с этим вода в морях и океанах, нагреваясь летом, поглощает большое количество теплоты. Зимой вода остывает и отдает большое количество теплоты. Поэтому в районах, расположенных вблизи водоемов, летом не бывает очень жарко, а зимой очень холодно. Из-за высокой теплоемкости воду широко применяют в технике и быту. Например, в отопительных системах домов, при охлаждении деталей во время их обработки на станках, медицине (грелках) и т.д.

С возрастанием температуры твердых тел и жидкостей возрастает кинетическая энергия их частиц: они начинают колебаться с большей скоростью. При некоторой температуре, вполне определенной для данного вещества, силы притяжения между частицами уже не в состоянии удержать их в узлах кристаллической решетки (дальний порядок превращается в ближний), и кристалл начинает плавиться, т.е. вещество начинает переходить в жидкое состояние.

Плавление процесс перехода вещества из твердого состояния в жидкое.

Отвердевание (кристаллизация) процесс перехода вещества из жидкого состояния в твердое.

В процессе плавления температура кристалла остается постоянной. Эта температура называется температурой плавления . У каждого вещества есть своя температура плавления. Находят по таблице.

Постоянство температуры при плавлении имеет большое практическое значение, поскольку позволяет градуировать термометры, изготавливать плавкие предохранители и индикаторы, которые расплавляются при строго заданной температуре. Знание температуры плавления различных веществ важно и с чисто бытовой точки зрения: в противном случае кто поручится за то, что эта кастрюля или сковородка не расплавится на огне газовой горелки?

Температура плавления и равная ей температура отвердевания - характерный признак вещества. Ртуть плавится и затвердевает при температуре -39 о С, поэтому в районах Крайнего Севера ртутные термометры не используют. Вместо ртутных термометров в этих широтах используют спиртовые (-114 о С). Самым тугоплавким металлом является вольфрам (3420 о С).

Количество теплоты, необходимое для плавления вещества, определяют по формуле:

Где m – масса вещества, - удельная теплота плавления.

Дж/кг

Удельная теплота плавления – такое количество теплоты, которое необходимо для расплавления 1 кг вещества, взятого при температуре плавления. У каждого вещества своя. Её находят по таблице.

Температура плавления вещества зависит от давления. Для веществ, у которых объем при плавлении возрастает, повышение давления повышает температуру плавления и наоборот. У воды объем при плавлении уменьшается, и при повышении давления лед плавится при более низкой температуре.

Билет № 14


Похожая информация:

  1. Question»Количественная нетарифная мера ограничения экспорта или импорта товара определенным количеством или суммой на определенный промежуток времени
  2. А знаете, как соотносится количество вещества в атоме с объемом самого атома?
  3. Б. В том, что провизор называет первый входящий в пропись ингредиент, а фармацевт по памяти называет все взятые им ингредиенты и их количество.

Тема: «Плавление и кристаллизация.

Удельная теплота плавления и кристаллизации»

Задачи урока:

В результате работы на уроке учащиеся должны усвоить определение понятий «плавление», «кристаллизация», «температура плавления», «удельная теплота плавления и кристаллизации»; уметь объяснять неизменность температуры и энергетические превращения в процессах плавления и кристаллизации; анализировать график зависимости температуры тела от времени его нагревания и график охлаждения нагретой жидкости; знать формулу для расчёта количества теплоты, необходимого для плавления (кристаллизации) тела.

Ход урока.


Организационный момент (1 минута).
Повторение изученного материала (4 минуты)

Фронтальный опрос.

1. В каких агрегатных состояниях может находиться одно и то же вещество?

2. Чем определяется то или иное агрегатное состояние вещества?

3. Каковы особенности молекулярного строения газов, жидкостей и твердых тел?

4. Возможны переходы: из твердого состояния в жидкое, из жидкого состояния в газообразное, из газообразного в твердое и обратные переходы: из твердого состояния в газообразное, из газообразного в жидкое, из жидкого в твердое. Установите соответствие между переходами и явлениями, им соответствующими. (Учитель называет явление, учащиеся определяют, какому переходу это явление соответствует).

Т → Ж: таяние льда, плавление металла;

Ж → Г: образование пара при кипении воды; испарение воды;

Т → Г: запах нафталина, испарение сухого льда;

Ж → Т: замерзание воды;

Г → Ж: выпадение росы, образование тумана;

Г → Т: образование на окнах узоров зимой.

В природе – круговорот воды. Испарение воды с , образование тумана, облаков, снега, росы… Чтобы понимать процессы, происходящие в природе и уметь ими управлять, надо знать условия, при которых происходит превращение одного агрегатного состояния вещества в другое.

Подведение к теме урока.

Сегодня на уроке мы более подробно познакомимся с переходами вещества из твердого состояния в жидкое, из жидкого состояния в твердое, т. е. с процессом плавления кристаллических тел и обратным ему процессом – процессом кристаллизации.

Изучение нового материала. (20 мин)
Экспериментальное исследование

Учащиеся определяют проблему, цель, гипотезу исследования.

Проблема исследования: установить, как будет изменяться температура льда при его нагревании и плавлении.

Цель исследования: изучить изменение температуры при различных процессах – нагревании и плавлении льда, построить график зависимости температуры льда от времени.

Предполагаем, что при нагревании льда его температура будет увеличиваться до температуры плавления, при которой лед будет плавиться не изменяя температуры.

Обоснование гипотезы: температура плавления льда равна 0 оС, поэтому лед сначала нагреется до температуры плавления. Так как плавление – это процесс, который проходит при постоянной температуре, то температура льда не будет увеличиваться, до тех пор, пока весь лед не превратиться в воду.

Оборудование:

Калориметр. Дробленый лед. Термометр. Часы.

Ход исследования:

Поместить дробленый лед в калориметр. Измерить температуру льда. Продолжать снимать измерения через определенные равные промежутки времени. Результаты измерений занести в таблицу.

Таблица 1. Экспериментальные данные к исследованию


Промежуток времени, ф, с

Показания термометра t, оС


По данным измерений построить график. Сделать выводы.

Температура льда поднималась, пока не достигла 0 оС, так проходил процесс нагревания, температура льда увеличивалась. Как только температура стала равной 0, лед начал плавиться и в течение долгого времени (пока не растаял лед) не изменялась. А как только весь лед растаял, снова температура стала увеличиваться. Таким образом, можно сказать, что процесс нагревания происходит при увеличении температуры, а процесс плавления происходит при постоянной температуре.

Мы установили, что температура льда сначала повышается, а затем, достигнув отметки 0оС (начинает плавиться лед), остается неизменной до тех пор, пока весь лед не расплавился.

Переход вещества из твердого состояния в жидкое называется плавлением.

Температура, при которой происходит переход твердого вещества в жидкое называется температурой плавления. Температура плавления различных веществ – табличная величина.

Запомнить

Для каждого вещества существует температура, выше которой оно не может находится в твердом состоянии при данных условиях. Процесс плавления требует затрат энергии. Температура вещества при плавлении не изменяется.
Просмотр процесса отвердевания жидкостей по видео.

Процесс перехода вещества из жидкого состояния в твердое называется кристаллизацией.

При плавлении вещество получает энергию. При кристаллизации оно наоборот отдает ее в окружающую среду.

Запомнить:

Для каждого вещества существует температура, при которой вещество переходит из жидкого состояния в твердое (температура кристаллизации). Процесс отвердевания сопровождается выделением энергии. Температура во время кристаллизации остается постоянной.

Выводы: Плавление и кристаллизация – два противоположных процесса. В первом случае вещество поглощает энергию извне, а во втором – отдает в окружающую среду.

ФИЗКУЛЬТМИНУТКА

Рассмотрим график плавления и кристаллизации льда.

Анализ графика плавления и кристаллизации и его объяснение на основе знаний о молекулярном строении вещества. Каждое вещество имеет свою температуру плавления и эта температура определяет области применения твердых тел в быту и технике. Из тугоплавких металлов изготовляют жаропрочные конструкции в самолетах и ракетах, атомных реакторах и .
Удельная теплота плавления и кристаллизации.

Физическая величина, численно равная количеству теплоты, которое поглощает твердое тело массой 1 кг при температуре плавления для перехода в жидкое состояние, называется удельной теплотой плавления.

л – удельная теплота плавления и кристаллизации.

Физическая величина, показывающая, какое количество теплоты необходимо для превращения 1 кг кристаллического вещества, взятого при температуре плавления, в жидкость, называется удельной теплотой плавления.

В СИ – удельную теплоту плавления и кристаллизации измеряют в джоулях на килограмм.

IY. Решение качественных задач. (5 мин)


Температура газовой горелки 5000 С. Посудой из какого материалов можно пользоваться? (Из материалов, температура плавления которых выше 5000 С). Какой металл расплавиться в ладони? (Цезий) Почему лед не сразу тает в комнате, если его занести с мороза? (Лед должен нагреться до температуры плавления, а для этого нужно время). Анализ графика плавления и отвердевания.


Для каких веществ построены графики? Как вы это определили? Ответ: Верхний (красный) график построен для свинца, т. к. свинец плавится при температуре 327єС и участок LM графика как раз соответствует процессу плавления. Нижний (зеленый) график построен для олова, т. к. температура плавления олова 232єС. Для плавления какого вещества потребовалось больше времени? Какое вещество быстрее закристаллизовалось?

Y. Решение задач ТРИЗ (5 мин)


В стакан с водой бросают железный гвоздь, но на дно стакана он не упал? Почему? (Вода в твёрдом состоянии) Изготовление конфет «бутылочки с сиропом». (Сироп замораживают и обливают горячим шоколадом) Как убрать осадок в газированном напитке? (Перевернуть бутылку вверх дном и поставить на лед, осадок с частью отвердевшей жидкости останется на пробке в момент откупоривания бутылки)

YI. Закрепление изученного материала. (5 мин)

ВАРИАНТ № 1

ВАРИАНТ № 2

1. Переход вещества из жидкого состояния в твердое называют

А. Плавлением.

Б. Диффузией.

В. Кристаллизацией.

Г. Нагреванием.

Д. Охлаждением.

2. Чугун плавится при температуре 1200 0С. Что можно сказать о температуре отвердевания чугуна?

А. Может быть любой.

Б. Равна 1200 0С.

В. Выше температуры плавления

Г. Ниже температуры плавления.

3. Можно ли в медном сосуде расплавить ?

Б. Нельзя.

4. Во время полета температура наружной поверхности ракеты повышается до 1500 – 2000 0С. Какие металлы используют для наружной обшивки?

А. Железо.

Б. Платина.

Г. Вольфрам.

5. Какой отрезок графика характеризует процесс нагревания твердого тела?

Т, 0С А. АВ.


1. Переход вещества из твердого состояния в жидкое называют

А. Охлаждением.

Б. Кристаллизацией.

В. Диффузией.

Г. Нагреванием.

Д. Плавлением.

2. Олово отвердевает при температуре 232 0С. Что можно сказать о температуре его плавления?

А. Выше температуры отвердевания

Б. Может быть любой.

В. Равна 232 0С.

Г. Ниже температуры отвердевания

3. Можно ли в цинковом сосуде расплавить свинец?

Б. Нельзя.

4. Из сопла реактивного самолета вылетает газ, температура которого 800–1100 0С. Какие металлы можно использовать для изготовления сопла?

Б. Свинец.

В. Алюминий.

5. Какой отрезок графика характеризует процесс плавления?

Т, 0С А. АВ.


1 вариант

2 вариант

YII. Итог урока. (2 мин) Подведение итогов урока. Выставление оценок за работу.

Домашнее задание: §9, 10, упр.8 (1-3). Творческое задание: найти интересные факты о самой низкой температуре и самой высокой температуре.

Технологическая карта

конструирования урока по физике в

Учитель физики ГУО «СШ № 42 г. »

Тема урока: Плавление и кристаллизация. Удельная теплота плавления и кристаллизации

Тип урока: урок изучения и первичного закрепления новых знаний.

Цель урока: обеспечить углубление и систематизацию знаний учащихся о строении вещества; научить учащихся понимать суть таких тепловых явлений, как плавление и кристаллизация; усвоение понятия «удельная теплота плавления» и формулы для расчёта количества теплоты, необходимого для плавления; формирование умений анализировать энергетические превращения при плавление и кристаллизации вещества.

Задачи урока:

Обучающая: изучить особенности в поведении вещества при переходе из твердого состояния в жидкое и обратно; объяснить график плавления и отвердевания, объяснить процессы плавления и отвердевания на основе о молекулярном строении вещества.

Развивающая: продолжить формирование положительных мотивов учения, развивать самостоятельность при выполнении и наблюдении эксперимента, научить применять полученные знания на практике.

Воспитательная: продолжить формирование мировоззрения на примере тепловых процессов, показать причинно – следственные связи, показать значимость знаний и умений на примере разбора качественных задач.

Демонстрации и оборудование для эксперимента: исследование зависимости температуры плавления льда от времени (калориметр, термометр, часы, дроблёный лёд, спиртовка, штатив), видеофильм о кристаллизации воды, таблица температур плавления некоторых веществ, таблица удельной теплоты плавления некоторых веществ, график плавления и кристаллизации.

Этапы урока

Цели этапа

Деятельность учителя

Деятельность учащихся

Приёмы, методы, оборудование

результат

I. Организа-ционно-мотивационный этап

Создать эмоциональный настрой к совместной .

Демонстрирует доброжелательное отношение к детям. Организует внимание, готовность к уроку.

Приветствуют друг друга улыбками. Слушают, настраиваются на работу.

словесный

Приветствуют друг друга, показывают психологическую готовность к сотрудничеству

II. Этап актуализации знаний

Развивать сообразительность, интерес к предмету

Организует работу учащихся по проверке ранее изученного материала

Отвечают на вопросы

Коллективные, индивидуальные

Проверить усвоение ранее изученного материала

III Сообщение темы и целей урока

Обеспечить

деятельность по определению целей урока

Создает проблемную ситуацию, объясняет учебную задачу,

Отвечают на вопросы, формулируют цель урока

Словесный, наглядный.

Создание проблемной ситуации при определении цели урока.

Презентация

Умение определять цель урока

IV. Работа над темой урока

Выявить понимание и осмысление темы

Формирует умения получать знания самостоятельно через выполнение экспериментального задания.

Выполняют экспериментальное задание, участвуют в беседе

Проблемно-поисковый, наглядный, словесный.

Создание проблемной ситуации для творческого поиска

Восприятие, осмысление и первичное запоминание изучаемого материала

V. Физкультминутка

Снять напряжение, связанное с умственной и физической нагрузкой.

Организует физкультпаузу

Выполняют упражнения

Фронтальная


Снятие напряжения, связанного с умственной и физической нагрузкой.

VI. Решение качественных задач и задач ТРИЗ (10 мин)

Развивать умения и навыки решения физических задач, применения полученных теоретических знаний на практике, в конкретной ситуации

Организует деятельность учащихся при решении задач, обеспечивает контроль за их выполнением

Решают задачи

Индивидуальная и коллективная работа учащихся

Умение применять знания на практике и использовать различные приёмы для решения задач

VII. Закрепление изученного материала (5 мин)

Проверить усвоение материала, выявить пробелы в понимании материала.

Организует самостоятельную работу учащихся.

Выполняют разно уровневые задания, тест

Частично-поисковый,

Индивидуальная, групповая.


Умение использовать знания при самостоятельной работе

VIII. Домашнее задание (1 мин)

Закрепить умение выполнять домашнее задание по алгоритму

Организует коллективное обсуждение домашнего задания

Даёт пояснение к домашнему заданию.

Вникают в суть домашнего задания, осмысливают его.

Словесный,

Понимание домашнего задания

IX. Итог урока, рефлексия (2 мин)

Обобщить знания по теме урока. Оценить достижения учеников.

Определить отношение учеников к уроку, к совместной деятельности

Формирует адекватную оценку по выполнению поставленных задач урока

Стимулирует учеников оценивать свою деятельность на уроке, свои чувства и настроение

Анализирует свою деятельность, показывает своё отношение к уроку, чувства и настроение с помощью символов.

Словесный, аналитический. Самоанализ, самооценка.

Удовлетворение от проделанной работы, эмоциональное завершение урока.

Энергия, которую тело получает или теряет при теплопередаче, называется количеством теплоты. Обозначается буквой Q и измеряется в джоулях (Дж).

Количество теплоты, необходимое для нагревания тела (или выделяемое им при остывании),
зависит от рода вещества, из которого оно состоит, от массы этого тела и от изменения его температуры.

Чтобы подсчитать количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость вещества умножить на массу тела и на разность между большей и меньшей его температурами.

Где с – удельная теплоемкость данного вещества, m – его масса, t 1 -начальная температура тела, t 2 - его конечная температура.

Физическая величина, показывающая, какое количество теплоты требуется для изменения температуры тела из данного вещества массой 1 кг на 1 °С, называется удельной теплоемкость. Измеряется в Дж/(кг·ºС).

Как правило, металлы обладают низкой удельной теплоемкость, поэтому они быстро нагреваются и также быстро остывают.

Переход вещества из твердого состояния в жидкое, называют плавлением. Температуру, при которой вещество плавится, называют температурой плавления вещества. Переход вещества из жидкого состояния в твердое, называют отвердеванием или кристаллизацией. Температуру, при которой вещество отвердевает (кристаллизуется), называют температурой отвердевания или кристаллизации. Вещества отвердевают при той же температуре, при которой плавятся. Температура плавления и кристаллизации зависит от атмосферного давления: чем выше давление, тем выше температура плавления. Поэтому в таблице значения температуры плавления представлены при нормальном атмосферном давлении.

Физическая величина, показывающая, какое количество теплоты необходимо сообщить кристаллическому телу массой 1 кг, чтобы при температуре плавления полностью перевести его в жидкое состояние, называется удельной теплотой плавления. Обозначается буквой λ и измеряется в Дж/кг.

Количество теплоты, необходимое для плавления вещества массы m, взятого при температуре плавления, рассчитывается по формуле: Q=λ·m.

Для расчета количества теплоты в данных процессах значения удельных величин даны в таблицах.

Процесс плавления всегда протекает при поглощении энергии, обратный процесс идет с выделением энергии. При этом, так как в процессе плавления температура остается постоянной, средняя кинетическая энергия хаотического движения молекул не изменяется, меняется потенциальная энергия их взаимодействия.


молекулярного взаимодействия.

В нагреваемом сосуде одновременно присутствует и лед и вода – два агрегатных состояния одного и того же вещества, до тех пор, пока не растает весь лед. Далее, нагревается образовавшаяся вода. Так как удельная теплоемкость воды больше, чем удельная теплоемкость льда, вода нагревается медленнее, угол наклона линии меньше.