Теория вероятностей. Решение задач (2019). Типичные ошибки при решении задач по теории вероятностей

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

СЛОЖЕНИЕ И УМНОЖЕНИЕ ВЕРОЯТНОСТЕЙ. ПОВТОРНЫЕ НЕЗАВИСИМЫЕ ИСПЫТАНИЯ

Лекция для студентов землеустроительного факультета

заочной формы обучения

Горки, 2012

Сложение и умножение вероятностей. Повторные

независимые испытания

    Сложение вероятностей

Суммой двух совместных событий А и В называется событие С , состоящее в наступлении хотя бы одного из событий А или В . Аналогично суммой нескольких совместных событий называется событие, состоящее в наступлении хотя бы одного из этих событий.

Суммой двух несовместных событий А и В называется событие С , состоящее в наступлении или события А , или события В . Аналогично суммой нескольких несовместных событий называется событие, состоящее в наступлении какого-либо одного из этих событий.

Справедлива теорема сложения вероятностей несовместных событий: вероятность суммы двух несовместных событий равна сумме вероятностей этих событий , т.е. . Эту теорему можно распространить на любое конечное число несовместных событий.

Из данной теоремы следует:

сумма вероятностей событий, образующих полную группу, равна единице;

сумма вероятностей противоположных событий равна единице, т.е.
.

Пример 1 . В ящике находятся 2 белых, 3 красных и 5 синих шара. Шары перемешивают и наугад извлекают один. Какова вероятность того, что шар окажется цветным?

Решение . Обозначим события:

A ={извлечён цветной шар};

B ={извлечён белый шар};

C ={извлечён красный шар};

D ={извлечён синий шар}.

Тогда A = C + D . Так как события C , D несовместны, то воспользуемся теоремой сложения вероятностей несовместных событий: .

Пример 2 . В урне находятся 4 белых шара и 6 – чёрных. Из урны наугад вынимают 3 шара. Какова вероятность того, что все они одного цвета?

Решение . Обозначим события:

A ={вынуты шары одного цвета};

B ={вынуты шары белого цвета};

C ={вынуты шары чёрного цвета}.

Так как A = B + C и события В и С несовместны, то по теореме сложения вероятностей несовместных событий
. Вероятность событияВ равна
, где
4,

. Подставим k и n в формулу и получим
Аналогично найдём вероятность событияС :
, где
,
, т.е.
. Тогда
.

Пример 3 . Из колоды в 36 карт наугад вынимают 4 карты. Найти вероятность того, что среди них окажется не менее трёх тузов.

Решение . Обозначим события:

A ={среди вынутых карт не менее трёх тузов};

B ={среди вынутых карт три туза};

C ={среди вынутых карт четыре туза}.

Так как A = B + C , а события В и С несовместны, то
. Найдём вероятности событийВ и С :


,
. Следовательно, вероятность того, что среди вынутых карт не менее трёх тузов, равна

0.0022.

    Умножение вероятностей

Произведением двух событий А и В называется событие С , состоящее в совместном наступлении этих событий:
. Это определение распространяется на любое конечное число событий.

Два события называются независимыми , если вероятность наступления одного из них не зависит от того, произошло другое событие или нет. События ,, … ,называютсянезависимыми в совокупности , если вероятность наступления каждого из них не зависит от того, произошли или не произошли другие события.

Пример 4 . Два стрелка стреляют по цели. Обозначим события:

A ={первый стрелок попал в цель};

B ={второй стрелок попал в цель}.

Очевидно, что вероятность попадания в цель первым стрелком не зависит от того, попал или не попал второй стрелок, и наоборот. Следовательно, события А и В независимы.

Справедлива теорема умножения вероятностей независимых событий: вероятность произведения двух независимых событий равна произведению вероятностей этих событий : .

Эта теорема справедлива и для n независимых в совокупности событий: .

Пример 5 . Два стрелка стреляют по одной цели. Вероятность попадания первого стрелка равна 0.9, а второго – 0.7. Оба стрелка одновременно делают по одному выстрелу. Определить вероятность того, что будут иметь место два попадания в цель.

Решение . Обозначим события:

A

B

C ={оба стрелка попадут в цель}.

Так как
, а событияА и В независимы, то
, т.е..

События А и В называются зависимыми , если вероятность наступления одного из них зависит от того, произошло другое событие или нет. Вероятность наступления события А при условии, что событие В уже наступило, называется условной вероятностью и обозначается
или
.

Пример 6 . В урне находятся 4 белых и 7 чёрных шаров. Из урны извлекаются шары. Обозначим события:

A ={извлечён белый шар} ;

B ={извлечён чёрный шар}.

Перед началом извлечения шаров из урны
. Из урны извлекли один шар и он оказался чёрным. Тогда вероятность событияА после наступления события В будет уже другой, равной . Это означает, что вероятность событияА зависит от события В , т.е. эти события будут зависимыми.

Справедлива теорема умножения вероятностей зависимых событий: вероятность произведения двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило , т.е. или.

Пример 7 . В урне находятся 4 белых шара и 8 красных. Из неё наугад последовательно извлекают два шара. Найти вероятность того, что оба шара будут чёрными.

Решение . Обозначим события:

A ={первым извлечён чёрный шар};

B ={вторым извлечён чёрный шар}.

События А и В зависимы, так как
, а
. Тогда
.

Пример 8 . Три стрелка стреляют по цели независимо друг от друга. Вероятность попадания в цель для первого стрелка равна 0.5, для второго – 0.6 и для третьего – 0.8. Найти вероятность того, что произойдут два попадания в цель, если каждый стрелок сделает по одному выстрелу.

Решение . Обозначим события:

A ={произойдут два попадания в цель};

B ={первый стрелок попадёт в цель};

C ={второй стрелок попадёт в цель};

D ={третий стрелок попадёт в цель};

={первый стрелок не попадёт в цель};

={второй стрелок не попадёт в цель};

={третий стрелок не попадёт в цель}.

По условию примера
,
,
,

,
,
. Так как, то используя теорему сложения вероятностей несовместных событий и теорему умножения вероятностей независимых событий, получим:

Пусть события
образуют полную группу событий некоторого испытания, а событииА может наступить только с одним из этих событий. Если известны вероятности и условные вероятностисобытияА , то вероятность события А вычисляется по формуле:

или
. Эта формула называетсяформулой полной вероятности , а события
гипотезами .

Пример 9 . На сборочный конвейер поступает 700 деталей с первого станка и 300 деталей со второго. Первый станок даёт 0.5% брака, а второй – 0.7%. Найти вероятность того, что взятая деталь будет бракованной.

Решение . Обозначим события:

A ={взятая деталь будет бракованной};

={деталь изготовлена на первом станке};

={деталь изготовлена на втором станке}.

Вероятность того, что деталь изготовлена на первом станке, равна
. Для второго станка
. По условию вероятность получения бракованной детали, изготовленной на первом станке, равна
. Для второго станка эта вероятность равна
. Тогда вероятность того, что взятая деталь будет бракованной, вычисляется по формуле полной вероятности

Если известно, что в результате испытания наступило некоторое событие А , то вероятность того, что это событие наступило с гипотезой
, равна
, где
- полная вероятность событияА . Эта формула называется формулой Байеса и позволяет вычислять вероятности событий
после того, как стало известно, что событиеА уже наступило.

Пример 10 . Однотипные детали к автомобилям производятся на двух заводах и поступают в магазин. Первый завод производит 80% общего количества деталей, а второй – 20%. Продукция первого завода содержит 90% стандартных деталей, а второго – 95%. Покупатель купил одну деталь и она оказалась стандартной. Найти вероятность того, что эта деталь изготовлена на втором заводе.

Решение . Обозначим события:

A ={куплена стандартная деталь};

={деталь изготовлена на первом заводе};

={деталь изготовлена на втором заводе}.

По условию примера
,
,
и
. Вычислим полную вероятность событияА : 0.91. Вероятность того, что деталь изготовлена на втором заводе, вычислим по формуле Байеса:

.

Задания для самостоятельной работы

    Вероятность попадания в цель для первого стрелка равна 0.8, для второго – 0.7 и для третьего – 0.9. Стрелки произвели по одному выстрелу. Найти вероятность того, что имеет место не менее двух попаданий в цель.

    В ремонтную мастерскую поступило 15 тракторов. Известно, что 6 из них нуждаются в замене двигателя, а остальные – в замене отдельных узлов. Случайным образом отбираются три трактора. Найти вероятность того, что замена двигателя необходима не более, чем двум отобранным тракторам.

    На железобетонном заводе изготавливают панели, 80% из которых – высшего качества. Найти вероятность того, что из трёх наугад выбранных панелей не менее двух будут высшего сорта.

    Три рабочих собирают подшипники. Вероятность того, что подшипник, собранный первым рабочим, высшего качества, равна 0.7, вторым – 0.8 и третьим – 0.6. Для контроля наугад взято по одному подшипнику из собранных каждым рабочим. Найти вероятность того, что не менее двух из них будут высшего качества.

    Вероятность выигрыша по лотерейному билету первого выпуска равна 0.2, второго – 0.3 и третьего – 0.25. Имеются по одному билету каждого выпуска. Найти вероятность того, что выиграет не менее двух билетов.

    Бухгалтер выполняет расчёты, пользуясь тремя справочниками. Вероятность того, что интересующие его данные находятся в первом справочнике, равна 0.6, во втором – 0.7 ив третьем – 0.8. Найти вероятность того, что интересующие бухгалтера данные содержатся не более, чем в двух справочниках.

    Три автомата изготавливают детали. Первый автомат изготавливает деталь высшего качества с вероятностью 0.9, второй – с вероятностью 0.7 и третий – с вероятностью 0.6. Наугад берут по одной детали с каждого автомата. Найти вероятность того, что среди них не менее двух высшего качества.

    На двух станках обрабатываются однотипные детали. Вероятность изготовления нестандартной детали для первого станка равна 0.03, в для второго – 0.02. Обработанные детали складываются в одном месте. Среди них 67% с первого станка, а остальные – со второго. Наугад взятая деталь оказалась стандартной. Найти вероятность того, что она изготовлена на первом станке.

    В мастерскую поступили две коробки однотипных конденсаторов. В первой коробке было 20 конденсаторов, из которых 2 неисправных. Во второй коробки 10 конденсаторов, из которых 3 неисправных. Конденсаторы были переложены в один ящик. Найти вероятность того, что наугад взятый из ящика конденсатор окажется исправным.

    На трёх станках изготавливают однотипные детали, которые поступают на общий конвейер. Среди всех деталей 20% с первого автомата, 30% - со второго и 505 – с третьего. Вероятность изготовления стандартной детали на первом станке равна 0.8, на втором – 0.6 и на третьем – 0.7. Взятая деталь оказалась стандартной. Найти вероятность того, эта деталь изготовлена на третьем станке.

    Комплектовщик получает для сборки 40% деталей с завода А , а остальные – с завода В . Вероятность того, что деталь с завода А – высшего качества, равна 0.8, а с завода В – 0.9. Комплектовщик наугад взял одну деталь и она оказалась не высшего качества. Найти вероятность того, что эта деталь с завода В .

    Для участия в студенческих спортивных соревнованиях выделено 10 студентов из первой группы и 8 – из второй. Вероятность того, что студент из первой группы попадёт в сборную академии, равна 0.8, а со второй – 0.7. Наугад выбранный студент попал в сборную. Найти вероятность того, что он из первой группы.

    Формула Бернулли

Испытания называются независимыми , если при каждом из них событие А наступает с одной и той же вероятностью
, не зависящей от того, появилось или не появилось это событие в других испытаниях. Вероятность противоположного событияв этом случае равна
.

Пример 11 . Бросается игральный кубик n раз. Обозначим событие A ={выпадение трёх очков}. Вероятность наступления события А в каждом испытании равна и не зависит от того, произошло или не произошло это событие в других испытаниях. Поэтому эти испытания являются независимыми. Вероятность противоположного события
{не выпадение трёх очков} равна
.

Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность наступления события А равна p , событие наступит ровно k раз (безразлично в какой последовательности), вычисляется по формуле
, где
. Эта формула называетсяформулой Бернулли и удобна она в том случае, если число испытаний n не слишком велико.

Пример 12 . Доля плодов, заражённых болезнью в скрытой форме, составляет 25%. Случайным образом отбирается 6 плодов. Найти вероятность того, что среди выбранных окажется: а) ровно 3 заражённых плода; б) не более двух заражённых плодов.

Решение . По условию примера .

а) По формуле Бернулли вероятность того, что среди шести отобранных плодов заражёнными окажутся ровно три, равна




0.132.

б) Обозначим событие A ={заражённых будет не более двух плодов}. Тогда . По формуле Бернулли:

0.297.

Следовательно,
0.178+0.356+0.297=0.831.

    Теоремы Лапласа и Пуассона

По формуле Бернулли находится вероятность того, что событие А наступит k раз в n независимых испытаниях и в каждом испытании вероятность события А постоянна. При больших значениях n вычисления по формуле Бернулли становятся трудоёмкими. В этом случае для вычисления вероятности события А целесообразнее использовать другую формулу.

Локальная теорема Лапласа . Пусть вероятность p наступления события А в каждом испытании постоянна и отлична от нуля и единицы. Тогда вероятность того, что событие А наступит ровно k раз при достаточно большом числе n испытаний, вычисляется по формуле

, где
, а значения функции
приведены в таблице.

Основными свойствами функции
являются:

Функция
определена и непрерывна в интервале
.

Функция
положительна, т.е.
>0.

Функция
чётная, т.е.
.

Так как функция
чётная, то в таблице приведены её значения только для положительных значенийх .

Пример 13 . Всхожесть семян пшеницы составляет 80%. Для опыта отбирается 100 семян. Найти вероятность того, что из отобранных семян взойдут ровно 90.

Решение . По условию примера n =100, k =90, p =0.8, q =1-0.8=0.2. Тогда
. По таблице найдём значение функции
:
. Вероятность того, что из отобранных семян взойдут ровно 90, равна
0.0044.

При решении практических задач возникает необходимость найти вероятность наступления события А при n независимых испытаниях не менее раз и не болеераз. Такая задача решается с помощьюинтегральной теоремы Лапласа : Пусть вероятность p наступления события А в каждом из n независимых испытаний постоянна и отлична от нуля и единицы. Тогда вероятность того, что событие наступит не менее раз и не болеераз при достаточно большом числе испытаний, вычисляется по формуле

Где
,
.

Функция
называетсяфункцией Лапласа и не выражается через элементарные функции. Значения этой функции приведены в специальных таблицах.

Основными свойствами функции
являются:


.

Функция
возрастает в интервале
.


при
.

Функция
нечётная, т.е.
.

Пример 14 . Предприятие выпускает продукцию, из которой 13% не высшего качества. Определить вероятность того, что в непроверенной партии из 150 единиц продукции высшего качества будет не менее 125 и не более 135.

Решение . Обозначим . Вычислим
,

Теорема сложения вероятностей

Рассмотрим несовместные случайные события.

Известно, что несовместные случайные события $A$ и $B$ в одном и том же испытании имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность суммы $A+B$ этих событий, то есть вероятность появления хотя бы одного из них.

Предположим, что в данном испытании число всех равновозможных элементарных событий $n$. Из них событиям $A$ и $B$ благоприятствуют $m_{A} $ и $m_{B} $ элементарных событий соответственно. Поскольку события $A$ и $B$ несовместные, то событию $A+B$ благоприятствуют $m_{A} +m_{B} $ элементарных событий. Имеем $P\left(A+B\right)=\frac{m_{A} +m_{B} }{n} =\frac{m_{A} }{n} +\frac{m_{B} }{n} =P\left(A\right)+P\left(B\right)$.

Теорема 1

Вероятность суммы двух несовместных событий равняется сумме их вероятностей.

Примечание 1

Следствие 1. Вероятность суммы любого количества несовместных событий равняется сумме вероятностей этих событий.

Следствие 2. Сумма вероятностей полной группы несовместных событий (сумма вероятностей всех элементарных событий) равна единице.

Следствие 3. Сумма вероятностей противоположных событий равна единице, поскольку они образуют полную группу несовместных событий.

Пример 1

Вероятность того, что на протяжении некоторого времени в городе ни разу не будет идти дождь, $p=0,7$. Найти вероятность $q$ того, что на протяжении этого же времени дождь в городе будет идти хотя бы один раз.

События "на протяжении некоторого времени в городе ни разу не шел дождь" и "на протяжении некоторого времени дождь в городе шел хотя бы один раз" противоположные. Поэтому $p+q=1$, откуда $q=1-p=1-0,7=0,3$.

Рассмотрим совместные случайные события.

Известно, что совместные случайные события $A$ и $B$ в одном и том же испытании имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность суммы $A+B$ этих событий, то есть вероятность появления хотя бы одного из них.

Предположим, что в данном испытании число всех равновозможных элементарных событий $n$. Из них событиям $A$ и $B$ благоприятствуют $m_{A} $ и $m_{B} $ элементарных событий соответственно. Поскольку события $A$ и $B$ совместны, то из всего количества $m_{A} +m_{B} $ элементарных событий определенное количество $m_{AB} $ благоприятствует одновременно и событию $A$, и событию $B$, то есть совместному их наступлению (произведению событий $A\cdot B$). Это количество $m_{AB} $ вошло одновременно и в $m_{A} $, и в $m_{B} $ Итак событию $A+B$ благоприятствуют $m_{A} +m_{B} -m_{AB} $ элементарных событий. Имеем: $P\left(A+B\right)=\frac{m_{A} +m_{B} -m_{AB} }{n} =\frac{m_{A} }{n} +\frac{m_{B} }{n} -\frac{m_{AB} }{n} =P\left(A\right)+P\left(B\right)-P\left(A\cdot B\right)$.

Теорема 2

Вероятность суммы двух совместных событий равняется сумме вероятностей этих событий за минусом вероятности их произведения.

Замечание. Если события $A$ и $B$ несовместны, то их произведение $A\cdot B$ является невозможным событием, вероятность которого $P\left(A\cdot B\right)=0$. Следовательно, формула сложения вероятностей несовместных событий является частным случаем формулы сложения вероятностей совместных событий.

Пример 2

Найти вероятность того, что при одновременном бросании двух игральных кубиков цифра 5 выпадет хотя бы один раз.

При одновременном бросании двух игральных кубиков число всех равновозможных элементарных событий равно $n=36$, поскольку на каждую цифру первого кубика может выпасти шесть цифр второго кубика. Из них событие $A$ -- выпадение цифры 5 на первом кубике -- осуществляется 6 раз, событие $B$ -- выпадение цифры 5 на втором кубике -- тоже осуществляется 6 раз. Из всех двенадцати раз цифра 5 один раз выпадает на обоих кубиках. Таким образом, $P\left(A+B\right)=\frac{6}{36} +\frac{6}{36} -\frac{1}{36} =\frac{11}{36} $.

Теорема умножения вероятностей

Рассмотрим независимые события.

События $A$ и $B$, которые происходят в двух последовательных испытаниях, называются независимыми, если вероятность появления события $B$ не зависит от того, состоялось или не состоялось событие $A$.

Например, пусть в урне находятся 2 белых и 2 черных шар а. Испытанием является извлечение шара. Событие $A$ -- "вынут белый шар в первом испытании". Вероятность $P\left(A\right)=\frac{1}{2} $. После первого испытания шар положили назад и провели второе испытание. Событие $B$ -- ``вынут белый шар во втором испытании"". Вероятность $P\left(B\right)=\frac{1}{2} $. Вероятность $P\left(B\right)$ не зависит от того, состоялось или нет событие $A$, следовательно события $A$ и $B$ независимы.

Известно, что независимые случайные события $A$ и $B$ двух последовательных испытаний имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность произведения $A\cdot B$ этих событий, то есть вероятность совместного их появления.

Предположим, что в первом испытании число всех равновозможных элементарных событий $n_{1} $. Из них событию $A$ благоприятствуют $m_{1} $ элементарных событий. Предположим также, что во втором испытании число всех равновозможных элементарных событий $n_{2} $. Из них событию $B$ благоприятствуют $m_{2} $ элементарных событий. Теперь рассмотрим новое элементарное событие, которое состоит в последовательном наступлении событий из первого и второго испытаний. Общее количество таких равновозможных элементарных событий равно $n_{1} \cdot n_{2} $. Поскольку события $A$ и $B$ независимы, то из этого числа совместному наступлению события $A$ и события $B$ (произведения событий $A\cdot B$) благоприятствует $m_{1} \cdot m_{2} $ событий. Имеем: $P\left(A\cdot B\right)=\frac{m_{1} \cdot m_{2} }{n_{1} \cdot n_{2} } =\frac{m_{1} }{n_{1} } \cdot \frac{m_{2} }{n_{2} } =P\left(A\right)\cdot P\left(B\right)$.

Теорема 3

Вероятность произведения двух независимых событий равняется произведению вероятностей этих событий.

Рассмотрим зависимые события.

В двух последовательных испытаниях происходят события $A$ и $B$. Событие $B$ называется зависимым от события $A$, если вероятность появления события $B$ зависит от того, состоялось или не состоялось событие $A$. Тогда вероятность события $B$, которая была вычислена при условии, что событие $A$ состоялось, называется условной вероятностью события $B$ при условии $A$ и обозначается $P\left(B/A\right)$.

Например, пусть в урне находятся 2 белых и 2 черных шара. Испытанием является извлечением шара. Событие $A$ -- "вынут белый шар в первом испытании". Вероятность $P\left(A\right)=\frac{1}{2} $. После первого испытания шар назад не кладут и выполняют второе испытание. Событие $B$ -- ``вынут белый шар во втором испытании"". Если в первом испытании был вынут белый шар, то вероятность $P\left(B/A\right)=\frac{1}{3} $. Если же в первом испытании был вынут черный шар, то вероятность $P\left(B/\overline{A}\right)=\frac{2}{3} $. Таким образом вероятность события $B$ зависит от того, состоялось или нет событие $A$, следовательно, событие $B$ зависит от события $A$.

Предположим, что события $A$ и $B$ происходят в двух последовательных испытаниях. Известно, что событие $A$ имеет вероятность появления $P\left(A\right)$. Известно также, что событие $B$ является зависимым от события $A$ и его условная вероятность при условии $A$ равна $P\left(B/A\right)$.

Теорема 4

Вероятность произведения события $A$ и зависимого от него события $B$, то есть вероятность совместного их появления, может быть найдена по формуле $P\left(A\cdot B\right)=P\left(A\right)\cdot P\left(B/A\right)$.

Справедливой является также симметричная формула $P\left(A\cdot B\right)=P\left(B\right)\cdot P\left(A/B\right)$, где событие $A$ предполагается зависимым от события $B$.

Для условий последнего примера найдем вероятность того, что белый шар будет извлечен в обоих испытаниях. Такое событие является произведением событий $A$ и $B$. Его вероятность равна $P\left(A\cdot B\right)=P\left(A\right)\cdot P\left(B/A\right)=\frac{1}{2} \cdot \frac{1}{3} =\frac{1}{6} $.

Теоремы сложения и умножения вероятностей.

Теорема сложения вероятностей двух событий . Вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности их совместного появления :

Р(А+В)=Р(А)+Р(В)-Р(АВ).

Теорема сложения вероятностей двух несовместных событий . Вероятность суммы двух несовместных событий равна сумме вероятностей этих :

Р(А+В)=Р(А)+Р(В).

Пример 2.16. Стрелок стреляет по мишени, разделенной на 3 области. Вероятность попадания в первую область равна 0,45, во вторую - 0,35. Найти вероятность того, что стрелок при одном выстреле попадет либо в первую, либо во вторую область.

Решение.

События А - «стрелок попал в первую область» и В - «стрелок попал во вторую область» - несовместны (попадание в одну область исключает попадание в другую), поэтому теорема сложения применима.

Искомая вероятность равна:

Р(А+В)=Р(А)+Р(В)= 0,45+ 0,35 = 0,8.

Теорема сложения вероятностей п несовместных событий . Вероятность суммы п несовместных событий равна сумме вероятностей этих :

Р(А 1 +А 2 +…+А п)=Р(А 1)+Р(А 2)+…+Р(А п).

Сумма вероятностей противоположных событий равна единице:

Вероятность события В при условии, что произошло событие А , называется условной вероятностью события В и обозначается так: Р(В/А), или Р А (В).

. Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого при условии, что первое событие произошло:

Р(АВ)=Р(А)Р А (В).

Событие В не зависит от события А , если

Р А (В)=Р(В),

т.е. вероятность события В не зависит от того, произошло ли событие А .

Теорема умножения вероятностей двух независимых событий. Вероятность произведения двух независимых событий равна произведению их вероятностей:

Р(АВ)=Р(А)Р(В).

Пример 2.17. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р 1 = 0,7; р 2 = 0,8. Найти вероятность попадания при одном залпе (из обоих орудий) хотя бы одним из орудий.

Решение.

Вероятность попадания в цель каждым из орудий не зависит от результата стрельбы из другого орудия, поэтому события А – «попадание первого орудия» и В – «попадание второго орудия» независимы.

Вероятность события АВ – «оба орудия дали попадание»:

Искомая вероятность

Р(А+В) = Р(А) + Р(В) – Р(АВ) = 0,7 + 0,8 – 0,56 = 0,94.

Теорема умножения вероятностей п событий. Вероятность произведения п событий равна произведению одного из них на условные вероятности всех остальных, вычисленные в предположении, что все предыдущие события наступили:

Пример 2.18 . В урне 5 белых, 4 черных и 3 синих шара. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его обратно. Найти вероятность того, что при первом испытании появится белый шар (событие А), при втором – черный (событие В) и при третьем – синий (событие С).

Решение.

Вероятность появления белого шара в первом испытании:

Вероятность появления черного шара во втором испытании, вычисленная в предположении, что в первом испытании появился белый шар, т. е. условная вероятность:

Вероятность появления синего шара в третьем испытании, вычисленная в предположении, что в первом испытании появился белый шар, а во втором - черный, т. е. условная вероятность:

Искомая вероятность равна:

Теорема умножения вероятностей п независимых событий. Вероятность произведения п независимых событий равна произведению их вероятностей:

Р(А 1 А 2 …А п)=Р(А 1)Р(А 2)…Р(А п).

Вероятность появления хотя бы одного из события. Вероятность появления хотя бы одного из событий А 1 , А 2 , …, А п, независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий :

.

Пример 2.19. Вероятности попадания в цель при стрельбе из трех орудий таковы: р 1 = 0,8; р 2 = 0,7; р 3 = 0,9. Найти вероятность хотя бы одного попадания (событие А ) при одном залпе из всех орудий.

Решение.

Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события A 1 (попадание первого орудия), А 2 (попадание второго орудия) и А 3 (попадание третьего орудия) независимы в совокупности.

Вероятности событий, противоположных событиям А 1 , А 2 и А 3 (т.е. вероятности промахов), соответственно равны:

, , .

Искомая вероятность равна:

Если независимые события А 1 , А 2 , …, А п имеют одинаковую вероятность, равную р , то вероятность появления хотя бы одного из этих событий выражается формулой:

Р(А)= 1 – q n ,

где q=1- p

2.7. Формула полной вероятности. Формула Байеса.

Пусть событие А может произойти при условии появления одного из несовместных событий Н 1 , Н 2 , …, Н п , образующих полную группу событий. Поскольку заранее неизвестно, какое из этих событий наступит, их называют гипотезами .

Вероятность появления события А вычисляется по формуле полной вероятности:

Р(А)=Р(Н 1)Р(А/Н 1)+ Р(Н 2)Р(А/Н 2)+…+ Р(Н п)Р(А/Н п).

Допусти, что произведен опыт, в результате которого событие А произошло. Условные вероятности событий Н 1 , Н 2 , …, Н п относительно события А определяются формулами Байеса :

,

Пример 2.20 . В группе из 20 студентов, пришедших на экзамен, 6 подготовлены отлично, 8 – хорошо, 4 – удовлетворительно и 2 – плохо. В экзаменационных билетах имеется 30 вопросов. Отлично подготовленный студент может ответить на все 30 вопросов, хорошо подготовленный – на 24, удовлетворительно – на 15, плохо – на 7.

Вызванный наугад студент ответил на три произвольно заданных вопроса. Найти вероятность того, что этот студент подготовлен: а) отлично; б) плохо.

Решение.

Гипотезы – «студент подготовлен отлично»;

– «студент подготовлен хорошо»;

– «студент подготовлен удовлетворительно»;

– «студент подготовлен плохо».

До опыта:

; ; ; ;

7. Что называют полной группой событий?

8. Какие события называют равновозможными? Приведите примеры таких событий.

9. Что называют элементарным исходом?

10. Какие исходы называю благоприятными данному событию?

11. Какие операции можно проводить над событиями? Дайте им определения. Как обозначаются? Приведите примеры.

12. Что называется вероятностью?

13. Чему равна вероятность достоверного события?

14. Чему равна вероятность невозможного события?

15. В каких пределах заключена вероятность?

16. Как определяется геометрическая вероятность на плоскости?

17. Как определяется вероятность в пространстве?

18. Как определяется вероятность на прямой?

19. Чему равна вероятность суммы двух событий?

20. Чему равна вероятность суммы двух несовместных событий?

21. Чему равна вероятность суммы n несовместных событий?

22. Какую вероятность называют условной? Приведите пример.

23. Сформулируйте теорему умножения вероятностей.

24. Как найти вероятность появления хотя бы одного из событий?

25. Какие события называют гипотезами?

26. Когда применяются формула полной вероятности и формулы Байеса?

Понятие события и вероятности события. Достоверные и невозможные события. Классическое определение вероятностей. Теорема сложения вероятностей. Теорема умножения вероятностей . Решение простейших задач на определение вероятности с использованием сложения вероятностей.

Методические указания по теме 3.1:

Понятие события и вероятности события. Достоверные и невозможные события. Классическое определение вероятностей:

Изучение каждого явления в порядке наблюдения или производства опыта связан с осуществлением некоторого комплекса условий (испытаний). Всякий результат или исход испытания называется событием.

Если событие при заданных условиях может произойти или не произойти, то оно называется случайным. В том случае, когда событие должно непременно произойти, его называют достоверным , а в том случае, когда оно заведомо не может произойти, - невозможным.

События называются несовместными, если каждый раз возможно появление только одного из них. События называются совместными, если в данных условиях появление одного из этих событий не исключает появление другого при том же испытании.

События называются противоположными, если в условиях испытания они, являясь единственными его исходами, несовместны.

Вероятность события рассматривается как мера объективной возможности появления случайного события.

Вероятностью события называется отношение числа исходов m , благоприятствующих наступлению данного события , к числу n всех исходов (несовместных, единственно возможных и равновозможных), т.е.

Вероятность любого события не может быть меньше нуля и больше единицы, т.е. . Невозможному событию соответствует вероятность , а достоверному - вероятность

Пример 1. В лотерее из 1000 билетов имеются 200 выигрышных. Вынимают наугад один билет. Чему равна вероятность того, что этот билет выигрышный?

Общее число различных исходов есть n = 1000. Число исходов, благоприятствующих получению выигрыша, составляет m = 200. Согласно формуле, получим .

Пример 2. Из урны, в которой находятся 5 белых и 3 черных шара, вынимают один шар. Найти вероятность того, что шар окажется черным.

Обозначим событие, состоящее в появлении черного шара, через . Общее число случаев . Число случаев m , благоприятствующих появлению события , равно 3. По формуле получим .

Пример 3. Из урны, в которой находятся 12 белых и 8 черных шаров, вынимают наудачу два шара. Какова вероятность того, что оба шара окажутся черными?

Обозначим событие, состоящее в появлении двух черных шаров через . Общее число возможных случаев n равно числу сочетаний из 20 элементов (12 + 8) по два:

Число случаев m , благоприятствующих событию , составляет


По формуле находим вероятность появления двух черных шаров:

Теорема сложения вероятностей. Решение простейших задач на определение вероятности с использованием теоремы сложения вероятностей:

Теорема сложения вероятностей несовместных событий. Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равно сумме вероятностей этих событий:

Теорема сложения вероятностей совместных событий. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:

Пример 4. В ящике в случайном порядке разложены 20 деталей, причем пять из них стандартные. Рабочий берет наудачу три детали. Найти вероятность того, что по крайней мере она из взятых деталей окажется стандартной.

Очевидно, что по крайней мере одна из взятых деталей окажется стандартной, если произойдет любое из трех несовместных событий: B - одна деталь стандартная, две нестандартные; C - две детали стандартные, одна нестандартная и D - три детали стандартные.

Таким образом, событие A можно представить в виде суммы этих трех событий: A = B + C + D. По теореме сложения имеем P(A) = P(B) + P(C) + P(D). Находим вероятность каждого из этих событий:

Сложив найденные величины, получим

Пример 5. Найти вероятность того, что наудачу взятое двузначное число окажется кратным либо 3, либо 5, либо тому и другому одновременно.

Пусть A - событие, состоящее в том, что наудачу взятое число кратно 3, а B - в том, что оно кратно 5. Найдем Так как A и B совместные события, то воспользуемся формулой:

Всего имеется 90 двузначных чисел: 10, 11, 98, 99. Из них 30 являются кратными 3 (благоприятствуют наступлению события A ); 18 - кратными 5 (благоприятствуют наступлению события B ) и 6 - кратными одновременно 3 и 5 (благоприятствуют наступлению события AB ). Таким образом, т.е.

Теорема умножения вероятностей:

Теорема умножения вероятностей независимых событий. Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:

Вероятность появления нескольких событий, независимых в совокупности, вычисляется по формуле:

Теорема умножения вероятностей зависимых событий. Вероятность совместного появления двух зависимых событий равна произведению одного из них на условную вероятность второго:

Пример 6. В одной урне находятся 4 белых и 8 черных шаров, в другой - 3 белых и 9 черных. Из каждой урны вынули по шару. Найти вероятность того, что оба шара окажутся белыми.

Пусть - появление белого шара из первой урны, а - появление белого шара из второй урны. Очевидно, что события и независимы. Найдем

По формуле получим:

Вопросы для самопроверки по теме 3.1:

1. Что такое событие?

2. Какие события называются достоверными?

3. Какие события называются невозможными?

4. Дать определение вероятности.

5. Сформулировать теорему сложения вероятностей.

6. Сформулировать теорему умножения вероятностей.

Задания для самостоятельного решения по теме 3.1:

1. В ящике в случайном порядке положены 10 деталей, из которых 4 стандартных. Контролер взял наудачу 3 детали. Найти вероятность того, что хотя бы одна из взятых деталей оказалась стандартной.

2. В урне находятся 10 белых, 15 черных, 20 синих и 25 красных шаров. Найдите вероятность того, что вынутый шар окажется: 1) белым; 2) черным или красным.

3. Найдите вероятность того, что наудачу взятое двузначное число окажется кратным либо 4, либо 5, либо тому и другому одновременно.

4. Рабочий обслуживает два автомата, работающих независимо друг от друга. Вероятность того, что в течение часа первый автомат не потребует внимания рабочего, равна 0,8, а для второго автомата эта вероятность равна0,7. Найдите вероятность того, что в течение часа ни один и автоматов не потребует внимания рабочего.

5. В урне находятся 6 шаров, из которых 3 белых. Наудачу вынуты один за другим два шара. Вычислите вероятность того, что оба шара окажутся белыми.

6. В урне находятся 10 белых и 6 черных шаров. Найдите вероятность того, что три наудачу вынутых один за другим шара окажутся черными.

Рассматривается эксперимент Е . Предполагается, что его можно проводить неоднократно. В результате эксперимента могут появляться различные события, составляющие некоторое множество F . Наблюдаемые события разделяются на три вида: достоверное, невозможное, случайное.

Достоверным называется событие, которое обязательно произойдет в результате проведения эксперимента Е . Обозначается Ω.

Невозможным называется событие, которое заведомо не произойдет в результате проведения эксперимента Е . Обозначается .

Случайным называется событие, которое может произойти или не произойти в результате эксперимента Е .

Дополнительным (противоположным) событию А называется событие, обозначаемое , которое происходит тогда и только тогда, когда не происходит событиеА .

Суммой (объединением) событий называется событие, которое происходит тогда и только тогда, когда происходит хотя бы одно из данных событий (рисунок 3.1). Обозначения .

Рисунок 3.1

Произведением (пересечением) событий называется событие, происходящее тогда и только тогда, когда все данные события происходят вместе (одновременно) (рисунок 3.2). Обозначения . Очевидно, что события А и Внесовместны , если .

Рисунок 3.2

Полной группой событий называется множество событий, сумма которых есть достоверное событие:

Событие В называют частным случаем события А , если с появлением события В появляется и событие А . Говорят также, что событие В влечет событие А (Рисунок 3.3). Обозначение .

Рисунок 3.3

События А и В называются эквивалентными , если они происходят или не происходят совместно при проведении эксперимента Е . Обозначение . Очевидно, что, еслии.

Сложным событием называют наблюдаемое событие, выраженное через другие наблюдаемые в том же эксперименте события с помощью алгебраических операций.

Вероятность осуществления того или иного сложного события вычисляют с помощью формул сложения и умножения вероятностей.

Теорема сложения вероятностей

Следствия:

1) в случае, если события А и В несовместны, теорема сложения приобретает вид:

2) в случае трех слагаемых теорема сложения записывается в виде

3) сумма вероятностей взаимно противоположных событий равна 1:

Совокупность событий ,, …,называютполной группой событий , если

Сумма вероятностей событий, образующих полную группу, равна 1:

Вероятность появления события А при условии, что событие В произошло, называют условной вероятностью и обозначают или.

А и В зависимые события , если .

А и В независимые события , если .

Теорема умножения вероятностей

Следствия:

1) для независимых событий А и В

2) в общем случае для произведения трех событий теорема умножения вероятностей имеет вид:

Образцы решения задач

Пример 1 ‑ В электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов первого, второго и третьего элементов соответственно равны ,,. Найти вероятность того, что тока в цепи не будет.

Решение

Первый способ.

Обозначим события: - в цепи произошел отказ соответственно первого, второго и третьего элементов.

Событие А – тока в цепи не будет (откажет хотя бы один из элементов, так как они включены последовательно).

Событие ‑ в цепи ток (работают три элемента), . Вероятность противоположных событий связана формулой (3.4). Событие представляет собой произведение трех событий, являющихся попарно независимыми. По теореме умножения вероятностей независимых событий получаем

Тогда вероятность искомого события .

Второй способ.

С учетом принятых ранее обозначений запишем искомое событие А – откажет хотя бы один из элементов:

Так как слагаемые, входящие в сумму, совместны, следует применить теорему сложения вероятностей в общем виде для случая трех слагаемых (3.3):

Ответ: 0,388.

Задачи для самостоятельного решения

1 В читальном зале имеется шесть учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что оба учебника окажутся в переплете.

2 В мешке смешаны нити, среди которых 30 % белых, а остальные –красные. Определить вероятности того, что вынутые наудачу две нити будут: одного цвета; разных цветов.

3 Устройство состоит из трех элементов, работающих независимо. Вероятности безотказной работы за определенный промежуток времени первого, второго и третьего элементов соответственно равны 0,6; 0,7; 0,8. Найти вероятности того, что за это время безотказно будут работать: только один элемент; только два элемента; все три элемента; хотя бы два элемента.

4 Брошены три игральные кости. Найти вероятности следующих событий:

а) на каждой грани из выпавших появится пять очков;

б) на всех выпавших гранях появится одинаковое число очков;

в) на двух выпавших гранях появится одно очко, а на третьей грани – другое число очков;

г) на всех выпавших гранях появится разное число очков.

5 Вероятность попадания в мишень стрелком при одном выстреле равна 0,8. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью, меньшей 0,4, можно было ожидать, что не будет ни одного промаха?

6 Из цифр 1, 2, 3, 4, 5 сначала выбирается одна, а затем из оставшихся четырех – вторая цифра. Предполагается, что все 20 возможных исходов равновероятны. Найти вероятность того, что будет выбрана нечетная цифра: в первый раз; во второй раз; в оба раза.

7 Вероятность того, что в мужской обувной секции магазина очередной раз будет продана пара обуви 46-го размера, равна 0,01. Сколько должно быть продано пар обуви в магазине, чтобы с вероятностью, не меньшей 0,9, можно было ожидать, что будет продана хотя бы одна пара обуви 46-го размера?

8 В ящике 10 деталей, среди которых две нестандартные. Найти вероятность того, что в наудачу отобранных шести деталях окажется не более одной нестандартной.

9 Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие нестандартно, равна 0,1. Найти вероятность того, что:

а) из трех проверенных изделий только два окажутся нестандартными;

б) нестандартным окажется только четвертое по порядку проверенное изделие.

10 32 буквы русского алфавита написаны на карточках разрезной азбуки:

а) три карточки вынимают наугад одну за другой и укладывают на стол в порядке появления. Найти вероятность того, что получится слово «мир»;

б) извлеченные три карточки можно поменять местами произвольным образом. Какова вероятность того, что из них можно сложить слово «мир»?

11 Истребитель атакует бомбардировщик и дает по нему две независимые очереди. Вероятность сбить бомбардировщик первой очередью равна 0,2, а второй ‑ 0,3. Если бомбардировщик не сбит, он ведет по истребителю стрельбу из орудий кормовой установки и сбивает его с вероятностью 0,25. Найти вероятность того, что в результате воздушного боя сбит бомбардировщик или истребитель.

Домашнее задание

1 Формула полной вероятности. Формула Байеса.

2 Решить задачи

Задача 1 . Рабочий обслуживает три станка, работающих независимо друг от друга. Вероятность того, что в течение часа не потребует внимания рабочего первый станок, равна 0,9, второй – 0,8, третий – 0,85. Найти вероятность того, что в течение часа хотя бы один станок потребует внимания рабочего.

Задача 2 . Вычислительный центр, который должен производить непрерывную обработку поступающей информации, располагает двумя вычислительными устройствами. Известно, что каждое из них имеет вероятность отказа за некоторое время, равную 0,2. Требуется определить вероятность:

а) того, что откажет одно из устройств, а второе будет исправно;

б) безотказной работы каждого из устройств.

Задача 3 . Четыре охотника договорились стрелять по дичи в определенной последовательности: следующий охотник производит выстрел лишь в случае промаха предыдущего. Вероятность попадания для первого охотника равна 0,6, для второго – 0,7, для третьего – 0,8. Найти вероятность того, что будет произведено выстрелов:

г) четыре.

Задача 4 . Деталь проходит четыре операции обработки. Вероятность получения брака при первой операции равна 0,01, при второй – 0,02, при третьей – 0,03, при четвертой – 0,04. Найти вероятность получения детали без брака после четырех операций, предполагая, что события получения брака на отдельных операциях являются независимыми.