Что представляет собой изменение импульса тела. Импульс. Закон сохранения импульса. Изменение импульса

Подробности Категория: Механика Опубликовано 21.04.2014 14:29 Просмотров: 53533

В классической механике существуют два закона сохранения: закон сохранения импульса и закон сохранения энергии .

Импульс тела

Впервые понятие импульса ввёл французский математик, физик, механик и философ Декарт, назвавший импульс количеством движения .

С латинского «импульс» переводится как «толкать, двигать».

Любое тело, которое движется, обладает импульсом.

Представим себе тележку, стоящую неподвижно. Её импульс равен нулю. Но как только тележка начнёт двигаться, её импульс перестанет быть нулевым. Он начнёт изменяться, так как будет изменяться скорость.

Импульс материальной точки, или количество движения, – векторная величина, равная произведению массы точки на её скорость. Направление вектора импульса точки совпадает с направлением вектора скорости.

Если говорят о твёрдом физическом теле, то импульсом такого тела называют произведение массы этого тела на скорость центра масс.

Как вычислить импульс тела? Можно представить, что тело состоит из множества материальных точек, или системы материальных точек.

Если - импульс одной материальной точки, то импульс системы материальных точек

То есть, импульс системы материальных точек – это векторная сумма импульсов всех материальных точек, входящих в систему. Она равна произведению масс этих точек на их скорости.

Единица измерения импульса в международной системе единиц СИ – килограмм-метр в секунду (кг · м/сек).

Импульс силы

В механике существует тесная связь между импульсом тела и силой. Эти две величины связывает величина, которая называется импульсом силы .

Если на тело действует постоянная сила F в течение промежутка времени t , то согласно второму закону Ньютона

Эта формула показывает связь между силой, которая действует на тело, временем действия этой силы и изменением скорости тела.

Величина, равная произведению силы, действующей на тело, на время, в течение которого она действует, называется импульсом силы .

Как мы видим из уравнения, импульс силы равен разности импульсов тела в начальный и конечный момент времени, или изменению импульса за какое-то время.

Второй закон Ньютона в импульсной форме формулируется следующим образом: изменение импульса тела равно импульсу действующей на него силы. Нужно сказать, что сам Ньютон именно так и сформулировал первоначально свой закон.

Импульс силы – это также векторная величина.

Закон сохранения импульса вытекает из третьего закона Ньютона.

Нужно помнить, что этот закон действует только в замкнутой, или изолированной, физической системе. А замкнутой называют такую систему, в которой тела взаимодействуют только между собой и не взаимодействуют с внешними телами.

Представим замкнутую систему из двух физических тел. Силы взаимодействия тел друг с другом называют внутренними силами.

Импульс силы для первого тела равен

Согласно третьему закону Ньютона силы, которые действуют на тела при их взаимодействии, равны по величине и противоположны по направлению.

Следовательно, для второго тела импульс силы равен

Путём простых вычислений получаем математическое выражение закона сохранения импульса:

где m 1 и m 2 – массы тел,

v 1 и v 2 – скорости первого и второго тел до взаимодействия,

v 1 " и v 2 " скорости первого и второго тел после взаимодействия.

p 1 = m 1 · v 1 - импульс первого тела до взаимодействия;

p 2 = m 2 · v 2 - импульс второго тела до взаимодействия;

p 1 "= m 1 · v 1 " - импульс первого тела после взаимодействия;

p 2 "= m 2 · v 2 " - импульс второго тела после взаимодействия;

То есть

p 1 + p 2 = p 1 " + p 2 "

В замкнутой системе тела только обмениваются импульсами. А векторная сумма импульсов этих тел до их взаимодействия равна векторной сумме их импульсов после взаимодействия.

Так, в результате выстрела из ружья импульс самого ружья и импульс пули изменятся. Но сумма импульсов ружья и находящейся в нём пули до выстрела останется равной сумме импульсов ружья и летящей пули после выстрела.

При стрельбе из пушки возникает отдача. Снаряд летит вперёд, а само орудие откатывается назад. Снаряд и пушка – замкнутая система, в которой действует закон сохранения импульса.

Импульс каждого из тел в замкнутой системе может изменяться в результате их взаимодействия друг с другом. Но векторная сумма импульсов тел, входящих в замкнутую систему, не изменяется при взаимодействии этих тел с течением времени, то есть остаётся постоянной величиной. Это и есть закон сохранения импульса .

Более точно закон сохранения импульса формулируется следующим образом: векторная сумма импульсов всех тел замкнутой системы – величина постоянная, если внешние силы, действующие на неё, отсутствуют, или же их векторная сумма равна нулю.

Импульс системы тел может измениться только в результате действия на систему внешних сил. И тогда закон сохранения импульса действовать не будет.

Нужно сказать, что в природе замкнутых систем не существует. Но, если время действия внешних сил очень мало, например, во время взрыва, выстрела и т.п., то в этом случае воздействием внешних сил на систему пренебрегают, а саму систему рассматривают как замкнутую.

Кроме того, если на систему действуют внешние силы, но сумма их проекций на одну из координатных осей равна нулю, (то есть силы уравновешены в направлении этой оси), то в этом направлении закон сохранения импульса выполняется.

Закон сохранения импульса называют также законом сохранения количества движения .

Самый яркий пример применения закона сохранения импульса – реактивное движение.

Реактивное движение

Реактивным движением называют движение тела, которое возникает при отделении от него с определённой скоростью какой-то его части. Само тело получает при этом противоположно направленный импульс.

Самый простой пример реактивного движения – полёт воздушного шарика, из которого выходит воздух. Если мы надуем шарик и отпустим его, он начнёт лететь в сторону, противоположную движению выходящего из него воздуха.

Пример реактивного движения в природе – выброс жидкости из плода бешеного огурца, когда он лопается. При этом сам огурец летит в противоположную сторону.

Медузы, каракатицы и другие обитатели морских глубин передвигаются, вбирая воду, а затем выбрасывая её.

На законе сохранения импульса основана реактивная тяга. Мы знаем, что при движении ракеты с реактивным двигателем в результате сгорания топлива из сопла выбрасывается струя жидкости или газа (реактивная струя ). В результате взаимодействия двигателя с вытекающим веществом появляется реактивная сила . Так как ракета вместе с выбрасываемым веществом является замкнутой системой, то импульс такой системы не меняется со временем.

Реактивная сила возникает в результате взаимодействия только частей системы. Внешние силы не оказывают никакого влияния на её появление.

До того, как ракета начала двигаться, сумма импульсов ракеты и горючего была равна нулю. Следовательно, по закону сохранения импульса после включения двигателей сумма этих импульсов тоже равна нулю.

где - масса ракеты

Скорость истечени газа

Изменение скорости ракеты

∆ m f - расход массы топлива

Предположим, ракета работала в течение времени t .

Разделив обе части уравнения на t , получим выражение

По второму закону Ньютона реактивная сила равна

Реактивная сила, или реактивная тяга, обеспечивает движение реактивного двигателя и объекта, связанного с ним, в сторону, противоположную направлению реактивной струи.

Реактивные двигатели применяются в современных самолётах и различных ракетах, военных, космических и др.

Изменяются, так как на каждое из тел действуют силы взаимодействия, однако сумма импульсов остается постоянной. Это и называется законом сохранения импульса .

Второй закон Ньютона выражается формулой . Ее можно записать иным способом, если вспомнить, что ускорение равно быстроте изменения скорости тела. Для равноускоренного движения формула будет иметь вид:

Если подставить это выражение в формулу, получим:

,

Эту формулу можно переписать в виде:

В правой части этого равенства записано изменение произведения массы тела на его скорость. Произведение массы тела на скорость является физической величиной, которая называется импульсом тела или количеством движения тела .

Импульсом тела называют произведение массы тела на его скорость. Это векторная величина. Направление вектора импульса совпадает с направлением вектора скорости.

Другими словами, тело массой m , движущееся со скоростью обладает импульсом . За единицу импульса в СИ принят импульс тела массой 1 кг , движущегося со скоростью 1 м/с (кг·м/с). При взаимодействии друг с другом двух тел если первое действует на второе тело силой , то, согласному третьему закону Ньютона , второе действует на первое силой . Обозначим массы этих двух тел через m 1 и m 2 , а их скорости относительно какой-либо системы отсчета через и . Через некоторое время t в результате взаимодействия тел их скорости изменятся и станут равными и . Подставив эти значения в формулу, получим:

,

,

Следовательно,

Изменим знаки обеих частей равенства на противоположные и запишем в виде

В левой части равенства - сумма начальных импульсов двух тел, в правой части - сумма импульсов тех же тел через время t . Суммы равны между собой. Таким образом, несмотря на то. что импульс каждого тела при взаимодействии изменяется, полный импульс (сумма импульсов обоих тел) остается неизменным.

Действителен и тогда, когда взаимодействуют несколько тел. Однако, важно, чтобы эти тела взаимодействовали только друг с другом и на них не действовали силы со стороны других тел, не входящих в систему (либо чтоб внешние силы уравновешивались). Группа тел, не взаимодействущая с другими телами, называется замкнутой системой справедлив только для замкнутых систем.

Часто в физике говорят об импульсе тела, подразумевая при этом количество движения. На самом же деле это понятие тесно связано с совершенно другой величиной - с силой. Импульс силы - что это, как он вводится в физику, и каков его смысл: все эти вопросы подробно освещены в статье.

Количество движения

Импульс тела и импульс силы - это две взаимосвязанных величины, более того, они практически означают одно и то же. Сначала разберем понятие количества движения.

Количество движения как физическая величина впервые появилось в научных трудах ученых нового времени, в частности в XVII веке. Здесь важно отметить две фигуры: это Галилео Галилей, знаменитый итальянец, который обсуждаемую величину так и называл impeto (импульс), и Исаак Ньютон, великий англичанин, который помимо величины motus (движения) также использовал понятие vis motrix (движущая сила).

Итак, названные ученые под количеством движения понимали произведение массы объекта на скорость его линейного перемещения в пространстве. Это определение на языке математики записывается так:

Обратим внимание, что речь идет о величине векторной (p¯), направленной в сторону движения тела, которая пропорциональна модулю скорости, а роль коэффициента пропорциональности играет масса тела.

Связь импульса силы и изменения величины p¯

Как было сказано выше, помимо количества движения Ньютон ввел еще понятие движущей силы. Эту величину он определил так:

Это всем знакомый закон появления ускорения a¯ у тела в результате воздействия на него некоторой внешней силы F¯. Эта важная формула позволяет вывести закон импульса силы. Заметим, что a¯ - это производная по времени скорости (быстрота изменения v¯), что означает следующее:

F¯ = m*dv¯/dt или F¯*dt = m*dv¯ =>

F¯*dt = dp¯, где dp¯ = m*dv¯

Первая формула во второй строке - это импульс силы, то есть величина, равная произведению силы на промежуток времени, в течение которого она действует на тело. Она измеряется в ньютонах на секунду.

Анализ формулы

Выражение для импульса силы в предыдущем пункте также раскрывает физический смысл этой величины: она показывает, на сколько изменяется количество движения за промежуток времени dt. Заметим, что это изменение (dp¯) совершенно не зависит от общего значения количества движения тела. Импульс силы - это причина изменения количества движения, которая может приводить как к увеличению последнего (когда угол между силой F¯ и скоростью v¯ меньше 90 o), так и к его уменьшению (угол между F¯ и v¯ больше 90 o).

Из анализа формулы следует важный вывод: единицы измерения импульса силы совпадают с таковыми для p¯ (ньютон в секунду и килограмм на метр в секунду), более того, первая величина равна изменению второй, поэтому вместо импульса силы часто используют фразу "импульс тела", хотя более правильно говорить "изменение количества движения".

Силы, зависящие и не зависящие от времени

Выше закон импульса силы был представлен в дифференциальной форме. Чтобы посчитать значение этой величины, необходимо провести интегрирование по времени действия. Тогда получаем формулу:

∫ t1 t2 F¯(t)*dt = Δp¯

Здесь сила F¯(t) действует на тело в течение времени Δt = t2-t1, что приводит к изменению количества движения на Δp¯. Как видно, импульс силы - это величина, определяемая силой, зависящей от времени.

Теперь рассмотрим более простую ситуацию, которая реализуется в ряде экспериментальных случаев: будем считать, что сила от времени не зависит, тогда можно легко взять интеграл и получить простую формулу:

F¯*∫ t1 t2 dt = Δp¯ => F¯*(t2-t1) = Δp¯

При решении реальных задач на изменение количества движения, несмотря на то, что сила в общем случае зависит от времени действия, ее полагают постоянной и вычисляют некоторую эффективную среднюю величину F¯.

Примеры проявления на практике импульса силы

Какую роль играет эта величина, проще всего понять на конкретных примерах из практики. Перед тем как их привести, выпишем еще раз соответствующую формулу:

Заметим, если Δp¯ - величина постоянная, тогда модуль импульса силы - это тоже константа, поэтому чем больше Δt, тем меньше F¯, и наоборот.

Теперь приведем конкретные примеры импульса силы в действии:

  • Человек, который прыгает с любой высоты на землю, старается при приземлении согнуть ноги в коленях, тем самым он увеличивает время Δt воздействия поверхности земли (сила реакции опоры F¯), тем самым уменьшая ее силу.
  • Боксер, отклоняя голову от удара, продлевает время контакта Δt перчатки соперника с его лицом, уменьшая ударную силу.
  • Современные автомобили стараются конструировать таким образом, чтобы в случае их столкновения их корпус как можно сильнее деформировался (деформация - это процесс, развивающийся во времени, что приводит к значительному снижению силы столкновения и, как следствие, снижению рисков повреждения пассажиров).

Понятие о моменте силы и его импульсе

И импульс этого момента - это другие величины, отличные от рассмотренной выше, поскольку они касаются уже не линейного, а вращательного движения. Итак, момент силы M¯ определяется как векторное произведение плеча (расстояния от оси вращения до точки воздействия силы) на саму силу, то есть справедлива формула:

Момент силы отражает способность последней выполнить кручение системы вокруг оси. Например, если взяться за гаечный ключ подальше от гайки (большой рычаг d¯), то можно создать большой момент M¯, что позволит открутить гайку.

По аналогии с линейным случаем импульс M¯ можно получить, умножив его на промежуток времени, в течение которого он воздействует на вращающуюся систему, то есть:

Величина ΔL¯ носит название изменения углового момента, или момента импульса. Последнее уравнение имеет важное значение для рассмотрения систем с осью вращения, ведь оно показывает, что момент импульса системы будет сохраняться, если отсутствуют внешние силы, создающие момент M¯, что математически записывается так:

Если M¯= 0, тогда L¯ = const

Таким образом, оба уравнения импульсов (для линейного и кругового движения) оказываются аналогичными в плане их физического смысла и математических следствий.

Задача на столкновение птицы и самолета

Эта проблема не является чем-то фантастическим. Такие столкновения действительно происходят довольно часто. Так, по некоторым данным в 1972 году на территории воздушного пространства Израиля (зона наиболее плотной миграции птиц) было зарегистрировано около 2,5 тысяч столкновений птиц с боевыми и транспортными самолетами, а также с вертолетами.

Задача заключается в следующем: необходимо приблизительно рассчитать, какая сила удара приходится на птицу, если на пути ее движения встречается самолет, летящий со скоростью v=800 км/ч.

Перед тем как приступать к решению, примем, что длина птицы в полете составляет l = 0,5 метра, а ее масса равна m = 4 кг (это может быть, например, селезень или гусь).

Пренебрежем скоростью движения птицы (она мала в сравнении с таковой для самолета), а также будем считать массу самолета намного большей, чем птицы. Эти приближения позволяют говорить, что изменение количества движения птицы равно:

Для вычисления силы удара F необходимо знать продолжительность этого инцидента, она приблизительно равна:

Комбинируя эти две формулы, получаем искомое выражение:

F = Δp/Δt = m*v 2 /l.

Подставив в него цифры из условия задачи, получаем F = 395062 Н.

Более наглядно будет перевести эту цифру в эквивалентную массу, используя формулу для веса тела. Тогда получим: F = 395062/9,81 ≈ 40 тонн! Иными словами птица воспринимает столкновение с самолетом так, будто на нее свалилось 40 тонн груза.

Импульс... Понятие, довольно часто используемое в физике. Что понимают под этим термином? Если задать этот вопрос простому обывателю, в большинстве случаев мы получим ответ, что импульс тела - это определенное воздействие (толчок или удар), оказываемое на тело, благодаря чему оно получает возможность двигаться в заданном направлении. В целом довольно верное объяснение.

Импульс тела - определение, с которым мы впервые сталкиваемся в школе: на уроке физики нам показывали, как по наклонной поверхности скатывалась небольшая тележка и сталкивала со стола металлический шарик. Именно тогда мы рассуждали, что может оказать влияние на силу и длительность этого Из подобных наблюдений и умозаключений много лет назад и родилось понятие импульса тела как характеристики движения, напрямую зависящей от скорости и массы объекта.

Сам термин в науку ввел француз Рене Декарт. Произошло это в начале XVII века. Ученый объяснял импульс тела не иначе как «количество движения». Как говорил сам Декарт, если одно движущееся тело сталкивается с другим, оно теряет столько своей энергии, сколько отдает другому объекту. Потенциал тела, по мнению физика, никуда не исчезал, а лишь передавался от одного предмета другому.

Основной характеристикой, которой обладает импульс тела, является его направленность. Иначе говоря, он представляет собой Отсюда следует и такое утверждение, что всякое тело, находящееся в движении, обладает определенным импульсом.

Формула воздействия одного объекта на другой: p = mv, где v - скорость тела (векторная величина), m - масса тела.

Однако импульс тела - не единственная величина, определяющая движение. Почему одни тела, в отличие от других, не теряют его продолжительное время?

Ответом на этот вопрос стало появление еще одного понятия - импульса силы, который определяет величину и продолжительность воздействия на предмет. Именно он позволяет нам определять, как изменяется импульс тела за определенный промежуток времени. Импульс силы представляет собой произведение величины воздействия (собственно силы) на продолжительность его приложения (время).

Одним из наиболее примечательных особенностей ИТ является его сохранение в неизменном виде при условии замкнутой системы. Иначе говоря, при отсутствии иных воздействий на два предмета, импульс тела между ними будет оставаться стабильным сколько угодно долго. Принцип сохранения можно учитывать и в ситуации, когда внешнее воздействие на объект присутствует, но его векторное воздействие равно 0. Также импульс не изменится и в том случае, когда воздействие этих сил незначительно или действует на тело весьма непродолжительный период времени (как, например, при выстреле).

Именно этот закон сохранения не одну сотню лет не дает покоя изобретателям, ломающим голову над созданием пресловутого «вечного двигателя», так как именно он лежит в основе такого понятия, как

Что касается применения знаний о таком явлении, как импульс тела, то их используют при разработке ракет, вооружения и новых, пусть и не вечных, механизмов.

Изучив законы Ньютона, мы видим, что с их помощью можно решить основные задачи механики, если нам известны все силы, действующие на тело. Есть ситуации, в которых определить эти величины затруднительно или вообще невозможно. Рассмотрим несколько таких ситуаций. При столкновении двух биллиардных шаров или автомобилей мы можем утверждать о действующих силах, что это их природа, здесь действуют силы упругости. Однако ни их модулей, ни их направлений мы точно установить не сможем, тем более что эти силы имеют крайне малое время действия. При движении ракет и реактивных самолетов мы также мало что можем сказать о силах, приводящих указанные тела в движение. В таких случаях применяются методы, позволяющие уйти от решения уравнений движения, а сразу воспользоваться следствиями этих уравнений. При этом вводятся новые физические величины. Рассмотрим одну из этих величин, называемую импульсом тела

Стрела, выпускаемая из лука. Чем дольше продолжается контакт тетивы со стрелой (∆t), тем больше изменение импульса стрелы (∆), а следовательно, тем выше ее конечная скорость.

Два сталкивающихся шарика. Пока шарики находятся в контакте, они действуют друг на друга с равными по модулю силами, как учит нас третий закон Ньютона. Значит, изменения их импульсов также должны быть равны по модулю, даже если массы шариков не равны.

Проанализировав формулы, можно сделать два важных вывода:

1. Одинаковые силы, действующие в течение одинакового промежутка времени, вызывают одинаковые изменения импульса у различных тел, независимо от массы последних.

2. Одного и того же изменения импульса тела можно добиться, либо действуя небольшой силой в течение длительного промежутка времени, либо действуя кратковременно большой силой на то же самое тело.

Согласно второму закону Ньютона, можем записать:

∆t = ∆ = ∆ / ∆t

Отношение изменения импульса тела к промежутку времени, в течение которого это изменение произошло, равно сумме сил, действующих на тело.

Проанализировав это уравнение, мы видим, что второй закон Ньютона позволяет расширить класс решаемых задач и включить задачи, в которых масса тел изменяется с течением времени.

Если же попытаться решить задачи с переменной массой тел при помощи обычной формулировки второго закона Ньютона:

то попытка такого решения привела бы к ошибке.

Примером тому могут служить уже упоминаемые реактивный самолет или космическая ракета, которые при движении сжигают топливо, и продукты этого сжигаемого выбрасывают в окружающее пространство. Естественно, масса самолета или ракеты уменьшается по мере расхода топлива.

Несмотря на то что второй закон Ньютона в виде «равнодействующая сила равна произведению массы тела на его ускорение» позволяет решить довольно широкий класс задач, существуют случаи движения тел, которые не могут быть полностью описаны этим уравнением. В таких случаях необходимо применять другую формулировку второго закона, связывающую изменение импульса тела с импульсом равнодействующей силы. Кроме того, существует ряд задач, в которых решение уравнений движения является математически крайне затруднительным либо вообще невозможным. В таких случаях нам полезно использовать понятие импульса.

С помощью закона сохранения импульса и взаимосвязи импульса силы и импульса тела мы можем вывести второй и третий закон Ньютона.

Второй закон Ньютона выводится из соотношения импульса силы и импульса тела.

Импульс силы равен изменению импульса тела:

Произведя соответствующие переносы, мы получим зависимость силы от ускорения, ведь ускорение определяется как отношение изменения скорости ко времени, в течение которого это изменение произошло:

Подставив значения в нашу формулу, получим формулу второго закона Ньютона:

Для выведения третьего закона Ньютона нам понадобится закон сохранения импульса.

Векторы подчеркивают векторность скорости, то есть то, что скорость может изменяться по направлению. После преобразований получим:

Так как промежуток времени в замкнутой системе был величиной постоянной для обоих тел, мы можем записать:

Мы получили третий закон Ньютона: два тела взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению. Векторы этих сил направлены навстречу друг к другу, соответственно, модули этих сил равны по своему значению.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.

Домашнее задание

  1. Дать определение импульсу тела, импульсу силы.
  2. Как связаны импульс тела с импульсом силы?
  3. Какие выводы можно сделать по формулам импульса тела и импульса силы?
  1. Интернет-портал Questions-physics.ru ().
  2. Интернет-портал Frutmrut.ru ().
  3. Интернет-портал Fizmat.by ().