Род Сальмонелла – методы обнаружения сальмонелл в патологическом материале и продуктах. Сальмонеллы и брюшные тифы, паратифы Сальмонеллез микробиология

Под собирательным названием «сальмонеллез» объединяют болезни, которые первично вызываются бактериями рода Salmonella и обычно протекают с явлениями септицимии или с подострым, иногда хроническим течением и воспалением желудочно-кишечного тракта, поражением печени, органовдыхания, суставов или абортами у самок.

Сальмонеллез - заболевание сельскохозяйственных животных всех видов, птиц, пушных зверей и дикой фауны. У молодняка в возрасте от 10 дней до 4 мес заболевание протекает остро, в септической форме, сопровождаясь подъемом температуры тела, энтеритом, бронхопневмонией, артритами и параличами. У взрослых животных отмечаются бактерионосительство, аборты, периоды обострения.

У человека токсикоинфекции вызывают сальмонеллы, адаптированные к организму животных и птиц.

С 1980-х гг. различные болезни животных, относящиеся к сальмонеллезам, описывались под разными названиями. В 1885 г. Сальмон выделил в чистой культуре первого возбудителя сальмонеллеза S. chol- егае (прежнее название S. suipestifer), которого долгое время считали возбудителем чумы свиней. Шотмюллер в 1890 г. назвал паратифом заболевание людей, возбудителями которого являются S. paratiphy А и В, так как симптомы болезни сходны с брюшным тифом. Впоследствии массовые болезни животных, вызываемые сходными с S. paratiphy бактериями, также назвали паратифами. Однако это название устарело и заменено. Пфейфер, Мюллер и Биттер установили, что S. paratiphy А и В патогенны только для человека, в то время как виды и разновидности, выделяемые от животных и птиц, вызывают токси- коинфекции у человека.

Сальмонеллы в последнем издании «Краткого определителя бактерий» Берги отнесены к семейству Enterobacteriaceae, трибу Escheri- chiaee, роду Salmonella, семейству Enterobacteriaceae и включают 12 родов: Escherichia, Edwardsiella, Citrobarter, Salmonella, Shigella, Klebsiella, Enterobacter, Hafnia, Serratia, Proteus, Erwinia, Jersinia. Род сальмонелл включает 65 групп (более 2000 сероваров). Международным номенклатурным комитетом род сальмонелл разделен на четыре подрода (табл. 15.1):

1. S. kauffmanni. Включает большую часть патогенных для человека сальмонелл, серологических групп А, В, С, Д, Е.

Таблица 15.1

Биохимическая дифференциация сальмонеллез

Условные обозначения : н--положительная;--отрицательная; Р - разная;

  • (+) - поздняя, но всегда положительная; х - поздняя, но не постоянно положительная
  • 2. S. salamae. Отличается от первого подрода способностью разжижать желатин и ферментировать малонит натрия.
  • 3. S. arizonae. Ферментирует лактозу, обнаруживается у птиц, рептилий, млекопитающих; в последние годы обнаруживается у человека при лихорадочных состояниях с явлениями диареи и гастроэнтерита.
  • 4. S. houtenau. Отнесены атипичные в биохимическом отношении сальмонеллы.

Общие культурно-биохимические признаки представителей рода сальмонелл (за малым исключением) позволяют отличить их от других групп семейства энтеробактерий и сходных с ними групп (Edwardsiella и Citrobacter).

Для биохимической идентификации Citrobacter и четырех подродов сальмонелл в практике используют пять тестов: наличие желатиназы, утилизация лизиата, лактозы, глицерина и декарбоксилирование лизина.

Кауфман подразделил род сальмонелл на четыре подрода в соответствии с их антигенной структурой (табл. 15.2).

Антигенная структура сальмонелл

Группа и вид (серовар)

Антигенная структура

Соматический антиген

Жгутиковый антиген

Специфическая фаза

Неспецифическая фаза

S. paratyphi А

S. typhimurium

S. abortus-equi

S. abortus-ovis

S.paratyphi В

S. abortus-bovis

S. cholerae-suis

S. typhi-suis

S. enteritidis

S. dublin

S. rastoc

S. gallinarum

S. pullorum

Биологические свойства. Бактерии семейства сальмонелл имеют следующие общие свойства: они грамотрицательны, не образуют спор, лишены оксидазы, восстанавливают нитраты в нитриты, ферментируют глюкозу, хорошо растут на обычных средах, факультативные анаэробы.

Морфология. Это мелкие с закрученными концами палочки длиной I -3 и диаметром 0,5-0,8 мкм, как правило, подвижны, кроме S. gal- linarum и S. риllorum. Неподвижные мутанты встречаются среди других видов. Капсул они не образуют. Их колонии имеют диаметр 2-4 мм. На МПА - прозрачные, нежные, голубоватые, на среде Эндо - розовые, прозрачные, на среде Плоскирева - бесцветные, на среде Левина - прозрачные с фиолетовым оттенком, на висмут-сульфитагаре - черные с металлическим блеском, под колонией среда чернеет.

Ферментативные свойства разнообразны не только у одного подрода, они могут варьировать в пределах одного и того же серовара. Сальмонеллы образуют сероводород и не образуют индола, не ферментируют лактозу и салицин, утилизируют цитрат, ферментируют глюкозу и маниит. В новейших научных исследованиях сальмонеллы дифференцируют по 26 биохимическим тестам.

Устойчивость. Длительно сохраняются и обладают высокой устойчивостью эндотоксины сальмонелл. Их токсическое действие не ослабевает в толще мяса при варке больших кусков. При температуре 65-70 °С сальмонеллы выживают длительное время, не погибают в 8-10%-м растворе уксусной кислоты в течение 18 ч. В почве, навозе, помете сальмонеллы сохраняются несколько лет и могут размножаться в отложениях из фекалий в стойлах для свиней, в жидких кормах, воде, почвах, удобренных навозом. Они размножаются во всех пищевых продуктах при достаточной влажности и температуре (7- 45 °С), pH от 4,1 до 9,0. Используемые для дезинфекции 3%-й раствор гидроокиси натрия, хлорная известь, содержащая 2%-й активный хлор, 20%-я взвесь свежегашеной извести, 2%-й раствор формальдегида надежно обеззараживают помещения при экспозиции 1-1,5 ч. Обеззараживание инфицированной сальмонеллами почвы загонов и пастбищ проводят по методу, разработанному С.М. Губкиным (1953).

Токсигенность. Сальмоннеллы обладают эндо- и экзотоксинами. Эндотоксины вызывают геморрагическое воспаление кишечника и являются причиной диареи и других признаков болезни. Экзотоксины относятся к группе нейротоксинов. Действие токсинов сопровождается диспепсией, энтероколитами, поражением центральной нервной системы при этом повышается температура тела, появляется одышка, нарушается координация движений, ослабевают рефлексы. В случаях нарастания интоксикации у животных появляются судороги.

Антигенная структура сальмонелл сложна. Они имеют несколько антигенов: О, Н, VI, М и К. О-антиген термостабилен (выдерживает кипячение в течение 2,5 ч), угнетается формалином, располагается на поверхности клетки и состоит из фосфолипидополисахаридных комплексов. Специфичность О-антигена в серологических реакциях обусловлена присутствием в нем определенных полиозидов, т.е. сахаров дидезоксигексоз, располагающихся на концах полисахаридных цепочек. Серологические варианты сальмонелл по О-антигену обозначают арабскими цифрами.

Одним из компонентов соматического антигена является Уь антиген, принадлежащий к К-антигенам. После открытия Уьантигена (Феликс и Ритт, 1934) его назвали антигеном вирулентности. Но он не служит, как теперь доказано, прямым носителем вирулентности. Его присутствие на поверхности микробной клетки препятствует аг- глютинабельности бактерий в О-сыворотке, что затрудняет дифференциацию сальмонелл. Уьантиген - полимер, он термолабилен.

Уьантиген является лабильным веществом, он исчезает при выращивании микробов в питательных средах при добавлении к ним фенола, а так же при низкой (20 °С) или высокой (40 °С) температурах, полностью разрушается при кипячении и под действием фенола, частично изменяется под воздействием формалина и температуры 60 °С в течение 30 мин.

Жгутиковый Н-антиген неоднороден; он состоит из двух фаз: первой, или специфической фазы, агглютинирующейся специфической видовой сывороткой, и второй, или неспецифической фазы, агглютинирующейся не только видовой, но и групповой сывороткой. Сальмонеллезы, имеющие две фазы Н-антигена, называют двухфазными в отличии от монофазных, имеющих только специфический Н-анти- ген. Н-антиген термолабилен, устойчив к формалину, чувствителен к кислотам и алкоголю, по природе протеин.

Антигенная структура сальмонелл подвержена изменчивости. Их антигенные комплексы подвержены внезапным вариациям при переходе из Б- в Я-форму, а также в результате трансдукции, лизогенной конверсии и конъюгации.

Различают несколько видов диссоциации сальмонелл:

  • 1) Н-О-вариации, т.е. переход от жгутиковой к безжгутиковой форме;
  • 2) И.-, 8-вариации, т.е. переход от гладкой к шероховатой форме. В изотоническом растворе хлористого натрия 11-формы дают нестойкий агглютинат, а Б-формы остаются во взвешенном состоянии.
  • 3) У-У-вариации касаются только Уьантигена. У-форма содержит Уьантиген и является О-неагллютинабельной. У-форма не содержит Уьантигена и считается О-агглютинабельной. Встречаются промежуточные формы.

В практике серологической дифференциации сальмонелл, несмотря на вариабельность их антигенной структуры, во внимание принимается лишь три основных антигена (О, Н, VI).

Характеризуя свойства сальмонелл, нельзя не остановиться на их так называемой генетической пластичности, на связи последней у этих микроорганизмов с множественностью их сероваров и на вопросе о том, в какой мере эта генетическая пластичность может отразиться на возможности их точной идентификации.

Сальмонеллы в последние годы часто избирались в качестве моделей для генетических исследований. Уже упоминалось о естественной вариации антигенных структур бактерий. Известны также вариации, возникшие под влиянием бактериофагов и других факторов. Выше было названо три механизма генетической рекомбинации, встречающиеся у сальмонелл. Явление трансдукции у сальмонелл описано в 1952 г. Циндером и Леденбергом. При этом умеренный бактериофаг РТ22, воздействуя на различные серовары, мог осуществлять трансдукцию Н-антигена и его других свойств. На основании этого авторы не исключают возможности такого рода изменений микроорганизма в естественных условиях.

При лизогенной конверсии гены бактериофага передают функцию как часть бактериальной клетки. Состояние лизогенности, вызванное конвертирующим фагом, ведет к изменению в О-антигенах. При этом вновь приобретенный О-антиген сохраняется до тех пор, пока микроб остается лизогенным.

С помощью конъюгации возникают гибриды с новыми антигенными свойствами. При конъюгации возможна передача плазмид и появление фактора резистентности (Я-фактора) или нового свойства. Проблемой современности является широкое распространение по- лирезистентных к лекарственным веществам форм сальмонелл.

Из вышеизложенного понятны проблемы и сложности идентификации сальмонелл, необходимость систематического определения сероваров выделенных культур, изучения их антибиотикорезистент- ности и ее преодоления.

Для серологической типизации выделяемых штаммов сальмонелл используют рецепторный анализ с применением специфических агглютинирующих сальмонеллезных сывороток как групповых, так и видовых.

Иммунитет носит антиинфекционный и антитоксический характер. Как правило, сначала возникает нестерильный иммунитет, который в дальнейшем может стать стерильным. Иммунитет часто возникает в результате скрытого переболевания. Такой иммунитет называют депрессионным.

В создании иммунитета существенное значение имеет первая доза антигена. Чрезмерная доза вызывает угнетение иммунных сил организма, особенно у молодняка. Малые дозы обычно нейтрализуются организмом и, следовательно, не вызывают выработки иммунитета. Оптимальной иммунизирующей дозой некоторые авторы считают 2 мл микробных тел.

Для формирования стойкого иммунитета необходима определенная степень и продолжительность антигенного воздействия (персистенция живых бактерий в тканях). В связи с этим прививки в ранний постнатальный период не дают желаемого эффекта, как и сочетание иммунизации с применением антибиотикотерапии. Ведущим антигеном в иммуногенезе считается О-антиген. На первых стадиях формирования иммунитета образуются 1 2 М и 1 2 0. Под влиянием живых вакцин, начиная со 2-й недели, происходят образование антител и усиление фагоцитарной реакции, которые к 5-6-й неделе достигают своего максимума.

Патогенез. Длительность инкубационного периода зависит от метода инфицирования, дозы и вирулентности возбудителя и иммунного состояния организма. В естественных условиях продолжительность инкубационного периода у молодняка разных видов животных составляет от 2-5 до 10-25 дней. При алиментарном пути заражения возбудитель быстро проникает в лимфатический аппарат кишечной стенки, а оттуда - в лимфо- и кровообращение. Пейеровы бляшки и солитарные фолликулы увеличиваются, отчетливо выступая под слизистой, образуя возвышения.

В мясопептонный бульон добавляют 3-4% агара, доводят pH до 7,6, разливают в склянки по 100 мл и стерилизуют, как обычно, в автоклаве, сохраняя в таком виде до момента приготовления фуксинсульфитного агара. Готовят фуксинсульфитный агар в день использования. Заготовлять впрок и хранить эту среду нельзя, так как она быстро краснеет.

К 100 мл расплавленного и охлажденного до 70°С 3-4%-ного мясопептонного агара стерильно добавляют 1 г лактозы, предварительно растворив и прокипятив ее в 5 мл стерильной воды. Кроме того, сюда же добавляют 0,5 мл профильтрованного насыщенного спиртового раствора основного фуксина и 2,5 мл свежеприготовленного 10%-ного раствора сернистокислого натра. Сернистокислый натр (Na2SO3) в количестве 0,5 г растворяют в 5 мл воды и перед употреблением стерилизуют кипячением.

Можно поступить и несколько иначе. Фуксин и сульфит натрия сначала смешивают в пробирке: к 0,5 мл раствора фуксина прибавляют при встряхивании раствор сульфита натрия до тех пор, пока жидкость в пробирке не станет бесцветной или слегка розовой. И в расплавленный и несколько охлажденный агар вливают уже эту смесь. Колбу со средой тщательно встряхивают для перемешивания и среду разливают в чашки Петри. После застывания среды ее подсушивают в термостате при 37 °С в течение 30 мин.

В горячем состоянии среда должна быть слабо-розового цвета, а после остывания совершенно бесцветной. Обесцвечивание фуксина в среде Эндо вызывает введенный сернистокислый натр.

Среда Симмонса

При идентификации микробов группы коли (чтобы отличить почвенный вид Escherichia coli aёrogenes от фекального вида Escherichia coli commune) применяется цитратная среда Симмонса. В 1 л дистиллированной воды растворяют 1,5 г фосфорнокислого натра (или однозамещенного фосфорнокислого аммония), 1 г однозамещенного фосфорнокислого калия (КН2РO4), 0,2 г сернокислого магния, 2,5-3 г кристаллического лимоннокислого натрия, устанавливают pH 7,0-7,2, добавляют 2% агара и, расплавив среду, разливают ее в колбы по 100 мл. Стерилизуют в автоклаве 15 мин при 120°С.

Перед употреблением в среду необходимо добавить индикатор. Можно использовать либо бромтимолблау, либо фенолрот. Индикатор добавляют к 100 мл расплавленной среды. Бромтимолблау берут в количестве 1 мл спиртового 1,5%-ного раствора. Среда приобретает оливково-зеленый цвет. Фенолрот добавляется в количестве 2 мл 1,5%-ного спиртового раствора. Среда окрашивается в желтый цвет. После добавления индикатора среду разливают в пробирки и стерилизуют в автоклаве при 120°С в течение 15 мин.

Пестрый ряд углеводов, или среды Гисса

Для определения ферментативной способности микроорганизмов пользуются средами Гисса. В зависимости от наличия в микробной клетке того или иного фермента она способна разлагать какой-либо один из углеводов с образованием определенных продуктов разложения, поэтому в состав среды вводится какой-либо углевод: лактоза, глюкоза, маннит, сахароза и пр. Набор таких сред получил название «пестрого ряда углеводов».

Сначала готовят пептонную воду: на 1 л дистиллированной воды берут 10 г пептона и 5 г химически чистой поваренной соли, кипятят до растворения пептона, фильтруют через бумажный фильтр (фильтрат должен быть совершенно прозрачным) и устанавливают pH 7,2-7,4. Затем к 100 мл пептонной воды добавляют по 0,5 г одного из применяемых углеводов и по 1 мл индикатора Андреде.

В состав индикатора Андреде входит: 0,5 г кислого фуксина, 16 мл 1 н. раствора едкого натра (NaOH) и 100 мл дистиллированной воды. При необходимости индикатор можно готовить заранее и сохранять его в темном месте, предварительно про-кипятив при 100 °С в течение 15 мин. После введения индикатора среды разливают по пробиркам с поплавками и стерилизуют в кипятильнике Коха трижды по 30 мин. По окончании стерилизации поплавки должны быть погружены в среду, в противном случае пробирка не может быть использована. Среды Гисса с реактивом Андреде имеют соломенно-желтый цвет без розового оттенка. При развитии в среде микроорганизмов последние, разлагая сахар с образованием кислоты, вызывают изменение реакции. А так как в кислой среде индикатор Андреде краснеет, то это и является свидетельством, что микроорганизм использует данный сахар для своей жизнедеятельности. Отсутствие покраснения, наоборот, свидетельствует об отсутствии в ферментативном комплексе изучаемого микроба фермента, разлагающего имеющийся в среде углевод.

Ферментативная активность микроорганизмов богата и разнообразна. Она позволяет установить видовую и типовую принадлежность, определить биологические варианты микроба. Существует целый ряд ферментов, по активности которых можно определить степень патогенности микроорганизма.

Для определения ферментативной (биохимической) активности микробов используют дифференциально – диагностические среды.

К дифференциально – диагностическим средам относятся среды Гисса, на которых изучается сахаролитическая активность микрооганизмов.

Среды Гисса могут быть жидкими и плотными. Основу сред Гисса составляют мясо – пептонный бульон (МПБ) и мясо – пептонный агар (МПА). В состав этих сред входит углевод и индикатор. Существуют два ряда сред Гисса – большой (включающий 27 наименований) и малый. Малый ряд сред Гисса включает мальтозу, глюкозу, сахарозу, манит и лактозу. Исходная установка рН среды – слабо щелочная (7,2 – 7,4).

Если при культивировании микробов происходит расщепление субстрата до кислоты, то рН среды изменяется в кислую сторону и при этом происходит изменение цвета индикатора. Изменение цвета питательной среды и является показателем наличия у данного микроба фермента, расщепляющего конкретный субстрат до кислоты. И в жидкой, и в плотной питательной среде о наличии фермента, расщепляющего субстрат до кислоты, судят по изменению цвета индикатора.

Образование газа устанавливают по скоплению пузырьков газа в толще агара и по разрыву агара (если среды Гиса плотные) или по скоплению пузырьков газа в поплавке (если среды жидкие). Поплавок – узкая стеклянная трубочка с запаянным концом, обращенным вверх, которую помещают в пробирку со средой перед стерилизацией среды.

Различие в наборе ферментов, расщепляющих углеводы, может быть использовано при дифференцировке родственных микробов, например, сальмонелл, шигелл, эшерихий. Так, на средах Эндо, Левина, Плоскирева, в состав которых входит лактоза и индикатор (анилиновый краситель), колонии кишечной палочки будут окрашены в фиолетовый цвет (на среде Левина) или в сиреневый (на средах Эндо и Плоскирева). Колонии сальмонелл и шигелл на этих же средах будут бесцветными.

Это обусловлено тем, что кишечная палочка, имея фермент лактазу, расщепляет лактозу, в результате чего образуется кислота, рН среды смещается в кислую сторону и происходит проявление цвета индикатора – анилинового красителя. Особи кишечной палочки хорошо окрашиваются анилиновым красителем, а совокупность окрашенных особей представляет окрашенную колонию.

Шигеллы и сальмонеллы не имеют фермента лактазы и не расщепляют лактозу, рН среды не изменяется, индикатор не проявляется, микробные клетки не окрашиваются. Поэтому колонии сальмонелл и шигелл на средах Эндо и Плоскирева будут бесцветными.

О наличии фермента амилазы можно судить, посеяв культуру на среду, содержащую крахмал. Если есть фермент, расщепляющий крахмал, то при добавлении в пробирку капли раствора Люголя, посинение среды не произойдет. Нерасщепленный крахмал при добавлении раствора Люголя дает синее окрашивание.

Протеолитические свойства (т.е. способность расщеплять белки, полипептиды и пр.) изучают на средах с желатином, молоком, сывороткой, пептоном. При росте на желатиновой среде микробов, ферментирующих желатин, среда разжижается. Характер разжижения, вызываемый разными микробами, различен.

При расщеплении пептоном могут выделяться индол, скатол, сероводород, аммиак. Их образование устанавливают с помощью индикаторов. Например, фильтровальную бумагу заранее пропитывают раствором индикатора, высушивают, нарезают узенькими полосками длиной 5 – 6 см и после посева культуры на МПБ помещают под пробку (между пробкой и стенкой пробирки). После инкубации в термостате учитываю результат. Аммиак вызывает посинение лакмусовой бумажки; при выделении сероводорода на бумажке, пропитанной 20% раствором ацетата свинца и гидрокарбоната натрия, происходит образование сульфата свинца – соли черного цвета, и индикаторная бумажка чернеет. Индол способствует покраснению бумажки, пропитанной раствором щавелевой кислоты.

Гемолитические свойства микробов можно выявить, используя кровяной агар. Если микроб имеет фермент гемолизин, то вокруг колоний этого микроба будут зоны лизиса эритроцитов (в этих зонах агар будет бесцветным).

Фермент лецитиназу выявляют при посеве культуры на желточно – солевой агар. Вокруг колонии микроба, продуцирующего этот фермент, образуется матовый ореол.

Следует помнить о том, что наличие различных ферментов определяет биохимические свойства микробов.

Культуральные и биохимические свойства возбудителей пищевых токсикоинфекции

Ферментный состав любого микроорганизма является достаточно постоянным признаком в нормальных условиях, т.е. различные виды микроорганизмов различаются по набору ферментов.

Изучение ферментного состава имеет важное значение для дифференцировки и идентификации различных микроорганизмов.

Специальные методы окраски бактерий. Наибольшее распространение нашли методы Грама и Циля-Нильсена.

Дифференцирующие методы обычно применяют для окрашивания различных морфологических структур.

Капсулы. Для окраски капсул бактерий применяют методы Хисса, Лейфсона и Антони; последний метод наиболее прост и включает окраску кристаллическим фиолетовым с последующей обработкой 20% водным раствором CuSO4.

Жгутики. Для окраски жгутиков предложены методы Лёффлера, Бейли, Грея и др. Для этих методов характерны первоначальное протравливание препарата и последующая окраска (чаще карболовый фуксин Циля).

Споры. Окраску спор бактерий проводят после предварительной обработки их стенок. Наиболее прост метод Пешкова, включающий кипячение мазка с синькой Лёффлера на предметном стекле с последующей докраской нейтральным красным. Споры окрашиваются в синий цвет, вегетативные клетки - в розовый.

Методы культивирования

При выращивании бактерий применяют стационарный способ, способ глубинного культивирования с аэрацией и метод проточных питательных сред. В соответствии со способами выращивания бактериальные культуры разделяют на периодические (при стационарном и глубинном культивировании) и непрерывные (при проточном культивировании).

Стационарный способ - наиболее часто используемый на практике. Состав сред остаётся постоянным, с ними не проводят никаких дополнительных манипуляций.

Способ глубинного культивирования применяют при промышленном выращивании бактериальной биомассы, для чего используют специальные котлы-реакторы. Они снабжены системами поддержания температуры, подачи в бульон различных питательных веществ, перемешивания биомассы и постоянной подачи кислорода. Создание аэробных условий по всей толще среды способствует протеканию энергетических процессов по аэробному пути, что способствует максимальной утилизации энергетического потенциала глюкозы и, следовательно, максимальному выходу биомассы.

Метод проточных сред (промышленный способ культивирования) позволяет постоянно поддерживать бактериальную культуру в экспоненциальной фазе роста, что достигают постоянным внесением питательных веществ и удалением определённого числа бактериальных клеток. Пребывание бактерий в экспоненциальной стадии роста обеспечивает максимальный выход различных БАВ (витамины, антибиотики и др.).

Первичная идентификация бактерий

В большинстве случаев изучение особенностей роста для первичной идентификации возбудителей проводят на колониях, выросших в течение 18-24 ч. Характер роста бактерий на различных средах может дать много полезной информации. На практике используют сравнительно небольшой набор критериев. В жидких средах обычно учитывают характер поверхностного (образование плёнки) или придонного роста (вид осадка) и общее помутнение среды. На твёрдых средах бактерии формируют колонии - изолированные структуры, образующиеся в ре зультате роста и накопления бактерий. Колонии возникают как следствие роста и размножения одной или нескольких клеток. Таким образом, пересев из колонии в дальнейшем даёт возможность оперировать с чистой культурой возбудителя. Рост бактерий на плотных средах имеет больше характерных особенностей.

Некоторые бактерии выделяют гемолизины - вещества, разрушающие эритроциты. На КА их колонии окружают зоны просветления. Образование гемолизинов (и соответственно - размеры зон гемолиза) может быть вариабельным, и для адекватного определения гемолитической активности следует просматривать чашки с посевами против источника света (рис. 1-14). Активность гемолизинов может проявляться в полном или неполном разрушении эритроцитов.

α-Гемолиз. Разрушение эритроцитов может быть неполным, с сохранением клеточной стромы. Подобный феномен называют α-гемолиз. Просветление среды вокруг колоний обычно незначительно, позднее среда вокруг колоний может приобретать зеленоватую окраску.

В бактериологической практике чаще всего изучают сахаролитические и протеолитические ферменты

Подобный рост характерен для пневмококка, а также для группы так называемых зеленящих стрептококков.

β-Гемолиз. Гораздо большая группа бактерий вызывает полное разрушение эритроцитов, или β-гемолиз. Их колонии окружены прозрачными зонами различного размера. Например, Streptococcus pyogenes и Staphylococcus aureus образуют большие зоны гемолиза, a Listeria monocytogenes или Streptococcus agalactiae - небольшие, диффузные зоны. Для определения гемолитической активности не следует применять шоколадный агар (ША), так как образующиеся зоны α- или β-гемолиза не имеют характерных особенностей и вызывают одинаковое позеленение среды.

Размеры и форма колоний

Важные признаки колоний - их размеры и форма. Колонии могут быть большими или мелкими. Величина колоний - признак, позволяющий различать различные виды, роды и даже типы бактерий.

В большинстве случаев колонии грамположительных бактерий мельче колоний грамотрицательных бактерий. Колонии бактерий могут быть плоскими, приподнятыми, выпуклыми, иметь вдавленный или приподнятый центр. Другой важный признак - форма краёв колоний. При изучении формы колоний учитывают характер её поверхности: матовый, блестящий, гладкий или шероховатый. Края колоний могут быть ровными, волнистыми, дольчатыми (глубоко изрезанными), зубчатыми, эрозированными, бахромчатыми и т.д. Размеры и формы колоний часто могут изменяться. Подобные изменения известны как диссоциации. Наиболее часто обнаруживают S — и R — duc социации. S-колонии круглые, гладкие и выпуклые, с ровными краями и блестящей поверхностью. R-колонии - неправильной формы, шероховатые, с зубчатыми краями.

Цвет колоний

При просмотре посевов также обращают внимание на цвет колоний. Чаще они бесцветные, белые, голубоватые, жёлтые или бежевые; реже - красные, фиолетовые, зелёные или чёрные. Иногда колонии ирризируют, то есть переливаются всеми цветами радуги. Окрашивание возникает в результате способности бактерий к пигментообразованию. На специальных дифференцирующих средах, включающих специальные ингредиенты или красители, колонии могут приобретать разнообразную окраску (чёрную, синюю и др.) за счёт включения красителей либо их восстановления из бесцветной формы. В данном случае их окраска не связана с образованием каких-либо пигментов.

Консистенция колоний и особенности роста на среде

Полезную информацию могут дать консистенция колоний и особенности роста на среде. Обычно эту информацию можно получить при прикосновении к колониям петлёй. Колонии могут легко сниматься со среды, врастать в неё или вызывать её коррозию (образуя трещины и неровности). Консистенция колоний может быть твёрдой или мягкой.Мягкие колонии - маслянистые или сливкообразные; могут быть слизистыми (прилипают к петле) или низкими (тянущимися за петлёй).

Твёрдые колонии - сухие, восковидные, волокнистые или крошковатые; могут быть хрупкими и ломаться при прикосновении петлёй.

Запах - менее важный признак колоний, поскольку вызываемые им ассоциации носят субъективный характер. В частности, культуры синегнойной палочки имеют запах карамели, культуры листерий - молочной сыворотки, протеев - гнилостный запах, нокардий - свежевскопанной земли.

Биохимические методы идентификации бактерий

Методов, используемых для идентификации особенностей метаболизма бактерий, очень много, но на практике применяют небольшое их количество. Большинство способов основано на использовании дифференциально-диагностических сред, включающих различные индикаторы.

Способность к ферментации углеводов

Способность к ферментации углеводов оценивают по изменению окраски среды вследствие образования органических кислот (соответственно, происходит уменьшение рН), вызывающих изменение окраски индикатора.

«Пёстрый» ряд. Для определения сахаролитической активности применяют среды Хисса; в их состав входят 1% пептонная вода (или МПБ), индикатор Андраде и один из углеводов. При расщеплении углевода происходит изменение цвета среды с жёлтого на красный. Поскольку бактерии различают по способности ферментировать те или иные углеводы, то ряды пробирок приобретают пёстрый вид. Поэтому этот набор сред и называют «пёстрый» (или цветной) ряд.

Стеклянные поплавки. Для определения способности микроорганизмов ферментировать углеводы с образованием кислоты и газа в сосуды со средами вносят стеклянные поплавки (запаянные с одного конца короткие трубочки), всплывающие после наполнения их газом.

Расщепление белков

Некоторые бактерии проявляют протеолитическую активность, выделяя протеазы, катализирующие расщепление белков. Наличие протеолитических ферментов из группы коллагеназ определяют при посеве уколом в МПЖ. При положительном результате наблюдают его разжижение в виде воронки либо послойно сверху вниз. Способность к расщеплению белков и аминокислот также можно оценивать по изменению окраски среды, так как образующиеся продукты - аммиак, индол и сероводород - сдвигают рН в щелочную сторону, вызывая изменение окраски индикатора.

Образование аммиака. Для определения способности к образованию NH3 проводят посев в МПБ, и между его поверхностью и пробкой закрепляют полоску лакмусовой бумаги. При положительном результате бумажка синеет.

Образование индола и H2S. Обычно для определения способности к образованию индола и сероводорода также проводят посев в МПБ, между его поверхностью и пробкой закрепляют бумажки: в первом случае пропитанные раствором щавелевой кислоты (при образовании индола бумажка краснеет),во втором - раствором ацетата свинца (при образовании H 2 S бумажка чернеет).Также используют специальные среды, содержащие индикаторы (например, среда Клиглера), либо их вносят непосредственно в среду после регистрации видимого роста бактерий.

Тест на нитратредуктазную активность

Этот тест используют для идентификации отдельных видов бактерий. Он позволяет определить способность восстанавливать нитраты в нитриты. Способность к восстановлению NO3 в N02, определяют культивированием в МПБ, содержащем 1% раствор KNO3. Для определения нитритов в среду добавляют несколько капель реактива Грисса. При положительном результате наблюдают появление красного кольца.

Хроматография

Хроматографические методы используют для идентификации бактерий и установления их систематического положения. Объекты для исследования - жирные кислоты клеточной стенки, уникальные интермедиаты и конечные метаболиты жизнедеятельности бактерий. Хроматографические системы обычно сопрягают с компьютерами, что значительно упрощает учёт результатов. Наиболее распространена идентификация жирных короткоцепочечных и тейхоевых кислот методом газожидкостной хроматографии. Жидкостной хроматографией под высоким давлением идентифицируют миколевую кислоту в клеточных стенках микобактерий. Тонкослойную хроматографию используют для идентификации изопреноидных хинонов клеточной стенки бактерий. У различных родов их содержание и набор различны, но постоянны, что позволяет установить систематическое положение каждого конкретного вида.

Индикаторные бумажки

Для изучения биохимической активности бактерий широко применяют системы индикаторных бумажек или наборы мультимикротестов.

Система индикаторных бумажек (СИБ) - набор дисков, пропитанных различными субстратами. Их можно непосредственно вносить в пробирки со взвесью бактерий либо предварительно поместить в лунки пластиковых планшетов, куда будут внесены исследуемые бактерии. Так, на практике применяют наборы Minitek Enterobacteriaceaelll и Minitek Neisseria для дифференциальной диагностики энтеробактерий (четырнадцать субстратов) и нейссерий (четыре субстрата), позволяющие получить результаты через 4 ч инкубации при 37 °С.

Наборы мультимикротестов - пластиковые планшеты, в лунки которых помещены различные субстраты и индикаторы. В лунки вносят различные разведения бактерий и инкубируют при 37 °С. На практике используют тесты RapID NH для идентификации нейссерий и гемофилов, RapID Е для энтеробактерий и др., позволяющие получить результаты не позднее 4-8 ч.

Автоматические системы идентификации бактерий

Автоматические системы идентификации бактерий позволяют быстро (на 24-48 ч быстрее обычных методов) получить информацию о виде возбудителя заболевания и его чувствительности к антимикробным препаратам. В настоящее время наибольшее распространение получили системы типа Microscan и Vitek.

Системы Microscan. Используют турбидиметрические, колориметрические и флюоресцентные методы идентификации бактерий. Системы состоят из комплектов пластиковых планшетов, содержащих различные субстраты. Грамположительные и грамотрицательные бактерии дифференцируют с помощью флюоресцирующих субстратов (время анализа - 2 ч). Для идентификации гемофилов, анаэробов и дрожжей используют хромогенные субстраты, изменяющие свою окраску (время анализа - 4-6 ч). Минимальные ингибирующие концентрации различных антибиотиков определяют по изменению оптической плотности. Система компьютеризирована и автоматически проводит все необходимые расчёты.
Системы Vitek. В этой системе применяют один тип планшетов с тридцатью лунками. В каждую лунку автоматически вносится суспензия бактерий с известной концентрацией микробных тел. Идентификация микроорганизмов (гемофилы, нейссерии, дрожжи и анаэробы) основана на турбидометрии реакционной среды в лунке. В зависимости от свойств микроорганизма время, необходимое для его идентификации, варьирует от 4-8 до 18 ч. Система полностью компьютеризирована и работает автоматически.

Методы идентификации нуклеиновых кислот

Методы выявления РНК и ДНК возбудителей нашли применение в основном при диагностике вирусных инфекций. Тем не менее разработаны тест-системы для идентификации некоторых прихотливых бактерий (например, легионелл, хламидий), а также для идентификации колоний Neisseha gonorrhoeae, Haemophilus influenzae типа b, стрептококков группы В, энтерококков и микобактерий.

Гибридизация нуклеиновых кислот

Наиболее распространены методы гибридизации нуклеиновых кислот. Принцип методов обусловлен способностью ДНК (и РНК) специфически соединяться (гибридизироваться) с комплементарными фрагментами искусственно созданных нитей ДНК (и РНК), меченных изотопами или ферментами (пероксидазой или щелочной фосфатазой). В дальнейшем образцы исследуют различными методами (например, ИФА).

Метод гибридизации в растворах даёт наиболее быстрые результаты. Широкому внедрению метода препятствует проблема удаления не связавшихся нитей нуклеиновых кислот.

Метод гибридизации на твёрдой основе и его сэндвич- модификация распространён больше. В качестве твёрдой основы служат мембраны из нитроцеллюлозы или нейлона. Не связавшиеся реагенты удаляют многократным отмыванием.

Биохимическая идентификация бактерий с помощью тест-систем

Другие варианты подобных тест-систем предусматривают адсорбцию дифференцирующих субстратов на бумажных или полимерных носителях. Среди них распространены системы Auxtab, Minitek, Morlok, MICRO-ID.

Подобные системы удобны в пользовании, они позволяют одновременно исследовать широкий спектр микробных признаков, всегда готовые к использованию в любых микробиологических лабораториях, они простые и надежные, требуют небольших объемов посевного материала, потому экономят лабораторную посуду, пипетки. Компьютерная обработка полученных результатов дает возможность быстро определить и оценить вид неизвестного возбудителя.

Изготовление питательных сред. В состав любых сред входят преимущественно натуральные животные или растительные продукты и компоненты – мясо, рыбная мука, яйца, молоко, кровь, дрожжевой экстракт, картофель и тому подобное. Из них готовят специальные полуфабрикаты в виде экстрактов, настоев, ферментативних и кислотных гидролизатів (мясная вода, дрожжевой экстракт, триптичнийгидролизатХоттингера, пептон и другие), которые являются основой для последующего конструирования питательных сред. Кроме этого, в питательные среды добавляют разные неорганические соли в зависимости от потребностей микробной клетки. Как правило, концентрация хлорида натрия составляет 5,0 г/л, KH2PO4 – 0,2-0,5 г/л, MgSO4·7H2O, другие соли добавляются из расчета 0,001 г/л. В необходимых случаях к составу вводят углеводы (сахара, многоатомные спирты), аминокислоты в концентрации 0,5-1,0 %, а также витамины (до 0,001 мг/мл).

Для обеспечения необходимой плотности среды используют агар-агар, который получают из морских водорослей. Он является удобным и необходимым компонентом сред, поскольку не потребляется бактериями как ростовой субстрат. Образовывая в воде гель, он плавится при температуре возле 100 °С, а густеет при 40 °С. Источником желатина являются богатые на коллаген субстраты. Среди них хрящи, сухожилия, кости и тому подобное. Гель, который получают в результате использования желатина, плавится при температуре возле 32-34 °С и застывает при 28 °С. Однако многочисленные микроорганизмы способны расщеплять желатин, потому использование последнего как наполнителя среды считается нецелесообразным. Чаще всего такие среды с желатином применяются для определения протеолитических свойств бактерий.

Изготовление питательных сред является сложным динамическим процессом, который нуждается во внимании бактериолога. Этот процесс состоит из нескольких основных этапов. Сначала к дистиллированной воде согласно с прописью добавляют необходимые сухие компоненты среды, тщательным образом перемешивают, растворяя при нагревании. Обязательно устанавливают рН среды, которую определяют или с помощью іонометра, или индикаторными бумажками. При этом следует обратить внимание, что после стерилизации реакция среды падает на 0,2. Среды, которые содержат агар, фильтруют через ватно-марлевый фильтр в горячем состоянии, жидкие среды – через бумажные фильтры. Если есть необходимость, их освітляють осаждением или с помощью белка куриного яйца или сыворотки. Среды разливают в специальные матрасы, колбы, флаконы и закрывают ватно-марлевыми пробками с бумажными колпачками. В зависимости от состава среды используют разные режимы стерилизации. Да, среды, которые содержат углеводы, желатин стерилизуют в автоклаве 15 мин при температуре 112 °С или текучей парой при температуре 100 °С дробно. Среды без углеводов можно стерилизовать в автоклаве при 115-120 °С в течение 20 мин. Если в состав сред входят неустойчивые к температуре компоненты, такие, как нативний белок, сыворотка, мочевина, то они стерилизуются или фильтрованием через бактериальные фильтры, или их добавляют готовым в стерильную среду. Контроль стерильности сред осуществляют путем витримування их в термостате в течение нескольких суток при температуре 37 °С.

Приводим примеры изготовления некоторых простых питательных сред, которые чаще всего используются в микробиологической практике и могут быть основой для изготовления более сложных.

Мясная вода . Для ее изготовления используют свежую говядину, которую предварительно очищают от жира, фасций, сухожилий и тому подобное, разрезают на мелкие куски и пропускают через мясорубку. Полученный фарш заливают водопроводной водой в соотношении 1:2, размешивают и на сутки оставляют в прохладном месте. Полученный настой кипятят в течение 30-60 мин, периодически снимая накипь, а затем отстаивают. Отделяют жидкость от фарша, фильтруют через фильтровальную бумагу или полотно и доливают водопроводной водой к первичному объему, потом разливают в флаконы и стерилизуют при 1 атмосфере (температура 120 °С) в течение 30 мин. Стерильная мясная вода прозрачна, имеет желтоватый цвет, а на стенках флакона и на дне образуется осадок из белков, которые свертывались. Потому при последующем использовании среды его опять фильтруют. Активная реакция среды – 6,2.

Мясо-пептонныйбульйон (МПБ). Чтобы изготовить МПБ, к мясной воде добавляют 1 % пептону и 0,5 % хлориду натрия, устанавливают необходимое рН с помощью 20 % раствору NAOH и кипятят 30-40 мин, постоянно перемешивая. Бульйон фильтруют через бумажный или полотняный фильтры, разливают в флаконы, пробирки, проверяют активную реакцию среды и стерилизуют при 120 °С в течение 20 мин.

М’ясо-пептоннийагар (МПА). К мясо-пептонного бульйону добавляют мелко нарезанный агар-агар (2-2,5 %). Полученную смесь кипятят к растворению агар-агара, фильтруют, устанавливают рН и разливают в флаконы. Стерилизацию проводят в течение 20 мин при температуре 120 °С.

Среды с кровью, сывороткой или асцитическойжидкостью. Поскольку эти среды не могут долго сохраняться, их готовят непосредственно перед применением. Для этого к растопленному и охлажденному до 45-50 °С МПА додают стерильно 5-10 % свежей или дефибринированной крови барана, кролика или другого животного. Флаконы с агаром тщательным образом перемешивают и разливают в чашки Петри, следя за отсутствия пены.

Идентично готовят сывороточный (5-10 % сыворотки крови) или асцитичныйагар (25 % асцитичной жидкости).

Триптичнийперевар за Хоттингером. Бульйон из него более экономический чем другие мясо-пептонные среды, поскольку позволяет из одной порции мяса получить в несколько раз больше бульйона. В этой среде содержится большое количество аминокислот, следовательно, повышается его буферність, и за счет этого стабильнее является значение активной реакции среды.

Для изготовления перевара берут один килограмм мяса без сухожилий и жира, порезанный на мелкие куски размером до 1-2 см, окунают в кастрюлю с двойным объемом воды, которая кипит, и кипятят 15-20 мин, пока мясо не станет серым, что свидетельствует о коагуляции белков. Его вынимают из жидкости и пропускают через мясорубку. В жидкости, которая осталась, устанавливают рН 8,0, опускают туда фарш и охлаждают до 40 °С. Потом добавляют 10 % (к объему жидкости) свежей поджелудочной железы, предварительно очищенной от соединительной ткани, жиру и дважды пропускают через мясорубку. Вместо железы используют сухой препарат панкреатина (0,5 %). Полученную смесь тщательным образом взбалтывают и доводят рН до 7,8-8,0. Через 30 мин проверяют рН. Если активная реакция среды не изменяется в кислую сторону, это свидетельствует о недоброкачественности фермента. Когда рН среды стабилизируется, смесь переливают в большие бутыли, заполняя их на 1/3. Добавляют до 3 % хлороформу, закрывают посуду резиновими пробками и интенсивно взбалтывают для перемешивания жидкостей. Избыток паров хлороформа выпускают. Через 1-2 год опять проверяют рН среды, устанавливая его на 7,4-7,6.

Добавить материал

Полученную смесь оставляют при комнатной температуре сроком до 16 дней. В течение первых 3-4 дней ежедневно проверяют и корректируют рН среды, а также взбалтывают флаконы не меньше, чем 3 разы в сутки. Позже эту процедуру можно не проводить и взбалтывать среду следует не так часто. За 1‑2 дня до окончания цикла переваривания взбалтывания среды прекращают.

О завершенном качественном переваривании свидетельствуют просветления жидкости, которая приобретает соломенно-желтый цвет, а также образование на дне пылевидного осадка. Жидкость легко фильтруется, ее проверяют на наличие триптофана с помощью пробы с бромной водой (до 3-4 мл фильтрата добавляют 3-4 капли бромной воды). При наличии триптофана (до 2,0-3,0 г/л) цвет среды изменяется на розово-фиолетовый. Определяют общий азот, который в норме достигает 11,0-12,0 г/л, и аминный азот (до 7,0-9,0 г/л).

Гидролизат фильтруют через бумажный или полотняный фильтр, разливают в бутыли и автоклавують при 120 °С в течение 30 мин. В таком виде он может сохраняться длительное время.

Его используют для получения бульйонаХоттингера. С этой целью до 100-200 мл гидролизат у добавляют 800-900 мл дистиллированной воды, 0,5 % хлориду натрия и 0,2 % однозамещенного фосфорнокислого натрия. Доводят рН до 7,4‑7,6, разливают в флаконы и стерилизуют 20 мин при 120 °С.

Мясо-пептоннийагар на основе гидролизат уХоттингера готовят за рецептурой обычного МПА.

Сегодня, как правило, бактериологи пытаются пользоваться стандартными сухими питательными средами, которые выпускает бактериологическая промышленность. Такие среды позволяют существенно улучшить результаты микробиологических исследований и стандартизировать их.

Для культивирования бактерий широко применяют безбелковые среды, в которых хорошо растут много органотрофних, в том числе патогенных видов бактерий. В эти среды входят много компонентов.

Культивирование в синтетических средах с использованием метода меченых атомов дает возможность детальнее дифференцировать бактерии за характером их биосинтеза.

Для дифференциации прототрофних и ауксотрофних бактерий широко используют селективные среды .

Прототрофы растут на минимальной среде, которая содержит только соли и углеводы, поскольку они сами могут синтезировать нужные им для развития метаболиты, тогда как ауксотрофы нуждаются в среде, которая содержит определенные аминокислоты, витамины и другие вещества.

На густых питательных средах бактерии образуют разные по форме и величине колонии - видимые скопления микроорганизмов одного вида, которые формируются в результате размножения из одной или нескольких клеток. Колонии бывают плоскими, выпуклыми, куполообразными, вдавленными, их поверхность - гладкой (S-фор-ми), шершавой (R-формы), исчерченной, бугорчатой, края - ровными, зазубренными, волокнистыми, бахромчатыми. Форма колоний также разнообразна: круглая, розеткообразная, звездчатая, деревовидная. По величине (диаметру) колонии разделяются на большие (4- 5 мм, средние (2-4 мм), мелкие (1-2 мм) и карликовые (меньше 1 мм).

К этому роду семейства энтеробактерий относится более 2000 различных бактерий, вызывающих заболевания человека и животных. Эти заболевания называют сальмонеллезами. Сальмонеллы сходны по морфологическим, культуральным и ферментативным свойствам, но отличаются по антигенной структуре.

Сальмонеллы делят на монопатогенные и полипатогенные. К первым относятся возбудители брюшного тифа, паратифа А и паратифа В. Этими заболеваниями болеет только человек. Ко второй группе относятся возбудители заболеваний, поражающие человека и животных.

S. typhi впервые были обнаружены Эбертом (1880) в органах человека, погибшего от брюшного тифа. Ашар и Бансод (1886) при заболеваниях, сходных с брюшным тифом, выделили из гноя и мочи больных бактерии, отличающиеся по биохимическим и серологическим свойствам от возбудителей брюшного тифа. Их назвали S. paratyphi А и S. paratyphi В. Почти одновременно американский ученый Д. Сальмон (1885) впервые описал возбудителей холеры свиней (S.choleraesuis). В дальнейшем было описано множество сходных бактерий, объединенных в род Сальмонелла, названного по имени ученого, их описавшего.

Морфология . Все сальмонеллы мелкие, 1,0-3,0 × 0,6-0,8 мкм палочки с закругленными концами. Грамотрицательны. Подвижны, перитрихи. Спор и капсул не образуют.

Культивирование . Сальмонеллы - факультативные анаэробы. Они не требовательны к питательным средам. Хорошо растут на МПА и МПБ при 37° С (от 20 до 40° С) и рН среды 7,2-7,4 (от 5,0 до 8,0). На МПА образуют нежные, полупрозрачные, слегка выпуклые, блестящие колонии, в МПБ - равномерное помутнение.

При первичном посеве материала от больных (кал, моча, рвотные массы, кровь, желчь) часто отмечают медленный рост сальмонелл. Для их накопления производят посев на среды обогащения: селенитовый бульон, среду Мюллера, среду Кауфмана. Используют также элективные (избирательные) среды: желчь (10-20%) и среду Раппопорт.

На дифференциально-диагностических средах Эндо, ЭМС, Плоскирева сальмонеллы растут в виде бесцветных колоний, так как не расщепляют лактозу, входящую в состав среды. На висмут-сульфитном агаре через 48 ч они образуют колонии черного цвета, оставляющие след после того, как их снимают петлей (кроме сальмонелл паратифа А).

У свежевыделенных культур S. paratyphi В после инкубации в термостате в течение 18-20 ч и выдерживания при комнатной температуре в течение 1-2 сут на периферии колонии образуется слизистый вал.

Ферментативные свойства . Сальмонеллы расщепляют глюкозу, маннит, мальтозу с образованием кислоты и газа. Исключением являются возбудители брюшного тифа (S. typhi), которые расщепляют эти сахара только до кислоты. Сальмонеллы не ферментируют лактозу и сахарозу. Протеолитические свойства: большинство сальмонелл расщепляет белковые среды с образованием сероводорода (возбудители паратифа А отличаются отсутствием этого свойства). Индол не образуют. Желатин не разжижают.

Токсигенность . Сальмонеллы содержат эндотоксин - липополисахариднопротеиновый комплекс.

Антигенная структура и классификация . Еще в начале XX века ученые заметили различную природу антигенов сальмонелл. Кауфман (1934) на основании результатов реакции агглютинации разных сальмонелл с набором сывороток разделил все сальмонеллы на группы и типы и предложил диагностическую схему их антигенной структуры. В соответствии с этой схемой в настоящее время производят идентификацию сальмонелл.

Сальмонеллы содержат два антигенных комплекса: О и Н,О-антиген - липополисахариднопротеиновый комплекс; он термостабилен, инактивируется под действием формалина. Н-антиген связан со жгутиками, имеет белковую природу; он термолабилен, инактивируется под действием спирта и фенола, но устойчив к воздействию формалина.

Все сальмонеллы разделены на О-группы, каждая из которых характеризуется наличием определенных О-антигенов: основного, обозначенного арабской цифрой (2, 4, 7, 8, 9 и т. д.), и дополнительных, общих для нескольких О-групп (1, 12). В настоящее время известно более 60 О-групп, обозначаемых прописными буквами латинского алфавита (А, В, С, D, Е и т. д.).

S. typhi содержит, кроме того, Vi-антиген, который расположен в микробной клетке более поверхностно, чем О-антиген, и препятствует агглютинации культуры с О-сывороткой. Этот антиген термолабилен. Его присутствие связывали с вирулентностью возбудителя. Vi-антиген содержится также в клетках S. paratyphi С.

Н-антигены сальмонелл имеют две фазы. Сальмонеллы различных серовариантов одной О-группы имеют различную первую фазу Н-антигена, которую обозначают строчными буквами латинского алфавита: а, b, с, d, eh ... u, z и т. д. Вторую фазу Н-антигена обычно обозначают арабскими цифрами: 1, 2, 5, 6, 7 и строчными латинскими буквами. Сочетание различных О- и Н-антигенов определяет антигенную структуру культур и их название.

В практической работе для определения антигенной структуры сальмонелл используют адсорбированные монорецепторные агглютинирующие сыворотки, которые содержат антитела к одному антигену. Ставят реакцию агглютинации на стекле и по наличию агглютинации с определенными сыворотками характеризуют антигенную структуру выделенной культуры. Например, культура агглютинируется О-сыворотками "9" и "12" и Н-сывороткой "d"; находят в схеме серовар с таким антигенным составом (S. typhi), ставят дополнительно реакцию с Vi-сывороткой

Имеются наборы специфических сальмонеллезных фагов, которые лизируют только сальмонеллы соответствующего фаговара. Для определения фаговара культур S. typhi, содержащих Vi-антиген, в нашей стране выпускают 45 фагов; для S. paratyphi В-11 фагов; S. paratyphi А - 6 и т. д. Эти исследования проводят для определения источника и путей передачи инфекции.

Устойчивость к факторам окружающей среды. Сальмонеллы довольно устойчивы. При температуре 100° С погибают мгновенно, при 60-70° С - за 10-15 мин. Они хорошо переносят низкую температуру, могут сохраняться в чистой воде и льду в течение нескольких месяцев; в копченом и соленом мясе - до 2 мес. Устойчивы к высыханию, длительно сохраняются в пыли.

Под действием дезинфицирующих веществ погибают в течение нескольких минут (2-5% раствор фенола, 1:1000 раствор сулемы, 3-10% раствор хлорамина).

Восприимчивость животных . Большинство сальмонелл вызывает заболевания человека и многих видов животных и птиц (полипатогенные).

Брюшной тиф, паратифы А и В

Источник инфекции . Больной человек и бактерионоситель.

Пути передачи . Возбудители инфекции передаются через предметы, загрязненные выделениями человека, через руки, воду, пищу. Часто возбудителей переносят мухи. В зависимости от путей передачи различают бытовые, водные, пищевые вспышки брюшного тифа и паратифов.

Патогенез . Заражение происходит через рот. Из ротовой полости микроорганизмы попадают в желудок, где частично разрушаются под воздействием желудочного сока и ферментов. Оставшиеся сальмонеллы поступают в тонкий кишечник, проникают в лимфоидную ткань тонкого кишечника (групповые лимфатические и солитарные фолликулы), в которой размножаются в течение инкубационного периода (10-14 дней). К концу этого срока возбудители поступают в лимфу и кровь (бактериемия) и разносятся по всему организму. В этот период они локализуются в лимфоидной ткани внутренних органов, системе макрофагов, печени, селезенке, костном мозге. Сальмонеллы накапливаются в желчном пузыре, где находят благоприятные условия для размножения, так как желчь - хорошая питательная среда для этих бактерий. При этом они вторично попадают в тонкий кишечник и, поражая уже сенсибилизированную лимфоидную ткань (групповые лимфатические и солитарные фолликулы), вызывают образование специфических брюшнотифозных язв (рис. 42).

В период бактериемии часть микроорганизмов разрушается, при этом освобождается эндотоксин и возникают явления интоксикации: повышается температура, появляется общее недомогание, слабость, головная боль и т. д. С конца 2-й и начала 3-й недели сальмонеллы начинают выделяться из организма с калом, мочой, слюной и т. п.

Период реконвалесценции (выздоровления) характеризуется очищением организма от возбудителя, усилением фагоцитарной активности клеток, накоплением антител в крови.

Однако при брюшном тифе и паратифах бактериовыделение часто не заканчивается с выздоровлением больного - формируется бактерионосительство. Хронические воспалительные явления в желчном пузыре способствуют переживанию сальмонелл в желчи и их длительному выделению из организма (иногда до нескольких лет).

Иммунитет . Постинфекционный иммунитет достаточно напряженный и длительный. Повторные заболевания наблюдаются редко. В течение болезни вырабатываются антитела: в концу 1-й недели появляются агглютинины, преципитины и другие виды антител. Количество их нарастает, достигая максимума на 14-15-й день болезни. Антитела сохраняются в сыворотке крови переболевшего Длительное время.

Активность фагоцитов и другие клеточные факторы защиты также имеют значение при формировании иммунного состояния организма.

Профилактика . Соблюдение личной гигиены и проведение всех санитарно-гигиенических мероприятий: надзор за источниками водоснабжения, контроль продуктов питания и за предприятиями общественного питания.

Специфическая профилактика . Химическая вакцина, содержащая полные антигены возбудителей брюшного тифа, паратифов А и В и столбнячный анатоксин (TAB"te). Имеется также брюшнотифозная спиртовая вакцина, обогащенная Vi-антигеном, введение которой с профилактической целью дает хороший эффект. В очаге заболевания лицам, контактировавшим с больным, дают брюшнотифозный бактериофаг.

Лечение . Антибиотики: левомицетин, тетрациклин и др.

Пищевые токсикоинфекции

При употреблении продуктов, зараженных сальмонеллами различных сероваров (кроме S. typhi, S. paratyphi A и В), возникают пищевые токсикоинфекции.

Источники инфекции . Животные и птицы, больные сальмонеллезами, или здоровые, в организме которых, не причиняя им вреда, находятся сальмонеллы.

Пути передачи . Заражение происходит при употреблении мяса, мясных продуктов, яиц, молока, молочных продуктов, инфицированных сальмонеллами. Наиболее опасным является употребление пищи, в которой происходит размножение и гибель сальмонелл и накопление эндотоксина.

Патогенез . Попав в организм через рот, сальмонеллы проникают в пищеварительный тракт. При этом значительная часть бактерий погибает и освобождается эндотоксин, который может проникнуть в кровь. Появляются симптомы поражения желудочно-кишечного тракта и общего токсикоза. Заболевание длится не более 4-5 дней; иногда переболевшие становятся носителями сальмонелл.

Иммунитет непродолжительный. В крови больных и реконвалесцентов накапливаются различные антитела: агглютинины, преципитины и т. п. Сероваров сальмонелл очень много, а иммунитет специфичен, т. е. направлен только против одного возбудителя, поэтому человек может повторно болеть сальмонеллезом.

Профилактика . Постоянный строгий ветеринарно-санитарный контроль за скотом, убоем и разделкой туш, хранением и обработкой мяса и мясных продуктов. Необходимо строгое соблюдение санитарно-гигиенического режима и личной гигиены на предприятиях общественного питания.

Специфическая профилактика . Людям, находящимся в очагах пищевой токсикоинфекции, следует давать сальмонеллезный поливалентный бактериофаг.

Лечение . Основным терапевтическим средством является дезинтоксикация организма - введение большого количества жидкости, промывание желудка. Применяют также антибиотики.

Внутрибольничная сальмонеллезная инфекция

Возбудителем внутрибольничной сальмонеллезной инфекции чаще всего является S. typhimurim. Отмечаются также "госпитальные" вспышки, вызванные S. heidelberg, S. derby и др. Хотя морфологические и культуральные свойства этих возбудителей не отличаются от свойств других сальмонелл, имеются некоторые биологические особенности, характерные для них. Так, например, возбудители внутрибольничных инфекций относятся к определенным биоварам, они более патогенны для белых мышей и т. п.

Источники инфекции . Чаще бактерионоситель, реже больной.

Пути передачи . Преобладает непрямой контакт (игрушки, белье, предметы ухода за больным). Реже имеют место воздушно-пылевой и пищевой пути передачи.

Патогенез . Заболевание развивается на фоне ослабления организма и снижения его иммунной активности. Возбудитель попадает в организм перорально или через дыхательные пути, что и определяет развитие патологического процесса: расстройство функции желудочно-кишечного тракта с обезвоживанием или поражение органов дыхания, бактериемия, септические осложнения. Заболевают в первую очередь дети раннего возраста.

Иммунитет . Вырабатывается только по отношению к одному серовару сальмонелл.

Профилактика . Строгое соблюдение санитарно-гигиенического режима в лечебных учреждениях.

Специфическая профилактика . При возникновении внутрибольничной сальмонеллезной инфекции детям, контактировавшим с больным, следует давать сальмонеллезный поливалентный бактериофаг.

Лечение . Симптоматическое.

Контрольные вопросы

1. Каковы морфологические, культуральные и ферментативные свойства сальмонелл?

2. На чем основана классификация сальмонелл?

3. Какие заболевания вызывают сальмонеллы?

Микробиологическое исследование

Цель исследования: выделение возбудителей заболевания и определение серовара сальмонелл.

Материал для исследования

2. Испражнения.

4. Дуоденальное содержимое.

В зависимости от стадии болезни исследуют разный материал.

Исследованию могут быть также подвергнуты содержимое розеол, костный мозг, мокрота и материал, полученный на вскрытии - кусочки органов.

При токсикоинфекциях материалом для исследования могут служить промывные воды желудка, рвотные массы, остатки пищевых продуктов.

Независимо от характера взятого для исследования материала с момента выделения чистой культуры исследование ведут по общей схеме.

Основные методы исследования

1. Бактериологический (рис. 43).

2. Серологический.

Ход исследования

Второй день исследования

Вынимают чашки из термостата (инкубация 18-24 ч) и просматривают выросшие колонии невооруженным глазом и при помощи лупы. Несколько (5-6) подозрительных колоний выделяют на среду Олькеницкого или Рассела. Посев производят следующим образом: снятую колонию осторожно, не задевая края пробирки, вносят в конденсационную жидкость, затем штрихами засевают всю скошенную поверхность среды и делают укол в глубину столбика для выявления газообразования. Укол следует производить в центр агарового столбика.

Пробирки с посевами ставят в термостат. Если исследуемый материал был посеян на среду обогащения, то через 18-24 ч производят высев со среды обогащения на чашки с дифференциальными средами. Дальнейшее исследование ведут по общей схеме.

1 (На месте снятых колоний остается черный след (изменяется цвет среды). )

Третий день исследования

Вынимают пробирки с посевами из термостата и просматривают характер роста.

В состав комбинированных сред входят лактоза, глюкоза, иногда мочевина и индикатор. Расщепление глюкозы происходит только в условиях анаэробиоза. Поэтому скошенная поверхность среды при расщеплении глюкозы не изменяется, а столбик окрашивается в цвет, соответствующий индикатору. Бактерии, расщепляющие лактозу и мочевину, изменяют цвет всей среды.

Если выделенные культуры сбраживают лактозу или расщепляют мочевину, меняя цвет всей среды, то они не являются сальмонеллами и можно дать отрицательный ответ.

Культуру, расщепляющую только глюкозу, подвергают дальнейшему изучению: делают мазки, окрашивают их по Граму и микроскопируют. При наличии в мазках грамотрицательных палочек изучают их подвижность и ферментативные свойства.

Подвижность можно определить в висячей капле или в раздавленной капле, а также по характеру роста в полужидкой среде Гисса или в 0,2% агаре. При наличии подвижности при посеве уколом рост на среде диффузный, среда мутнеет.

Для выявления ферментативной активности производят посев на среды Гисса, МПБ, пептонную воду. В пробирки с последними средами опускают (под пробку) индикаторные бумажки для определения индола и сероводорода. Делают также посев на лакмусовое молоко.

Четвертый день исследования

Учитывают биохимическую активность по результату ферментации углеводных и других сред (см. табл. 33).

Примечание. к - образование кислоты; кг - образование кислоты и газа; щ - щелочение; + наличие свойства; - отсутствие свойства.

Определив морфологические, культуральные и ферментативные свойства выделенной культуры, необходимо провести анализ антигенной структуры (табл. 34).

Серологическую идентификацию сальмонелл начинают с реакции агглютинации на стекле с поливалентной О-сывороткой А, В, С, D, Е. При отсутствии агглютинации выделенную культуру испытывают с поливалентной О-сывороткой к редким группам сальмонелл. При положительной реакции с одной из сывороток культуру испытывают с каждой О-сывороткой, входящей в состав поливалентной, для определения О-серогруппы. Установив принадлежность культуры к О-группе, определяют ее Н-антигены с сыворотками первой, а затем второй фазы (табл. 35).

Культуру сальмонелл тифа испытывают также с Vi-сывороткой. Возбудители брюшного тифа, содержащие Vi-антиген, испытывают Vi-фагами (их 86). Определение фаготипа имеет большое эпидемиологическое значение (см. рис. 43).

Методика фаготипирования . 1-й метод. В чашки Петри наливают 20-25 мл агара и подсушивают с открытыми крышками в термостате. Дно чашки делят на секторы. На каждом секторе пишут название фага. Изучают 4-6-часовую бульонную культуру, так как она содержит больше Vi-антигена. На поверхность агара наносят 8-10 капель бульонной культуры и стеклянным шпателем растирают ее по поверхности агара. Чашки с посевами подсушивают с открытыми крышками в термостате. На каждый сектор наносят каплю соответствующего типового фага. После подсыхания капель чашки ставят в термостат на 18-24 ч. Результат учитывают невооруженным глазом или с помощью лупы через дно чашки.

Наличие лизиса культуры одним или несколькими типовыми фагами позволяет определить принадлежность выделенного штамма к определенному фаготипу.

2-й метод. На питательную среду культуру наносят каплями. На каждую каплю после высыхания культуры в термостате наносят каплю типового фага. Ставят в термостат.

Степень лизиса выражают по четырехкрестной системе.

Контрольные вопросы

1. Какой материал исследуют при брюшном тифе, паратифах и токсикоинфекциях?

2. В каком периоде заболевания используют метод выделения гемокультуры?

3. В каком периоде заболевания брюшным тифом и паратифами исследуют испражнения и мочу?

4. На какие дифференциально-диагностические среды производят посев исследуемого материала?

5. Какие среды используют для накопления сальмонелл?

6. Что определяют монорецепторными О-сыворотками и что монорецепторными Н-сыворотками?

1. Изучите по табл. 32 характер роста сальмонелл на дифференциальных средах. Посмотрите у преподавателя чашки с посевом сальмонелл тифа на средах Эндо, Плоскирева, висмут-сульфитном агаре. Зарисуйте колонии цветными карандашами и покажите преподавателю.

2. Возьмите у преподавателя культуры сальмонелл, О- и Н-монорепторные сыворотки. Поставьте реакцию агглютинации на стекле. Учтите реакцию и покажите преподавателю.

Выделенная культура дала положительную реакцию агглютинации с О-сывороткой 4. С какими Н-сыворотками надо поставить реакцию агглютинации, если Вы думаете, что это культура сальмонелл паратифа В?

Серологическая диагностика брюшного тифа и паратифов

Реакция Видаля . Со второй недели заболевания в крови больных накапливаются антитела против возбудителя инфекции. Для их выявления исследуют сыворотку крови больного в реакции агглютинации. В качестве антигена используют убитые культуры сальмонелл - диагностикумы.

Для постановки реакции Видаля используют сыворотку больного, набор диагностикумов, изотонический раствор натрия хлорида.

Кровь (2-3 мл) из мякоти пальца или локтевой вены собирают в стерильную пробирку и доставляют в лабораторию. В лаборатории пробирку ставят в термостат на 20-30 мин для образования сгустка, затем пастеровской пипеткой обводят сгусток, чтобы отделить от стенки пробирки, и ставят на 30-40 мин на холод. Отделившуюся сыворотку отсасывают и используют для постановки реакции агглютинации с диагностикумами из сальмонелл тифа и паратифов. Для получения сыворотки кровь можно отцентрифугировать.

При возникновении инфекционного процесса - брюшного тифа или паратифов - в организме вырабатываются О- и Н-антитела к одноименным антигенам возбудителя.

О-антитела появляются первыми и исчезают довольно быстро. Н-антитела сохраняются долго. То же самое происходит и при вакцинации, поэтому положительная реакция Видаля с О- и Н-антигенами свидетельствует о наличии заболевания, а реакция только с Н-антигенами может быть и у переболевших (анамнестическая реакция), и у привитых (прививочная). Исходя из этого, реакцию Видаля ставят раздельно с О- и Н-антигенами (диагностикумы).

Так как клинически брюшной тиф и паратифы А и В сходны, то для выявления природы заболевания сыворотку больного испытывают одновременно с диагностикумами из сальмонелл тифа и паратифа А и В.

Реакцию Видаля широко используют, так как она проста и не требует специальных условий.

Поставить реакцию можно двумя способами: капельным и объемным (см. главу 12). В практике чаще используют объемный метод. При постановке линейной реакции агглютинации количество рядов должно соответствовать количеству антигенов (диагностикумы). Возбудителем заболевания считают микроорганизм, диагностикум из которого агглютинировался сывороткой больного. Иногда отмечают групповую агглютинацию, так как возбудители тифа и паратифов обладают общими групповыми антигенами. В этом случае положительным считают результат реакции в ряду, в котором агглютинацию отмечают в большем разведении сыворотки (табл. 36).

Примечание. В практике реакцию Видаля ставят с четырьмя диагностикумами: брюшного тифа "О" и "Н", а паратифов А и В - с диагностикумами "ОН".

Если агглютинация возникает только в небольших разведениях сыворотки - 1:100, 1:200, то для отличия реакции при заболевании от прививочной или анамнестической прибегают к повторной постановке реакции агглютинации через 5-7 дней. У больного титр антител повышается, а у привитого или переболевшего не изменяется. Таким образом, нарастание титра антител в сыворотке крови служит показателем заболевания.

В ответ на внедрение в организм возбудителей брюшного тифа, обладающих Vi-антигеном, в крови больного появляются Vi-агглютинины. Их определяют со 2-й недели болезни, но титр их обычно не превышает 1:10. Обнаружение Vi-антител связывают с наличием в организме возбудителей брюшного тифа, поэтому определение этих антител имеет большое эпидемиологическое значение, так как позволяет выявить бактерионосителей.

Реакция Vi-гемагглютинации . Это наиболее чувствительная реакция для выявления антител.

Принцип реакции заключается в том, что эритроциты человека (I группы) или барана после специальной обработки могут адсорбировать на своей поверхности Vi-антиген и приобретают при этом способность агглютиниповаться соответствующими Vi-антителами.

Эритроциты с адсорбированными на поверхности антигенами называют эритроцитарными диагностикумами.

Для постановки реакции Vi-гемагглютинации берут:

1) сыворотку крови больного (1-2 мл); 2) эритроцитарный сальмонеллезный Vi-диагностикум; З) Vi-сыворотку; 4) О-сыворотку; 5) изотонический раствор натрия хлорида.

Реакцию ставят в агглютинационных пробирках или в пластмассовых пластинах с лунками.

Кровь у больного берут так же, как для реакции Видаля. Получают сыворотку. Из сыворотки готовят двукратные серийные разведения, начиная с 1:10 до 1:160.

По 0,5 мл каждого разведения вносят в лунку и прибавляют по 0,25 мл эритроцитарного диагностикума. Реакцию ставят в объеме 0,75 мл.

Контролем служат: 1) стандартная агглютинирующая монорецепторная сыворотка + диагностикум - реакция должна быть положительной до титра сыворотки; 2) диагностикум в изотоническом растворе натрия хлорида (контроль) - реакция должна быть отрицательной.

Содержимое лунок тщательно перемешивают, ставят в термостат на 2 ч и оставляют при комнатной температуре до следующего дня (на 18-24 ч).

Учет начинают с контроля. Реакцию оценивают в зависимости от степени агглютинации диагностикума.

Результаты учитывают по четырехкрестной системе:

Эритроциты полностью агглютинированы - осадок на дне лунки в виде "зонтика";

+++ "зонтик" меньше, не все эритроциты агглютинировались;

++ "зонтик" маленький, на дне лунки имеется осадок из неагглютинированных эритроцитов;

Реакция отрицательная; эритроциты не агглютинировались и осели на дно лунки в виде пуговки.

Контрольные вопросы

1. В какой период заболевания ставят реакцию Видаля?

2. Какие ингредиенты необходимы для постановки реакции Видаля?

3. С какими диагностикумами ставят реакцию Видаля?

4. Какая из серологических реакций является самой чувствительной при диагностике тифопаратифозных инфекций?

5. Каким диагностикумом пользуются при постановке реакции Vi-гемагглютинации?

6. Какой сывороткой определяют наличие Vi-антигена у исследуемой культуры?

7. Какое значение имеет определение Vi-фаготипа?

Возьмите у преподавателя О- и Н-диагностикумы из сальмонелл тифа, паратифа А и паратифа В и сыворотку больного. Поставьте реакцию Видаля.

Питательные среды

Среды ЭМС, Плоскирева, висмут-сульфитный агар выпускаются медицинской промышленностью в виде сухого порошка. Их готовят согласно указаниям на этикетке: отвешивают определенное количество порошка, наливают соответствующее количество воды, кипятят и разливают в стерильные чашки Петри.

Среда Рассела . В 950 мл дистиллированной воды добавляют 40 г сухой питательной среды и прибавляют 5 г питательного агара. Нагревают до кипения и растворения порошков. В 50 мл дистиллированной воды растворяют 1 г х. ч. глюкозы и добавляют к приготовленной смеси. Среду разливают в стерильные пробирки по 5-7 мл, стерилизуют текучим паром (2 дня по 2 мин) и скашивают так, чтобы оставался столбик. Среду Рассела с маннитом и сахарозой готовят так же.

Среда Олькеницкого из сухого агара . 2,5 г сухого питательного агара расплавляют в 100 мл дистиллированной воды. В остуженный до 50° С агар прибавляют все ингредиенты, указанные в рецептуре (этикетке). Среду, разлитую в пробирки, стерилизуют текучим паром (3 дня по 20 мин) и затем скашивают. Готовая среда должна быть бледно-розового цвета.

Большинство относятся к патогенным видам , вызывая сальмонеллезы (тифопаратифозные заболевания, пищевые токсикоинфекции).

(Источник: «Микробиология: словарь терминов», Фирсов Н.Н., М: Дрофа, 2006 г .)

Сальмонеллы

См. также в других словарях:

    САЛЬМОНЕЛЛЫ - САЛЬМОНЕЛЛЫ, кишечные палочковидные бактерии. Длина до 3 мкм. Обычно подвижны; факультативные анаэробы. Многие патогенны: возбудители сальмонеллезов у животных и человека, брюшного тифа и паратифа у человека … Современная энциклопедия

    САЛЬМОНЕЛЛЫ - (от имени американского патолога Д. Э. Сальмона D. E. Salmon), род кишечных палочковидных неспороносных бактерий; обычно подвижны; аэробы или факультативные анаэробы. Многие патогенны: возбудители сальмонеллезов у животных и человека, брюшного… … Большой Энциклопедический словарь

    САЛЬМОНЕЛЛЫ - (Salmonella), род БАКТЕРИЙ в форме палочек, вызывающих кишечные инфекции у человека и животных. Так, Salmonella typhi является возбудителем тифа, однако, действие других видов сальмонелл обычно приводит лишь к легкому гастроэнтериту. Эта бактерия … Научно-технический энциклопедический словарь

    САЛЬМОНЕЛЛЫ - (Salmonella), род энтеробактерий. Прямые палочки с закруглёнными концами, 0,4 0,7X1,0 3,0 мкм, подвижные, грамотрицательные, факультативные анаэробы, гетеротрофы; серологически многообразны и классифицируются по антигенным свойствам. Длительно… … Биологический энциклопедический словарь

    Сальмонеллы - относятся к семейству энтеробактерий (Enterobacteriaceae), роду сальмонелл (Salmonella), подразделяющемуся на два вида, энтерика (enterica) и бонгори (bongori), и объединяют 2324 серовара, разделенных по набору соматических (О) антигенов на 46… … Официальная терминология

    Сальмонеллы - САЛЬМОНЕЛЛЫ, кишечные палочковидные бактерии. Длина до 3 мкм. Обычно подвижны; факультативные анаэробы. Многие патогенны: возбудители сальмонеллезов у животных и человека, брюшного тифа и паратифа у человека. … Иллюстрированный энциклопедический словарь

    САЛЬМОНЕЛЛЫ - (от имени Д. Э. Сальмона), род кишечных палочковидных неспороносных бактерий; обычно подвижны; аэробы или факультативные анаэробы. Мн. патогенны: возбудители сальмонеллёзов у животных и человека, брюшного тифа и паратифа у человека … Естествознание. Энциклопедический словарь

    САЛЬМОНЕЛЛЫ - (Salmonella), паратифозные бактерии, бактерии рода Salmonella семейства Enterobactheriaceae; возбудители инфекционных болезней молодняка сельскохозяйственных животных и токсикоинфекций человека. Насчитывают более 1200 серологических типов С., но… … Ветеринарный энциклопедический словарь

    сальмонеллы - (нэ/) нелл; мн. (ед. сальмоне/лла, ы; ж.) Род кишечных бактерий, вызывающих инфекционные заболевания животных и человека. По имени американского патолога Д.Э.Сальмона, открывшего эти бактерии … Словарь многих выражений

    Сальмонелла - В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

    Сальмонеллёз - I (salmonellosis) инфекционная болезнь, характеризующаяся разнообразными клиническими проявлениями от бессимптомного носительства до тяжелейшего септического течения Чаще протекает в виде гастроинтестинальных форм (гастроэнтериты,… … Медицинская энциклопедия

Род Salmonella объединяет более 2000 представителей, широко распространенных в природе. Они вызывают заболевания у человека и животных. К роду сальмонелл относятся возбудители брюшного тифа, паратифов А и В и пищевых токсикоинфекций.

Возбудитель брюшного тифа (S. typhi) был впервые обнаружен в 1880 г. Эбертом в органах людей, умерших от брюшного тифа. В 1884 г. Гаффки выделил чистую культуру микроба. Позднее, в 1896 г., Ашар и Бансод нашли в гное и моче больных, у которых наблюдалась клиническая картина брюшного тифа, палочки, по биохимическим и серологическим свойствам отличающиеся от возбудителя брюшного тифа. Они были названы паратифозными— S. paratyphi А и S. paratyphi В. Из возбудителей пищевых отравлений первым был открыт в 1885 г. Сальмоном возбудитель холеры свиней — S. cholerae suis. В 1888 г. Гертнер при вспышке пищевых токсикоинфекций после употребления в пищу мяса больной коровы выделил S. enteritidis. В дальнейшем были описаны сальмонеллы мышиного тифа — S. typhimurium и другие микробы, которые по ряду признаков были сходны между собой, и объединены в род Salmonella, названный в честь Сальмона.

Морфология и биологические свойства. Сальмонеллы представляют собой короткие палочки с закругленными концами, размером в среднем 1—3 мкм. Все они подвижны благодаря наличию перитрихиально расположенных жгутиков. Спор и капсул не образуют. Хорошо окрашиваются анилиновыми красками, грамотрицательны. Факультативные аэробы. Хорошо растут на простых питательных средах при температуре 20—40°С и рН от 5,0 до 8,0 при оптимуме 37°С и рН 7,2—7,4. Па жидких средах дают равномерное помутнение. На мясо-пептонном агаре колонии более мелкие, чем у кишечных палочек, нежные, полупрозрачные. На дифференциально-диагностических средах Эндо, Левина, Плоскирева колонии мелкие, бесцветные. На висмут-сульфит-агаре колонии черного цвета.

Ферментативные свойства сальмонелл (см. табл. 3) довольно постоянны: не разлагают лактозу и сахарозу, ферментируют глюкозу и маннит с образованием кислоты и газа, хотя встречаются типы, ферментирующие их только до кислоты (например, сальмонелла тифа). Большинство сальмонелл расщепляет белки с образованием сероводорода, не образует индола, не разжижает желатина. Сальмонеллы содержат эндотоксин липополисахаридно-протеиновой природы. Он термоустойчив, обладает антигенными свойствами.

Устойчивость. Сальмонеллы устойчивы во внешней среде. В пыли, во льду, в чистой воде сохраняются до З мес. При температуре 70°С гибнут в течение 5—10 мин, при 10°С — мгновенно. В соленом и копченом мясе саль-монеллы сохраняют жизнеспособность 27,2 мес. В молоке могут размножаться. Под действием 1 % раствора сулемы, 3—5% раствора карболовой кислоты и хлорамина погибают в течение нескольких минут.

Антигенная структура и классификация. Сальмонеллы содержат два основных антигенных комплекса: О-соматический и Н-жгутиковый. О-антиген — липополисахаридно-протеиновый комплекс, термостабилен, инактивируется под действием формалина, соответствует эндотоксину бактериальной клетки. Н-антиген белковой природы, термолабилен, легко разрушается спиртом и фенолом. Устойчив к действию формалина. На этом свойстве основано получение Н-диагиостикумов. О- и Н-антигены у различных представителей сальмонелл неоднородны, что было положено в основу классйфйкации этих бактерий, разработанной Кауфманом й Уайтом (табл. 4).

Они разделили все сальмонеллы по О-антигенам на группы: А, В, С, D, Е и т. д. Каждая группа характеризуется наличием определенного Оантигена (например, в группе В это «4»). Некоторые группы имеют общие О-антигены (например, группа А, В и D — «1, 12»). Сальмонелла тифа содержит Vi-антиген, который располагается более поверхностно, чем О-антиген, и может препятствовать агглютинации с О-сывороткой. Утрата его ведет к восстановлению О-агглютинации. Vi-антиген легко разрушается при кипячении культуры в течение 10 мин, при добавлении в среду фенола, выращивании микроба на искусственных средах.

У Н-антигенов сальмонелл различают I и II фазы. Первая фаза Н-антигенов различна у серотипов, входящих в одну группу (например, в группе S. paratyphi В— «в», a Salm. typhimurium — «і»). Такое разделение помогает дифференцировать отдельные типы сальмонелл в реакции агглютинации на стекле с монорецепторными сальмонеллезными сыворотками. В реакции агглютинации при взаимодействии Н-антигенов с соответствующими антителами проявляется крупнохлопчатая Н-агглютинация; О- и Vi-агглютинация мелкозернистая.



Помимо серологического типирования сальмонелл, иногда проводят определение фаготипов с помощью специфических сальмонеллезных бактериофагов, которых к настоящему времени известно более 100. Установлено, что одни фаги лизируют сальмонеллы, содержащие О-антиген, другие (Vi-фаги) — только штаммы, содержащие Vi-антиген. Фаготипы сальмонелл стабильны. Метод фаготипирования сальмонелл используется в целях эпидемиологического анализа для выявления источника инфекции.

Патогенность. Среди сальмонелл встречаются типы, патогенные только для человека: сальмонеллы брюшного тифа, паратифов А и В. Есть типы, вызывающие заболевания только у животных. Большинство же патогенно и для человека, и для животных. Разнообразие клинических форм заболеваний, вызываемых сальмонеллами, зависит от свойств возбудителя, массивности заражения, состояния защитных сил макроорганизма и других причин.