Что такое химическая коррозия и как ее устранить? Коррозия металлов

– физико-химическое или химическое взаимодействие между металлом (сплавом) и средой, приводящее к ухудшению функциональных свойств металла (сплава), среды или включающей их технической системы.

Слово коррозия происходит от латинского «corrodo» – «грызу» (позднелатинское «corrosio» означает «разъедание»).

Коррозия вызывается химической реакцией металла с веществами окружающей среды, протекающей на границе металла и среды. Чаще всего это окисление металла, например, кислородом воздуха или кислотами, содержащимися в растворах, с которыми контактирует металл. Особенно подвержены этому металлы, расположенные в ряду напряжений (ряду активности) левее водорода, в том числе железо.

В результате коррозии железо ржавеет. Этот процесс очень сложен и включает несколько стадий. Его можно описать суммарным уравнением:

Fe + 6 H 2 O (влага) + 3 O 2 (воздух) = 4 Fe (OH ) 3

Гидроксид железа(

III ) очень неустойчив, быстро теряет воду и превращается в оксид железа(III ). Это соединение не защищает поверхность железа от дальнейшего окисления. В результате железный предмет может быть полностью разрушен.

Многие металлы, в том числе и довольно активные (например, алюминий) при коррозии покрываются плотной, хорошо скрепленной с металлами оксидной пленкой, которая не позволяет окислителям проникнуть в более глубокие слои и потому предохраняет металл от коррозии. При удалении этой пленки металл начинает взаимодействовать с влагой и кислородом воздуха.

Алюминий в обычных условиях устойчив к воздействию воздуха и воды, даже кипящей, однако если на поверхность алюминия нанести ртуть, то образующаяся амальгама разрушает оксидную пленку – выталкивает ее с поверхности, и металл быстро превращается в белые хлопья метагидроксида алюминия:

4Al + 2H 2 O + 3O 2 = 4AlO(OH) Амальгамированный алюминий взаимодействует с водой с выделением водорода: Al + 4 H 2 O = 2 AlO (OH ) + 3 H 2

Коррозии подвергаются и некоторые довольно мало активные металлы. Во влажном воздухе поверхность меди покрывается зеленоватым налетом (патиной) в результате образования смеси основных солей.

Иногда при коррозии металлов происходит не окисление, а восстановление некоторых элементов, содержащихся в сплавах. Например, при высоких давлениях и температурах карбиды, содержащиеся в сталях, восстанавливаются водородом.

Разрушение металлов в присутствии водорода обнаружили в середине девятнадцатого века. Французский инженер Сент Клэр Девиль изучал причины неожиданных разрывов орудийных стволов. При их химическом анализе он нашел в металле водород. Девиль решил, что именно водородное насыщение явилось причиной внезапного падения прочности стали.

Много хлопот доставил водород конструкторам оборудования для одного из важнейших промышленных химических процессов – синтеза аммиака. Первые аппараты для этого синтеза служили лишь десятки часов, а затем разлетались на мелкие части. Только добавление в сталь титана, ванадия или молибдена помогло решить эту проблему.

К коррозии металлов можно отнести также их растворение в жидких расплавленных металлах (натрий, свинец, висмут), которые используются, в частности, в качестве теплоносителей в ядерных реакторах.

По стехиометрии реакции, описывающие коррозию металлов, довольно просты, однако по механизму они относятся к сложным гетерогенным процессам. Механизм коррозии определяется, прежде всего, типом агрессивной среды.

При контакте металлического материала с химически активным газом на его поверхности появляется пленка продуктов реакции. Она препятствует дальнейшему контакту металла и газа. Если сквозь эту пленку происходит встречная диффузия реагирующих веществ, то реакция продолжается. Процесс облегчается при высоких температурах. В ходе коррозии пленка продукта непрерывно утолщается, а металл разрушается. Большие убытки от газовой коррозии терпит металлургия и другие отрасли промышленности, где используются высокие температуры.

Наиболее распространена коррозия в средах электролитов. В некоторых технологических процессах металлы контактируют с расплавами электролитов. Однако чаще всего коррозия протекает в растворах электролитов. Металл не обязательно должен быть полностью погружен в жидкость. Растворы электролитов могут находиться в виде тонкой пленки на поверхности металла. Они нередко пропитывают окружающую металл среду (почву, бетон и др.).

Во время строительства метромоста и станции «Ленинские горы» в Москве в бетон добавляли большое количество хлорида натрия, чтобы не допустить замерзания еще не схватившегося бетона. Станция была сооружена в кратчайшие сроки (всего за 15 месяцев) и открыта 12 января 1959. Однако присутствие хлорида натрия в бетоне вызвало разрушение стальной арматуры. Коррозии оказались подвергнуты 60% железобетонных конструкций, поэтому станция была закрыта на реконструкцию, продолжавшуюся почти 10 лет. Лишь 14 января 2002 состоялось повторное открытие метромоста и станции, получившей название «Воробьевы горы».

Использование солей (обычно хлорида натрия или кальция) для удаления снега и льда с дорог и тротуаров также приводит к ускоренному разрушению металлов. Сильно страдают транспортные средства и подземные коммуникации. Подсчитано, что только в США применение солей для борьбы со снегопадами и гололедом приводит к потерям на сумму около 2 млрд. долл. в год в связи с коррозией двигателей и 0,5 млрд. долл. на дополнительный ремонт дорог, подземных магистралей и мостов.

В средах электролитов коррозия обусловлена не только действием кислорода, воды или кислот на металлы, но и электрохимическими процессами. Уже в начале 19 в. электрохимическую коррозию изучали английские ученые Гемфри Дэви и Майкл Фарадей. Первая теория электрохимической коррозии была выдвинута в 1830 швейцарским ученым Де ла Ривом. Она объясняла возникновение коррозии в месте контакта двух разных металлов.

Электрохимическая коррозия приводит к быстрому разрушению более активных металлов, которые в различных механизмах и устройствах контактируют с менее активными металлами, расположенными в электрохимическом ряду напряжений правее. Использование медных или латунных деталей в железных или алюминиевых конструкциях, которые работают в морской воде, существенно усиливает коррозию. Известны случаи разрушения и затопления кораблей, железная обшивка которых была скреплена медными заклепками.

По отдельности алюминий и титан устойчивы к действию морской воды, но если они контактируют в одном изделии, например в боксе для подводной фототехники, алюминий очень быстро разрушается, и бокс протекает.

Электрохимические процессы могут протекать и в однородном металле. Они активизируются, если есть различия в составе зерна металла в объеме и на границе, неоднородное механическое напряжение, микропримеси и т.д. В разработке общей теории электрохимической коррозии металлических материалов участвовали многие наши соотечественники, в том числе Владимир Александрович Кистяковский (1865–1952) и Александр Наумович Фрумкин (1895–1976).

Одной из причин возникновения электрохимической коррозии являются блуждающие токи, которые появляются вследствие утечки части тока из электрических цепей в почву или водные растворы, где они попадают на металлические конструкции. В местах выхода тока из этих конструкций вновь в почву или воду начинается растворение металла. Такие зоны разрушения металлов под действием блуждающих токов особенно часто наблюдаются в районах наземного электрического транспорта (трамвайные линии, железнодорожный транспорт на электрической тяге). Эти токи могут достигать несколько ампер, что приводит к большим коррозионным разрушениям. Например, прохождение тока силой в 1 А в течение одного года вызовет растворение 9,1 кг железа, 10,7 кг цинка, 33,4 кг свинца.

Коррозия может возникать и под влиянием радиационного излучения, а также продуктов жизнедеятельности бактерий и других организмов. С развитием бактерий на поверхности металлических конструкций связано явление биокоррозии. Обрастание подводной части судов мелкими морскими организмами также оказывает влияние на коррозионные процессы.

При одновременном воздействии на металл внешней среды и механических напряжений все коррозионные процессы активизируются, поскольку при этом понижается термическая устойчивость металла, нарушаются оксидные пленки на поверхности металла, усиливаются электрохимические процессы в местах появления трещин и неоднородностей.

Коррозия приводит к огромным безвозвратным потерям металлов, ежегодно полностью разрушается около 10% производимого железа. По данным Института физической химии РАН, каждая шестая домна в России работает впустую – весь выплавляемый металл превращается в ржавчину. Разрушение металлических конструкций, сельскохозяйственных и транспортных машин, промышленной аппаратуры становится причиной простоев, аварий, ухудшения качества продукции. Учет возможной коррозии приводит к повышенным затратам металла при изготовлении аппаратов высокого давления, паровых котлов, металлических контейнеров для токсичных и радиоактивных веществ и т.д. Это увеличивает общие убытки от коррозии. Немалые средства приходится тратить на противокоррозионную защиту. Соотношение прямых убытков, косвенных убытков и расходов на защиту от коррозии оценивают как (3–4):1:1. В промышленно развитых странах ущерб от коррозии достигает 4% национального дохода. В нашей стране он исчисляется миллиардами рублей в год.

Проблемы коррозии постоянно обостряются из-за непрерывного роста производства металлов и ужесточения условий их эксплуатации. Среда, в которой используются металлические конструкции, становится все более агрессивной, в том числе и за счет ее загрязнения. Металлические изделия, используемые в технике, работают в условиях все более высоких температур и давлений, мощных потоков газов и жидкостей. Поэтому вопросы защиты металлических материалов от коррозии становятся все более актуальными. Полностью предотвратить коррозию металлов невозможно, поэтому единственным путем борьбы с ней является поиск способов ее замедления.

Проблема защиты металлов от коррозии возникла почти в самом начале их использования. Люди пытались защитить металлы от атмосферного воздействия с помощью жира, масел, а позднее и покрытием другими металлами и, прежде всего, легкоплавким оловом (лужением). В трудах древнегреческого историка Геродота (5 в. до н. э.) и древнеримского ученого Плиния Старшего (1 в. до н. э.) уже есть упоминания о применении олова для предохранения железа от ржавления. В настоящее время борьбу с коррозией ведут сразу в нескольких направлениях – пытаются изменить среду, в которой работает металлическое изделие, повлиять на коррозионную устойчивость самого материала, предотвратить контакт между металлом и агрессивными веществами внешней среды.

Полностью предотвратить коррозию можно только в инертной среде, например в атмосфере аргона, однако реально создать такую среду при эксплуатации конструкций и механизмов в подавляющем большинстве случаев невозможно. На практике для снижения коррозионной активности среды из нее стараются удалить наиболее реакционноспособные компоненты, например, снижают кислотность водных растворов и почв, с которыми могут контактировать металлы. Одним из методов борьбы с коррозией железа и его сплавов, меди, латуни, цинка, свинца является удаление из водных растворов кислорода и диоксида углерода. В энергетике и некоторых отраслях техники воду освобождают также от хлоридов, которые стимулируют локальную коррозию. Для снижения кислотности почвы проводят известкование.

Агрессивность атмосферы сильно зависит от влажности. Для любого металла есть некоторая критическая относительная влажность, ниже которой он не подвергается атмосферной коррозии. Для железа, меди, никеля, цинка она составляет 50–70%. Иногда для сохранности изделий, имеющих историческую ценность, их температуру искусственно поддерживают выше точки росы. В закрытых пространствах (например, в упаковочных коробках) влажность понижают с помощью силикагеля или других адсорбентов. Агрессивность промышленной атмосферы определяется, в основном продуктами сгорания топлива (см . ЗАГРЯЗНЕНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ ). Уменьшению потерь от коррозии способствует предотвращение кислотных дождей и устранение вредных газовых выбросов.

Разрушение металлов в водных средах можно замедлить при помощи ингибиторов коррозии, которые в небольших количествах (обычно менее 1%) вводят в водные растворы. Они способствуют пассивированию поверхности металла, то есть образованию тонкой и плотной пленки оксидов или других малорастворимых соединений, которая препятствует разрушению основного вещества. Для этой цели применяют некоторые соли натрия (карбонат, силикат, борат) и другие соединения. Если бритвенные лезвия погрузить в раствор хромата калия, они хранятся намного дольше. Часто используют органические ингибиторы, которые более эффективны, чем неорганические.

Один из способов защиты от коррозии основывается на разработке новых материалов, обладающих более высокой коррозионной стойкостью. Постоянно ведутся поиски заменителей коррозирующих металлов. Пластмассы, керамика, стекло, резина, асбест и бетон более устойчивы к воздействию окружающей среды, однако по многим другим свойствам они уступают металлам, которые по-прежнему служат основными конструкционными материалами.

Благородные металлы практически не поддаются коррозии, но для широкого применения они слишком дороги, поэтому их используют лишь в наиболее ответственных деталях, например для изготовления некорродирующих электрических контактов. Высокой коррозионной стойкостью обладают никель, алюминий, медь, титан и сплавы на их основе. Их производство растет довольно быстро, однако и сейчас наиболее доступным и широко используемым металлом остается быстро ржавеющее железо. Для придания коррозионной стойкости сплавам на основе железа часто используют легирование. Так получают нержавеющую сталь, которая, помимо железа, содержит хром и никель. Самая распространенная в наше время нержавеющая сталь марки 18–8 (18% хрома и 8% никеля) появилась в 1923. Она вполне устойчива к воздействию влаги и кислорода. Первые тонны нержавеющей стали в нашей стране были выплавлены в 1924 в Златоусте. Сейчас разработано много марок таких сталей, которые, помимо хрома и никеля, содержат марганец, молибден, вольфрам и другие химические элементы. Часто применяют поверхностное легирование недорогих железных сплавов цинком, алюминием, хромом.

Для противостояния атмосферной коррозии на стальные изделия наносятся тонкие покрытия из других металлов, более устойчивых к воздействию влаги и кислорода воздуха. Часто используются покрытия из хрома и никеля. Поскольку хромовые покрытия нередко содержат трещины, их обычно наносят поверх менее декоративных никелевых покрытий. На защиту жестяных консервных банок от коррозии в органических кислотах, содержащихся в пищевых продуктах, расходуется значительное количество олова. Долгое время для покрытия кухонной утвари использовали кадмий, однако теперь известно, что этот металл опасен для здоровья и кадмиевые покрытия используются только в технике.

Для замедления коррозии на поверхность металла наносят лаки и краски, минеральные масла и смазку. Подземные конструкции покрывают толстым слоем битума или полиэтилена. Внутренние поверхности стальных труб и резервуаров защищают дешевыми покрытиями из цемента.

Чтобы лакокрасочное покрытие было более надежным, поверхность металла тщательно очищают от грязи и продуктов коррозии и подвергают специальной обработке. Для стальных изделий используют так называемые преобразователи ржавчины, содержащие ортофосфорную кислоту (Н 3 РО 4) и ее соли. Они растворяют остатки оксидов и формируют плотную и прочную пленку фосфатов, которая способна на некоторое время защитить поверхность изделия. Затем металл покрывают грунтовочным слоем, который должен хорошо ложиться на поверхность и обладать защитными свойствами (обычно используют свинцовый сурик или хромат цинка). Только после этого можно наносить лак или краску.

Одним из наиболее эффективных методов борьбы с коррозией является электрохимическая защита. Для защиты буровых платформ, сварных металлических оснований, подземных трубопроводов их подключают в качестве катода к внешнему источнику тока. В качестве анода используются вспомогательные инертные электроды.

Другой вариант такой защиты применяют для сравнительно небольших стальных конструкций или дополнительно покрытых изоляцией металлических объектов (например, трубопроводов). В этом случае используют протектор – анод из сравнительно активного металла (обычно это магний, цинк, алюминий и их сплавы), который постепенно разрушается, оберегая основной объект. С помощью одного магниевого анода защищают до 8 км трубопровода. Протекторная защита широко распространена; например, в США на производство протекторов ежегодно расходуется около 11,5 тыс. т алюминия.

Защита одного металла другим, более активным металлом, расположенным в ряду напряжений левее, эффективна и без наложения разности потенциалов. Более активный металл (например, цинк на поверхности железа) защищает от разрушения менее активный металл.

К электрохимическим методам борьбы с коррозией можно отнести и защиту от разрушения конструкций блуждающими токами. Одним из способов устранения такой коррозии является соединение металлическим проводником участка конструкции, с которого стекает блуждающий ток, с рельсом, по которому движется трамвай или электропоезд.

Елена Савинкина

ЛИТЕРАТУРА Фримантл М. Химия в действии . В 2-х ч. М., Мир, 1991
Степин Б.Д., Аликберова Л.Ю. Книга по химии для домашнего чтения . М., Химия, 1994

Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией. Коррозия металлов вызывается , в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.

Можно выделить 3 признака, характеризующих коррозию:

  • Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
  • Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
  • Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.

Виды коррозии металлов

Наиболее часто встречаются следующие виды коррозии металлов :

  1. Равномерная – охватывает всю поверхность равномерно
  2. Неравномерная
  3. Избирательная
  4. Местная пятнами – корродируют отдельные участки поверхности
  5. Язвенная (или питтинг)
  6. Точечная
  7. Межкристаллитная – распространяется вдоль границ кристалла металла
  8. Растрескивающая
  9. Подповерхностная
Основные виды коррозии

С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.

Химическая коррозия металлов

Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют . Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.

Химическая коррозия металлов бывает газовой и жидкостной.

Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).

Жидкостная коррозия металлов – может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.

При химической коррозии скорость разрушения металла пропорциональна и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.

Сплошность такой пленки оценивают величине фактора Пиллинга-Бэдвордса: (α = V ок /V Ме) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла

α = V ок /V Ме = М ок ·ρ Ме /(n·A Me ·ρ ок) ,

где V ок — объем образовавшегося оксида

V Ме — объем металла, израсходованный на образование оксида

М ок – молярная масса образовавшегося оксида

ρ Ме – плотность металла

n – число атомов металла

A Me — атомная масса металла

ρ ок — плотность образовавшегося оксида

Оксидные пленки, у которых α < 1 , не являются сплошными и сквозь них кислород легко проникает к поверхности металла. Такие пленки не защищают металл от коррозии. Они образуются при окислении кислородом щелочных и щелочно-земельных металлов (исключая бериллий).

Оксидные пленки, у которых 1 < α < 2,5 являются сплошными и способны защитить металл от коррозии.

При значениях α > 2,5 условие сплошности уже не соблюдается , вследствие чего такие пленки не защищают металл от разрушения.

Ниже представлены значения α для некоторых оксидов металлов

металл оксид α металл оксид α
K K 2 O 0,45 Zn ZnO 1,55
Na Na 2 O 0,55 Ag Ag 2 O 1,58
Li Li 2 O 0,59 Zr ZrO 2 1.60
Ca CaO 0,63 Ni NiO 1,65
Sr SrO 0,66 Be BeO 1,67
Ba BaO 0,73 Cu Cu 2 O 1,67
Mg MgO 0,79 Cu CuO 1,74
Pb PbO 1,15 Ti Ti 2 O 3 1,76
Cd CdO 1,21 Cr Cr 2 O 3 2,07
Al Al 2 ­O 2 1,28 Fe Fe 2 O 3 2,14
Sn SnO 2 1,33 W WO 3 3,35
Ni NiO 1,52

Электрохимическая коррозия металлов

Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных , который сопровождается возникновением внутри системы электрического тока.

При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:

  • Анодного – металл в виде ионов переходит в раствор.
  • Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).

Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.

Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией .

Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде

2H + +2e — = H 2 разряд водородных ионов

2H 3 O + +2e — = H 2 + 2H 2 O

Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде

O 2 + 4H + +4e — = H 2 O восстановление растворенного кислорода

O 2 + 2H 2 O + 4e — = 4OH —

Все металлы, по их отношению к электрохимической коррозии , можно разбить на 4 группы, которые определяются величинами их :

  1. Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е 0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
  2. Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е 0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
  3. Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е 0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
  4. Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.

Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:

  • Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
  • Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.

Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:

А: Fe – 2e — = Fe 2+

K: O 2 + 4H + + 4e — = 2H 2 O

Катодом является та поверхность, где больше приток кислорода.

  • Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
  • Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
  • Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
  • Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO 2 , H 2 S и др., способствующие коррозии металла.
  • Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.

Методы защиты от коррозии металла

Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.

Металлические покрытия.

Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием . Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием .

Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным .

Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.

Неметаллические покрытия.

Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).

Химические покрытия.

В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:

оксидирование – получение устойчивых оксидных пленок (Al 2 O 3 , ZnO и др.);

фосфатирование – получение защитной пленки фосфатов (Fe 3 (PO 4) 2 , Mn 3 (PO 4) 2);

азотирование – поверхность металла (стали) насыщают азотом;

воронение стали – поверхность металла взаимодействует с органическими веществами;

цементация – получение на поверхности металла его соединения с углеродом.

Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.

Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.

Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.

Протекторная защита – один из видов электрохимической защиты – заключается в следующем.

К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором . Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.

Категории ,

Воды и железа. Уже при влажности воздуха 50% поверхность железа покрывается слоем воды толщиной в 15 молекул. Коррозия усиливается в присутствии ионов хлора Cl - , которые способствуют растворению ржавчины и переходу её в раствор в виде химического соединения . В качестве ингибиторов коррозии (веществ, замедляющиех корродирование металла), используют раствор NaNO 2 , глицерин, амины (бутил-амин) и их соли. Белый осадок Fe(OH) 2 гидроксида железа II, присутствующее в растворе ржавичны, на воздухе быстро окисляется, превращаясь в жёлто-коричневый гидроксид железа(III). В отличие от Fe(OH) 2 , новый гидроксид железа (III) Fe(OH) 3 , который являетсфя амфотерным, хотя его кислотные свойства выражены намного слабее основных; он растворяется только в концентрированных щелочах при нагревании:

Fe(OH) 3 +3КОН→ K 3 .

При окислении железа промежуточным продуктом реакции является грязно-зелёный осадок гидроксида, содержащего Fe (II) и Fe (III).

Интересным, но неприятным свойством ржавчины является то, что она занимает намного больший объём, чем занимало железо. Это может вызвать катастрофические последствия: хотя с виду ржавчина кажется рыхлой и мягкой, при её росте развиваются гигантские усилия. Когда в Лондоне по проекту Кристофера Рена в 1675-1710 гг. строили грандиозный собор Святого Павла, каменные блоки колокольни для прочности соединили железными скобами, которые были уложены в желобки, выдолбленные в камне. За сотни лет скобы проржавели, увеличились в объёме и стали поднимать каменную кладку, отчего колокольню перекосило. Инженеры подсчитали: давление, развиваемое ржавчиной, настолько велико, что приподняло бы даже двухкилометровый слой камней! Пришлось разобрать кладку и вставить в желобки новые скобы из нержавеющей стали.

Скорость окисления железа (появление ржавчины ) очень сильно зависит от обшей поверхности соприкосновения металла и воздуха. Так, обычный гвоздь, даже если он сильно нагрет, не скоро превращается в окалину. Мелкие опилки при сильном нагреве быстро сгорают, а при внесении в пламя - вспыхивают в виде искр. Химическим способом - восстановлением оксидов железа водородом - можно получить ещё более мелкий порошок железа; его называют пирофорным. Он вспыхивает на воздухе уже при обычной температуре. Пирофорными могут быть и многие другие металлы в мелкораздробленном состоянии, а также оксид FeO.

Коррозия металлов

Коррозия металлов - (от латинского corrodere - грызть ) процессы, происходящие в результате химического воздействия окружающей среды, в результате которых происходит их разрушение.

От этого процесса отличается другой процесс - эрозия металлов , представляющий собой разрушение их поверхности под механическим воздействием среды.

Коррозия металлов означает разъедание, - начинается также на их поверхности. Происходит химическое взаимодействие с окружающей средой. Это процесс является самопроизвольным, а также является следствием окислительно-восстановительных реакций с компонентами окружающей среды. В результате разрушения металла образуются продукты его окисления, а именно: оксиды, гидроксиды, иногда просто происходит его растворение в среде до ионного состояния. Такое превращение сопровождается существенным изменением свойств.

Известны различные виды коррозии металлов . Одним из основных её видов является химическая , которую иногда ещё называют газовой коррозия , так как иногда она происходит под воздействием газообразных компонентов из окружающей среды при высоких температурах. Химическая коррозия может происходить и под воздействием некоторых агрессивных жидкостей. Основным этого процесса является то, что она происходит без возникновения в системе электрического тока. Ей подвергаются детали и узлы машин, работающих в атмосфере кислорода при высоких температурах, например турбинные двигатели, ракетные двигатели и некоторые другие, а также подвергаются детали узлы оборудования химического производства.

Другим распространённым видом разрушения металлов яввляется электрохимическая коррозия - поверхностное разрушение в среде электролита с возникновением в системе электрического тока. Электрохимическая коррозия - разрушение в атмосфере, на почве, водоёмах, грунтах.

Характер разрушения поверхности металла может быть различным и зависит от свойств этого металла и условиях протекания процесса. Теперь остановимся подробнее на электрохимической коррозии.

Виды коррозии

Виды коррозии: равномерная неравномерная избирательная пятнами точечная растрескивающая межкристаллитная

К основным видам наблюдаемой коррозии относятся:

Электрохимическая коррозия протекает интенсивнее, если в катод вкраплён металл, менее активный, чем корродирующий. Например, если корродирует сталь (а сталь - это сплав железа и углерода в котором частично образуется карбид железа) роль таких участков играет карбид железа (FeC).

Атмосферная коррозия

Протекает во влажном воздухе при обычной температуре. Поверхность металла покрывается плёнкой влаги, содержащей растворённый кислород. Интенсивность разрушения металла возрастает с ростом влажности воздуха, а также содержанием в нём газообразных оксидов углерода, серы, при наличии в металле шероховатостей, трещин облегчающих конденсацию влаги.

Почвенная коррозия

Её подвержены трубопроводы, кабели, подземные сооружения. В этом случае металлы соприкасаются с влагой почвы, содержащей растворённый кислород. Во влажной почве, с повышенной кислотностью трубопроводы разрушаются в течение полугода после их укладки (конечно, если не принять меры по их защите).

Электрическая коррозия

Происходит под действием блуждающих токов, возникающих от посторонних источников (линии электропередач,электрические железные дороги, различные электроустановки, работающие на постоянном электрическом токе). Блуждающие токи вызывают разрушение газопроводов, нефтепроводов,электрокабелей, различных сооружений. Под действием электрического тока на находящихся на земле металлических предметах появляются участки входа и выхода электронов - катоды и аноды. На анодных участках наблюдается наиболее интенсивное разрушение.

Электрохимическая коррозия

Наиболее распространённый видом разрушения металлов. Примером электрохимической коррозии является, например, разрушение деталей машин, приборов и различных металлических конструкций в почвенных, грунтовых, речных и морских водах, в атмосфере, под пленками влаги, в технических растворах, под действием смазочно-охлаждающих жидкостей и т.д. Как уже было отмечено, электрохимическая коррозия протекает на поверхности металлов под действием электрических токов, то есть происходят окислительно-восстановительные химические реакции , характеризующиеся отдачей электронов и их переносом, так как образуются катодные и анодные участки. Образованию катодов и анодов способствуют химическая неоднородность металлов (примеси и включения), наличие участков остаточной деформации, неоднородность покрывающих металл защитных плёнок и т.д. Наиболее часто в образовании данного вида разрушения металла участвуют не один фактор, а несколько. Когда метал начинает корродировать, он превращается в многоэлектронный гальванический элемент.

Например, рассмотрим что происходит, если медь Cu контактирует с железом Fe в среде электролита. Такая система представляет собой гальванический элемент, где железо - анод ("+"), а медь - катод. Железо отдает электроны меди и переходит в раствор в виде ионов. Ионы водорода движутся к меди, где разряжаются. Катод постепенно становится более отрицательным, в конце-концов становится равным потенциалу анода и коррозия замедляется.

Как раз на эту тему можно провести опыт в домашних условиях. Нам потребуется три стакана с раствором поваренной соли (пищевая соль), 3 железных гвоздя, кусочек цинка и медная проволока (без изоляции). Итак, приступим. Первый гвоздь опустите в стакан с раствором соли. Ко второму гвоздю прикрутите медную проволоку, а к третьему - кусочек цинка. Затем опустите каждый гвоздь в свой стакан с раствором соли (их было 3) и оставьте их на 2-3 суток.

Что происходит: все наши гвозди будут иметь следы ржавчины (коррозии). В самом худшем состоянии будет тот гвоздь, который находился в растворе вместе с медной проволокой, а меньше всего корродировал тот, который привязан к цинку! Объяснение: все металлы обладают разной способностью отдавать электроны. Сравнить их в этой способности можно, ознакомившись с рядом напряжений металлов :

Li← K← Rb← Cs← Ba← Ca← Na← Mg← Al← Mn← Cr← Zn← Fe← Cd← Co← Ni← Sn← Pb← H2← Cu← Ag← Hg← Pt← Au

Те металлы, которые в ряду напряжений находятся левее (например Zn - цинк находится левее Fe - железа), легче отдают свои электроны, чем металл справа (например Cu - медь правее Fe - железа). А значит, как только оба металла попадают в электролит (проводник тока- раствор соли), то сразу образуют гальваническую пару. Более активный металл (стоящий левее) заряжается положительно, а менее активный - отрицательно.

Вернёмся к нашему опыту: тоже самое произошло и в наших стаканах с растворами. Железо (Fe) стоит левее, чем медь (Cu), поэтому оно заряжается положительно, при этом быстро окисляясь. В стакане с цинком - цинк (Zn) - более активный, чем железо. Поэтому, пока весь цинк не поржавеет, железо не разрушится (чем часто пользуются в технических целях).

Химическая коррозия - это процесс, состоящий в разрушении металла при взаимодействии с агрессивной внешней средой. Химическая разновидность коррозийных процессов не имеет связи с воздействием электрического тока. При этом виде коррозии происходит окислительная реакция, где разрушаемый материал - одновременно восстановитель элементов среды.

Классификация разновидности агрессивной среды включает два вида разрушения металла:

  • химическая коррозия в жидкостях-неэлектролитах;
  • химическая газовая коррозия.

Газовая коррозия

Самая частая разновидность химической коррозии - газовая - представляет собой коррозийный процесс, происходящий в газах при повышенных температурах. Указанная проблема характерна для работы многих типов технологического оборудования и деталей (арматуры печей, двигателей, турбин и т.д.). Кроме того, сверхвысокие температуры используются при обработке металлов под высоким давлением (нагревание перед прокаткой, штамповкой, ковкой, термическими процессами и т.д.).

Особенности состояния металлов при повышенных температурах обуславливаются двумя их свойствами - жаропрочностью и жаростойкостью. Жаропрочность - это степень устойчивости механических свойств металла при сверхвысоких температурах. Под устойчивостью механических свойств понимается сохранение прочности в течение продолжительного времени и сопротивляемость ползучести. Жаростойкость - это устойчивость металла к коррозионной активности газов в условиях повышенных температур.

Скорость развития газовой коррозии обуславливается рядом показателей, в числе которых:

  • температура атмосферы;
  • компоненты, входящие в металл или сплав;
  • параметры среды, где находятся газы;
  • продолжительность контактирования с газовой средой;
  • свойства коррозийных продуктов.

На коррозийный процесс больше влияние оказывают свойства и параметры оксидной пленки, появившейся на металлической поверхности. Образование окисла можно хронологически разделить на два этапа:

  • адсорбция кислородных молекул на металлической поверхности, взаимодействующей с атмосферой;
  • контактирование металлической поверхности с газом, в результате чего возникает химическое соединение.

Первый этап характеризуется появлением ионной связи, как следствие взаимодействия кислорода и поверхностных атомов, когда кислородный атом отбирает пару электроном у металла. Возникшая связь отличается исключительной силой - она больше, нежели связь кислорода с металлом в окисле.

Объяснение такой связи кроется в действии атомного поля на кислород. Как только поверхность металла наполняется окислителем (а это происходит очень быстро), в условиях низких температур, благодаря силе Ван-дер-Ваальса, начинается адсорбция окислительных молекул. Результат реакции - возникновение тончайшей мономолекулярной пленки, которая с течением времени становится толще, что усложняет доступ кислорода.

На втором этапе происходит химическая реакция, в ходе которой окислительный элемент среды отбирает у металла валентные электроны. Химическая коррозия - конечный результат реакции.

Характеристики оксидной пленки

Классификация оксидных пленок включает их три разновидности:

  • тонкие (незаметны без специальных приборов);
  • средние (цвета побежалости);
  • толстые (видны невооруженным взглядом).

Появившаяся оксидная пленка имеет защитные возможности - она замедляет или даже полностью угнетает развитие химической коррозии. Также наличие оксидной пленки повышает жаростойкость металла.

Однако, действительно эффективная пленка должна отвечать ряду характеристик:

  • быть не пористой;
  • иметь сплошную структуру;
  • обладать хорошими адгезивными свойствами;
  • отличаться химической инертностью в отношении с атмосферой;
  • быть твердой и устойчивой к износу.

Одно из указанных выше условий - сплошная структура имеет особенно важное значение. Условие сплошности - превышение объема молекул оксидной пленки над объемом атомов металла. Сплошность - это возможность окисла накрыть сплошным слоем всю металлическую поверхность. При несоблюдении этого условия, пленка не может считаться защитной. Однако, из этого правила имеются исключения: для некоторых металлов, например, для магния и элементов щелочно-земельной групп (исключая бериллий), сплошность не относится к критически важным показателям.

Чтобы установить толщину оксидной пленки, используются несколько методик. Защитные качества пленки можно выяснить в момент ее образования. Для этого изучаются скорость окисления металла, и параметры изменения скорости во времени.

Для уже сформированного окисла применяется другой метод, состоящий в исследовании толщины и защитных характеристик пленки. Для этого на поверхность накладывается реагент. Далее специалисты фиксируют время, которое понадобится на проникновение реагента, и на основании полученных данных делают вывод о толщине пленки.

Обратите внимание! Даже окончательно сформировавшаяся оксидная пленка продолжает взаимодействовать с окислительной средой и металлом.

Скорость развития коррозии

Интенсивность, с какой развивается химическая коррозия, зависит от температурного режима. При высокой температуре окислительные процессы развиваются стремительнее. Причем снижение роли термодинамического фактора протекания реакции не влияет на процесс.

Немалое значение имеет охлаждение и переменный нагрев. Из-за термических напряжений в оксидной пленке появляются трещины. Через прорехи окислительный элемент попадает на поверхность. В результате образуется новый слой оксидной пленки, а прежний - отслаивается.

Не последнюю роль играют и компоненты газовой среды. Этот фактор индивидуален для разных видов металлов и согласуется с температурными колебаниями. К примеру, медь быстро поддается коррозии, если она контактирует с кислородом, но отличается устойчивостью к этому процессу в среде оксида серы. Для никеля же напротив, серный оксид губителен, а устойчивость наблюдается в кислороде, диоксиде углерода и водной среде. А вот хром проявляет стойкость ко всем перечисленным средам.

Обратите внимание! Если уровень давления диссоциации окисла превышает давление окисляющего элемента, окислительный процесс останавливается и металл обретает термодинамическую устойчивость.

На скорость окислительной реакции влияют и компоненты сплава. Например, марганец, сера, никель и фосфор никак не способствуют окислению железа. А вот алюминий, кремний и хром делают процесс более медленным. Еще сильнее замедляют окисление железа кобальт, медь, бериллий и титан. Сделать процесс более интенсивным помогут добавки ванадия, вольфрама и молибдена, что объясняется легкоплавкостью и летучестью данных металлов. Наиболее медленно окислительные реакции протекают при аустенитной структуре, поскольку она наиболее приспособлена к высоким температурам.

Еще один фактор, от которого зависит скорость коррозии, - характеристика обработанной поверхности. Гладкая поверхность окисляется медленнее, а неровная - быстрее.

Коррозия в жидкостях-неэлектролитах

К неэлектропроводным жидким средам (т.е. жидкостям-неэлектролитам) относят такие органические вещества, как:

  • бензол;
  • хлороформ;
  • спирты;
  • тетрахлорид углерода;
  • фенол;
  • нефть;
  • бензин;
  • керосин и т.д.

Кроме того, к жидкостям-неэлектролитам причисляют небольшое количество неорганических жидкостей, таких как жидкий бром и расплавленная сера.

При этом нужно заметить, что органические растворители сами по себе не вступают в реакцию с металлами, однако, при наличии небольшого объема примесей возникает интенсивный процесс взаимодействия.

Увеличивают скорость коррозии находящиеся в нефти серосодержащие элементы. Также, усиливают коррозийные процессы высокие температуры и присутствие в жидкости кислорода. Влага интенсифицирует развитие коррозии в соответствии с электромеханическим принципом.

Еще один фактор быстрого развития коррозии - жидкий бром. При нормальных температурах он особенно разрушительно воздействует на высокоуглеродистые стали, алюминий и титан. Менее существенно влияние брома на железо и никель. Самую большую устойчивость к жидкому брому показывают свинец, серебро, тантал и платина.

Расплавленная сера вступает в агрессивную реакцию почти со всеми металлами, в первую очередь со свинцом, оловом и медью. На углеродистые марки стали и титан сера влияет меньше и почти совсем разрушает алюминий.

Защитные мероприятия для металлоконструкций, находящихся в неэлектропроводных жидких средах, проводят добавлением устойчивым к конкретной среде металлов (например, сталей с высоким содержанием хрома). Также, применяются особые защитные покрытия (например, в среде, где содержится много серы, используют алюминиевые покрытия).

Способы защиты от коррозии

Методы борьбы с коррозией включают:

Выбор конкретного материала зависит от потенциальной эффективности (в том числе технологической и финансовой) его использования.

Современные принципы защиты металла основываются на таких методиках:

  1. Улучшение химической сопротивляемости материалов. Успешно зарекомендовали себя химически стойкие материалы (высокополимерные пластики, стекло, керамика).
  2. Изолирование материала от агрессивной среды.
  3. Уменьшение агрессивности технологической среды. В качестве примеров таких действий можно привести нейтрализацию и удаление кислотности в коррозийных средах, а также использование всевозможных ингибиторов.
  4. Электрохимическая защита (наложение внешнего тока).

Указанные выше методики подразделяются на две группы:

  1. Повышение химической сопротивляемости и изолирование применяются до того, как металлоконструкция запускается в эксплуатацию.
  2. Уменьшение агрессивности среды и электрохимическая защита используются уже в процессе применения изделия из металла. Применение этих двух методик дает возможность внедрять новые способы защиты, в результате которых защита обеспечивается изменением эксплуатационных условий.

Один из самых часто применяемых способов защиты металла - гальваническое антикоррозийное покрытие - экономически нерентабелен при значительных площадях поверхностей. Причина в высоких затратах на подготовительный процесс.

Ведущее место среди способов защиты занимает покрытие металлов лакокрасочными материалами. Популярность такого метода борьбы с коррозией обусловлена совокупностью нескольких факторов:

  • высокие защитные свойства (гидрофобность, отталкивание жидкостей, невысокие газопроницаемость и паропроницаемость);
  • технологичность;
  • широкие возможности для декоративных решений;
  • ремонтопригодность;
  • экономическая оправданность.

В то же время, использование широкодоступных материалов не лишено недостатков:

  • неполное увлажнение металлической поверхности;
  • нарушенное сцепление покрытия с основным металлом, что ведет к скапливанию электролита под антикоррозийным покрытием и, таким образом, способствует коррозии;
  • пористость, приводящая к повышенной влагопроницаемости.

И все же, окрашенная поверхность защищает металл от коррозийных процессов даже при фрагментарном повреждении пленки, тогда как несовершенные гальванические покрытия способны даже ускорять коррозию.

Органосиликатные покрытия

Химическая коррозия практически не распространяется на органосиликатные материалы. Причины этого кроются в повышенной химической устойчивости таких композиций, их стойкости к свету, гидрофобных качествах и невысоком водопоглощении. Также органосиликаты устойчивы к низким температурам, обладают хорошими адгезивными свойствами и износостойкостью.

Проблемы разрушения металлов из-за воздействия коррозии не исчезают, несмотря на развитие технологий борьбы с ними. Причина в постоянном возрастании объемов производства металлов и все более сложных условий эксплуатации изделий из них. Окончательно решить проблему на данном этапе нельзя, поэтому усилия ученых сосредоточены на поисках возможностей по замедлению коррозионных процессов.


Обнаружив ошибку на странице, выделите ее и нажмите Ctrl + Enter

КОРРОЗИЯ МЕТАЛЛОВ

Слово коррозия происходит от латинского corrodere, что означает разъедать. Хотя коррозию чаще всего связывают с металлами, но ей подвергаются также камни, пластмассы и другие полимерные материалы и дерево. Например, в настоящее время мы являемся свидетелями большого беспокойства широких слоев людей в связи с тем, что от кислотных дождей катастрофически страдают памятники (здания и скульптуры), выполненные из известняка или мрамора.

Таким образом, коррозией называют самопроизвольный процесс разрушения материалов и изделий из них под химическим воздействием окружающей среды. Процессы физического разрушения к коррозии не относят, хотя часто они наносят неменьший вред памятникам культуры. Их называют истиранием, износом, эрозией.

Металлы составляют одну из основ цивилизации на планете Земля. Среди них как конструкционный материал явно выделяется железо. Объем промышленного производства железа примерно в 20 раз больше, чем объем производства всех остальных металлов, вместе взятых. Широкое внедрение железа в промышленное строительство и транспорт произошло на рубеже XVIII...XIX вв. В это время появился первый чугунный мост, спущено на воду первое судно, корпус которого был изготовлен из стали, созданы первые железные дороги. Однако начало практического использования человеком железа относят к IX в. до н.э. Именно в этот период человечество из бронзового века перешло в век железный. Тем не менее история свидетельствует о том, что изделия из железа были известны в Хеттском царстве (государство Малой Азии), а его расцвет относят к XIV...XIII вв. до н.э.

В природе, хотя и очень редко, но встречается самородное железо. Его происхождение считают метеоритным, т.е. космическим, а не земным. Поэтому первые изделия из железа (они изготавливались из самородков) ценились очень высоко – гораздо выше, чем из серебра и даже золота.

Несмотря на широкое внедрение в нашу сегодняшнюю жизнь полимерных материалов, стекла, керамики, основным конструкционным материалом продолжает оставаться железо и сплавы на его основе. С изделиями из железа мы на каждом шагу встречаемся в быту и знаем, как много хлопот доставляют его ржавление и сама ржавчина. Ржавлением называют только коррозию железа и его сплавов. Другие металлы корродируют, но не ржавеют. Хотя корродируют практически все металлы, в повседневной жизни человек чаще всего сталкивается с коррозией железа.

Строгие расчеты показывают, что большинство металлов имеет склонность к коррозии. Поэтому удивительно не то, что металлы корродируют, а то, что изделия из них могут существовать длительное время. Скорость, с которой протекает коррозия, не поддается теоретическому вычислению. Как правило, она определяется опытным путем. Скорость прежде всего зависит от характера образующихся продуктов коррозии и прочности их сцепления с металлом.

Сущность процессов коррозии

Коррозия металлов чаще всего сводится к их окислению и превращению в оксиды. В частности, коррозия железа может быть описана упрощенным уравнением

4Fe + 3O 2 + 2H 2 О = 2Fe 2 O 3 ·H 2 О

Гидратированный оксид железа Fе 2 O 3 ·H 2 О и является тем, что люди называют ржавчиной. Это рыхлый порошок светло-коричневого цвета. Многие металлы при коррозии покрываются плотной, хорошо скрепленной с металлами оксидной пленкой, которая не позволяет кислороду воздуха и воде проникнуть в более глубокие слои и потому предохраняет металл от дальнейшего окисления. Например, алюминий – очень активный металл и теоретически с водой должен был бы взаимодействовать в соответствии с уравнением

2Al + 3H 2 О = Al 2 O 3 + 3H 2

Однако его поверхность покрывается плотной пленкой оксида Al 2 O 3 , которая защищает металл от воздействия воды и кислорода. По этой причине вода в алюминиевом чайнике при нагревании кипит, но не действует на металл и потому чайник служит довольно долгое время. Однако в воздухе часто содержатся оксиды серы, азота, углерода и другие, а в воде – растворенные газы и соли. Поэтому процесс коррозии и его продукты часто не столь простые. Например, бронзовые статуи, корродируя, покрываются слоем зеленой патины, состав которой отвечает основному сульфату меди (II) (CuOH) 2 SO 4 . Следует отметить, что по недоразумению патину долго считали основным карбонатом меди (II).

Коррозия металлов бывает сплошной и местной. Сплошная коррозия не представляет особой опасности для конструкций и аппаратов особенно в тех случаях, когда потери металлов не превышают технически обоснованных норм. Ее последствия могут быть сравнительно легко учтены. Значительно опаснее местная коррозия, хотя потери металла здесь могут быть и небольшими. Один из наиболее опасных видов местной коррозии – это точечная. Она заключается в образовании сквозных поражений, т.е. в образовании точечных полостей – так называемых питтингов. Местной коррозии благоприятствуют морская вода, растворы солей, в частности галогенидных (хлорид натрия, магния и др.). Опасность местной коррозии состоит в том, что, снижая прочность отдельных участков, она резко уменьшает надежность конструкций, сооружений, аппаратов.

Особенно большие неприятности связаны с хлоридом натрия (в некоторых странах используют отход производства – хлорид кальция), разбрасываемым в зимнее время на дорогах и тротуарах для удаления снега и льда. В присутствии солей они плавятся и образующиеся растворы стекают в канализационные трубопроводы. Соли и особенно хлориды являются активаторами коррозии и приводят к ускоренному разрушению металлов, в частности транспортных средств и подземных коммуникаций. Подсчитано, что только в США применение для этой цели солей приводит к потерям на сумму 2 млрд долларов в год в связи с коррозией двигателей и 0,5 млрд на дополнительный ремонт дорог, подземных магистралей и мостов. Для работников коммунального хозяйства городов привлекательность хлорида натрия заключается в его дешевизне. К сожалению, пока не известно другое дешевое и эффективное средство. В настоящее время выход лишь один – вовремя убирать снег и вывозить его на свалки. Экономически он более чем оправдан.

По своей сущности коррозию делят на химическую и электрохимическую. Ржавление железа или покрытие патиной бронзы – химическая коррозия. Если эти процессы происходят на открытом воздухе в комнатных и особенно в природных условиях, то такую коррозию часто называют атмосферной. В промышленном производстве металлы нередко нагреваются до высоких температур и в таких условиях химическая коррозия ускоряется. Многие знают, что при прокатке раскаленных кусков металла образуется окалина. Это типичный продукт химической коррозии. Окалина получается и при простой разливке на воздухе расплавленного металла в изложницы.

Установлено, что коррозии железа способствует наличие в нем серы. Современных людей поражает устойчивость к коррозии некоторых античных предметов, изготовленных из железа. Одной из причин этого является низкое содержание в нем серы. Обычно в железо она попадает из каменного угля при доменной выплавке из руд. В далеком прошлом для этой цели использовался не каменный, а древесный уголь, который практически не содержит серы. Сера в железе обычно содержится в виде сульфидов FeS и др. В процессе коррозии сульфиды железа разлагаются с выделением сероводорода H 2 S, который является катализатором коррозии железа.

Особенно разнообразные процессы химической коррозии встречаются в различных химических производствах. В атмосфере водорода, метана и других углеводородов, оксида углерода (II), сероводорода, хлора, в среде кислот, щелочей, солей, а также в расплавах солей и других веществ протекают специфические реакции с вовлечением материала аппаратов и агрегатов, в которых осуществляется химический процесс. Задача специалистов при конструировании реактора – подобрать металл или сплав, который был бы наиболее устойчив к компонентам химического процесса.

Строго отделить химическую коррозию от электрохимической трудно, а иногда и невозможно. Дело в том, что электрохимическая коррозия часто связана с наличием в металле случайных примесей или специально введенных легирующих добавок.

Многие неопытные химики в разное время были озадачены тем, что иногда реакция

Zn + H 2 SO 4 = ZnSO 4 + H 2

описанная во всех учебниках, не идет. Более опытные химики знают, что в такой ситуации в раствор нужно добавить немного сульфата меди (II) (медного купороса). В этом случае на поверхности цинка выделится медь

CuSO 4 + Zn = ZnSO 4 + Cu

и водород начнет бурно выделяться. При объяснении данного явления в 1830 г. швейцарским химиком А. де-ля Ривом была создана первая электрохимическая теория коррозии.

Вскоре после открытия итальянцем Л. Гальвани электрохимического явления его соотечественник А. Вольта сконструировал (1800) источник электрического тока (гальванический элемент), что открыло человечеству эру электричества. В одном из вариантов источник состоял из чередующихся медных и цинковых дисков, разделенных пористым материалом, пропитанным раствором соли (вольтов столб). В зависимости от числа дисков получается ток различной силы. При осаждении на поверхности цинка металлической меди получается коротко-замкнутый элемент. В нем цинк является анодом, а медь – катодом. Поскольку медь находится в контакте с цинком и оба эти металла окружены раствором электролита, гальванический элемент оказывается «включенным». Цинк в виде иона Zn 2+ переходит в раствор серной кислоты, а оставшиеся от каждого атома два электрона перетекают на более электроположительный металл – медь:

Zn = Zn 2+ + 2e –

медному катоду подходят ионы водорода, принимают электроны и превращаются в атомы водорода, а затем и в молекулы водорода:

Н + + е (Сu) = Н; 2Н = H 2

Таким образом, потоки движения ионов разделены и при избытке кислоты процесс протекает до тех пор, пока не растворится весь цинк.

Сущность первой электрохимической теории состояла в том, что примеси в металлах создают микрогальванические элементы, в которых происходит перетекание электронов от анодных участков к катодным. Поскольку катодный и анодный процессы разделены на поверхности, то разделены и противоположные потоки ионов, атомов и молекул. Разделенные потоки не мешают друг другу и по этой причине процесс коррозии протекает быстрее, чем в случае отсутствия микрогальванических элементов. Конечно, в настоящее время теории электрохимической коррозии выглядят гораздо более совершенными. Они основаны на многочисленных экспериментальных фактах и выражены в математической форме. Здесь мы не имеем возможности углубляться в детали.

Коррозия металлов наносит большой экономический вред. Человечество несет огромные материальные потери в результате коррозии трубопроводов, деталей машин, судов, мостов, морских конструкций и технологического оборудования. Коррозия приводит к уменьшению надежности работы оборудования: аппаратов высокого давления, паровых котлов, металлических контейнеров для токсичных и радиоактивных веществ, лопастей и роторов турбин, деталей самолетов и т.д. С учетом возможной коррозии приходится завышать прочность этих изделий, а значит, увеличивать расход металла, что приводит к дополнительным экономическим затратам. Коррозия приводит к простоям производства из-за замены вышедшего из строя оборудования, к потерям сырья и продукции (утечка нефти, газов, воды), к энергетическим затратам для преодоления дополнительных сопротивлений, вызванных уменьшением проходных сечений трубопроводов из-за отложения ржавчины и других продуктов коррозии. Коррозия также приводит к загрязнению продукции, а значит, и к снижению ее качества. Затраты на возмещение потерь, связанных с коррозией, исчисляются миллиардами рублей в год. Специалисты подсчитали, что в развитых капиталистических странах стоимость потерь, связанных с коррозией, составляет 3...4% валового национального дохода.

За долгий период интенсивной работы металлургической промышленности выплавлено огромное количество металла и переведено в изделия. Этот металл постоянно корродирует. Сложилась такая ситуация, что потери металла от коррозии в мире уже составляют около 30% от его годового производства. Считается, что 10% прокорродировавшего металла теряется (в основном в виде ржавчины) безвозвратно. Возможно, в будущем установится баланс, при котором от коррозии будет теряться примерно столько же металла, сколько его будет выплавляться вновь. Из всего сказанного следует, что важнейшей проблемой является изыскание новых и совершенствование старых способов защиты от коррозии.

Способы защиты от коррозии

Проблема защиты металлов от коррозии возникла почти в самом начале их использования. Люди пытались защитить металлы от атмосферного воздействия с помощью жира, масел, а позднее и покрытием другими металлами и прежде всего легкоплавким оловом (лужением). В трудах древнегреческого историка Геродота (V в. до н.э.) уже имеется упоминание о применении олова для защиты железа от коррозии.

Задачей химиков было и остается выяснение сущности явлений коррозии, разработка мер, препятствующих или замедляющих ее протекание. Коррозия металлов осуществляется в соответствии с законами природы и потому ее нельзя полностью устранить, а можно лишь замедлить.

Имеется способ уменьшения коррозии металлов, который строго нельзя отнести к защите, – это легирование металлов, т.е. получение сплавов. Например, в настоящее время создано большое число нержавеющих сталей путем присадок к железу никеля, хрома, кобальта и др. Такие стали, действительно, не покрываются ржавчиной, но их поверхностная коррозия хотя и с малой скоростью, но имеет место. Оказалось, что при добавлении легирующих добавок коррозионная стойкость меняется скачкообразно. Установлено правило (правило Таммана), согласно которому резкое повышение устойчивости к коррозии железа наблюдается при введении легирующей добавки в количестве 1/8 атомной доли, т.е. один атом легирующей добавки приходится на восемь атомов железа. Считается, что при таком соотношении атомов происходит их упорядоченное расположение в кристаллической решетке твердого раствора, что и затрудняет коррозию.

Одним из наиболее распространенных способов защиты металлов от коррозии является нанесение на их поверхность защитных пленок: лака, краски, эмали, других металлов. Лакокрасочные покрытия наиболее доступны для широкого круга людей. Лаки и краски обладают низкой газо- и паропроницаемостью, водоотталкивающими свойствами и поэтому препятствуют доступу к поверхности металла воды, кислорода и содержащихся в атмосфере агрессивных компонентов. Покрытие поверхности металла лакокрасочным слоем не исключает коррозию, а служит для нее лишь преградой, а значит, лишь тормозит коррозию. Поэтому важное значение имеет качество покрытия – толщина слоя, сплошность (пористость), равномерность, проницаемость, способность набухать в воде, прочность сцепления (адгезия). Качество покрытия зависит от тщательности подготовки поверхности и способа нанесения защитного слоя. Окалина и ржавчина должны быть удалены с поверхности покрываемого металла. В противном случае они будут препятствовать хорошей адгезии покрытия с поверхностью металла. Низкое качество покрытия нередко связано с повышенной пористостью. Часто она возникает в процессе формирования защитного слоя в результате испарения растворителя и удаления продуктов отверждения и деструкции (при старении пленки). Поэтому обычно рекомендуют наносить не один толстый слой, а несколько тонких слоев покрытия. Во многих случаях увеличение толщины покрытия приводит к ослаблению адгезии защитного слоя с металлом. Большой вред наносят воздушные полости, пузыри. Они образуются при низком качестве выполнения операции нанесения покрытия.

Для снижения смачиваемости водой лакокрасочные покрытия иногда, в свою очередь, защищают восковыми составами или кремнийорганическими соединениями. Лаки и краски наиболее эффективны для защиты от атмосферной коррозии. В большинстве случаев они непригодны для защиты подземных сооружений и конструкций, так как трудно предупредить механические повреждения защитных слоев при контакте с грунтом. Опыт показывает, что срок службы лакокрасочных покрытий в этих условиях невелик. Намного практичнее оказалось применять толстослойные покрытия из каменноугольной смолы (битума).

В некоторых случаях пигменты красок выполняют также роль ингибиторов коррозии. К числу таких пигментов относятся хроматы стронция, свинца и цинка (SrCrO 4 , PbCrO 4 , ZnCrO 4).

Часто под лакокрасочный слой наносят слой грунтовки. Пигменты, входящие в ее состав, также должны обладать ингибиторными-свойствами. Проходя через слой грунтовки, вода растворяет некоторое количество пигмента и становится менее коррозионноактивной. Среди пигментов, рекомендуемых для грунтов, наиболее эффективным признан свинцовый сурик Рb 3 O 4 .

Вместо грунтовки иногда проводят фосфатирование поверхности металла. Для этого на чистую поверхность кистью или напылителем наносят растворы ортофосфатов железа (III), марганца (II) или цинка (II), содержащих и саму ортофосфорную кислоту H 3 PO 4 . В нашей стране для этой цели применяют 3%-ный раствор смеси кислых солей Fe(H 2 PO 4) 3 и Мn(H 2 PO 4) 2 с добавками KNO 3 или Cu(NO 3) 2 в качестве ускорителей. В заводских условиях фосфатирование ведут при 97...99°C в течение 30...90 мин. В образование фосфатного покрытия вносят вклад металл, растворяющийся в фосфатирующейся смеси, и оставшиеся на его поверхности оксиды.

Для фосфатирования поверхности стальных изделий разработано несколько различных препаратов. Большинство из них состоит из смесей фосфатов марганца и железа. Возможно, наиболее распространенным препаратом является «мажеф» – смесь дигидрофосфатов марганца Mn(H 2 PO 4) 2 , железа Fe(H 2 PO 4) 2 и свободной фосфорной кислоты. Название препарата состоит из первых букв компонентов смеси. По внешнему виду мажеф – это мелкокристаллический порошок белого цвета с соотношением между марганцем и железом от 10:1 до 15:1. Он состоит из 46...52% P 2 O 5 ; не менее 14% Mn; 0,3...3,0% Fe. При фосфатировании мажефом стальное изделие помещается в его раствор, нагретый примерно до 100°C. В растворе происходит растворение с поверхности железа с выделением водорода, а на поверхности образуется плотный, прочный и малорастворимый в воде защитный слой фосфатов марганца и железа серо-черного цвета. При достижении толщины слоя определенной величины дальнейшее растворение железа прекращается. Пленка фосфатов защищает поверхность изделия от атмосферных осадков, но мало эффективна от растворов солей и даже слабых растворов кислот. Таким образом, фосфатная пленка может служить лишь грунтом для последующего нанесения органических защитных и декоративных покрытий – лаков, красок, смол. Процесс фосфатирования длится 40...60 мин. Для ускорения фосфатирования в раствор вводят 50...70 г/л нитрата цинка. В этом случае время фосфатирования сокращается в 10...12 раз.

В производственных условиях используют также электрохимический способ – обработку изделий переменным током в растворе фосфата цинка при плотностях тока 4 А/дм 2 и напряжении 20 В и при температуре 60...70°C. Фосфатные покрытия представляют собой сетку плотносцепленных с поверхностью фосфатов металлов. Сами по себе фосфатные покрытия не обеспечивают надежной коррозионной защиты. Преимущественно их используют как основу под окраску, обеспечивающую хорошее сцепление краски с металлом. Кроме того, фосфатный слой уменьшает коррозионные разрушения при образовании царапин или других дефектов.

Для защиты металлов от коррозии используют стекловидные и фарфоровые эмали – силикатные покрытия, коэффициент теплового расширения которых должен быть близок к таковому для покрываемых металлов. Эмалирование осуществляют нанесением на поверхность изделий водной суспензии или сухим напудриванием. Вначале на очищенную поверхность наносят грунтовочный слой и обжигают его в печи. Далее наносят слой покровной эмали и обжиг повторяют. Наиболее распространены стекловидные эмали – прозрачные или заглушенные. Их компонентами являются SiO 2 (основная масса), B 2 O 3 , Na 2 O, PbO. Кроме того, вводят вспомогательные материалы: окислители органических примесей, оксиды, способствующие сцеплению эмали с эмалируемой поверхностью, глушители, красители. Эмалирующий материал получают сплавлением исходных компонентов, измельчением в порошок и добавлением 6...10% глины. Эмалевые покрытия в основном наносят на сталь, а также на чугун, медь, латунь и алюминий.

Эмали обладают высокими защитными свойствами, которые обусловлены их непроницаемостью для воды и воздуха (газов) даже при длительном контакте. Их важным качеством является высокая стойкость при повышенных температурах. К основным недостаткам эмалевых покрытий относят чувствительность к механическим и термическим ударам. При длительной эксплуатации на поверхности эмалевых покрытий может появиться сетка трещин, которая обеспечивает доступ влаги и воздуха к металлу вследствие чего и начинается коррозия.

Для защиты чугунных и стальных водяных труб от коррозии используют цементные покрытия. Поскольку коэффициенты теплового расширения портландцемента и стали близки, а стоимость цемента невысокая, то он довольно широко применяется для этих целей. Недостаток портландцементных покрытий тот же, что и эмалевых, – высокая чувствительность к механическим ударам.

Широко распространенным способом защиты металлов от коррозии является покрытие их слоем других металлов. Покрывающие металлы сами корродируют с малой скоростью, так как покрываются плотной оксидной пленкой. Покрывающий слой наносят различными методами: кратковременным погружением в ванну с расплавленным металлом (горячее покрытие), электроосаждением из водных растворов электролитов (гальваническое покрытие), напылением (металлизация), обработкой порошками при повышенной температуре в специальном барабане (диффузионное покрытие), с помощью газофазной реакции, например 3CrCl 2 + 2Fe – → 2FeCl 3 + 3Cr (в сплаве с Fe).

Имеются и другие методы нанесения металлических покрытий, например, разновидностью диффузионного способа защиты металлов является погружение изделий в расплав хлорида кальция CaCl 2 , в котором растворены наносимые металлы.

В производстве широко используют химическое нанесение металлических покрытий на изделия. Процесс химического металлирования является каталитическим или автокаталитическим, а катализатором является поверхность изделия. Раствор, используемый для металлизации, содержит соединение наносимого металла и восстановитель. Поскольку катализатором является поверхность изделия, выделение металла и происходит именно на ней, а не в объеме раствора. В автокаталитических процессах катализатором является металл, наносимый на поверхность. В настоящее время разработаны методы химического покрытия металлических изделий никелем, кобальтом, железом, палладием, платиной, медью, золотом, серебром, родием, рутением и некоторыми сплавами на основе этих металлов. В качестве восстановителей используют гипофосфит и боргидрид натрия, формальдегид, гидразин. Естественно, что химическим никелированием можно наносить защитное покрытие не на любой металл. Чаще всего ему подвергают изделия из меди.

Металлические покрытия делят на две группы: коррозионностойкие и протекторные. Например, для покрытия сплавов на основе железа в первую группу входят никель, серебро, медь, свинец, хром. Они более электроположительны по отношению к железу, т.е. в электрохимическом ряду напряжений металлов стоят правее железа. Во вторую группу входят цинк, кадмий, алюминий. По отношению к железу они более электроотрицательны, т.е. в ряду напряжений находятся левее железа.

В повседневной жизни человек чаще всего встречается с покрытиями железа цинком и оловом. Листовое железо, покрытое цинком, называют оцинкованным железом, а покрытое оловом – белой жестью. Первое в больших количествах идет на кровли домов, а из второго изготавливают консервные банки. И то и другое получают главным образом протягиванием листа железа через расплав соответствующего металла. Для большей стойкости водопроводные трубы и арматуру из стали и серого чугуна часто подвергают оцинковыванию также окунанием в расплав данного металла. Это резко повышает срок их службы в холодной воде. Интересно, что в теплой и горячей воде срок службы оцинкованных труб может быть даже меньше, чем неоцинкованных.

Испытания показали, что оцинкованная жесть при толщине покрытия в 0,03 мм, что соответствует 0,036 г/см 2 при покрытии с двух сторон, на крышах домов служит примерно 8 лет. В промышленной атмосфере (в атмосфере больших городов) она же служит всего лишь четыре года. Такое уменьшение срока службы связано с воздействием серной кислоты, содержащейся в воздухе городов.

Покрытия из цинка и олова (так же как и других металлов) защищают железо от коррозии при сохранении сплошности. При нарушении покрывающего слоя (трещины, царапины) коррозия изделия протекает даже более интенсивно, чем без покрытия. Это объясняется «работой» гальванического элемента железо – цинк и железо – олово. Трещины и царапины заполняются влагой и образуются растворы. Поскольку цинк более электроотрицателен, чем железо, то его ионы будут преимущественно переходить в раствор, а остающиеся электроны будут перетекать на более электроположительное железо, делая его катодом (рис. 2)

К железу-катоду будут подходить ионы водорода (вода) и разряжаться, принимая электроны. Образующиеся атомы водорода объединяются в молекулу H 2 . Таким образом, потоки ионов будут разделены и это облегчает протекание электрохимического процесса. Растворению (коррозии) будет подвергаться цинковое покрытие, а железо до поры до времени будет защищено. Цинк электрохимически защищает железо от коррозии. На этом принципе основан протекторный метод защиты от коррозии металлических конструкций и аппаратов. Английское слово «протект» – означает защищать, предохранять. При протекторной защите к конструкции, к аппарату через проводник электрического тока присоединяется кусок более электроотрицательного металла. Его можно поместить прямо в паровой котел.

При наличии влаги, а точнее в присутствии электролита начнет действовать гальванический элемент. В нем будет растворяться более электроотрицательный металл, а конструкция или аппарат оказываются катодно защищенными. Защита будет действовать до тех пор, пока полностью не растворится анод – более электроотрицательный металл.

Вероятно, впервые катодную защиту применил знаменитый английский ученый Дэви (1824). Для защиты медной облицовки морских судов он рекомендовал использовать «жертвенные» аноды из железа, которые присоединялись снаружи к корпусу судна. Скорость коррозии медной облицовки в морской воде при этом, действительно, значительно снизилась. Однако вместо одной неприятности появилась другая. Ионы меди Cu 2+ являются биоцидными (ядовитыми) для микроорганизмов. Поскольку медный корпус оказался защищенным и ионы меди перестали переходить в морскую воду, то корпус оказался беззащитным от микроорганизмов. Они стали поселяться на корпусе судна, что приводило к обрастанию ракушками. В результате скоростные характеристики судна значительно снизились. Периодическая очистка днища судна от ракушек стоила больших затрат.

С протекторной защитой весьма сходна катодная защита металлов от коррозии. Можно сказать, что катодная защита является модификацией протекторной защиты. В данном случае конструкция или корпус корабля присоединяются к катоду источника постоянного тока и тем самым защищаются от растворения.

При наличии дефектов на белой жести процесс коррозии существенно иной, чем оцинкованного железа. Поскольку олово электроположительнее железа, то растворению подвергается железо, а катодом становится олово (рис. 3) . В результате при коррозии слой олова сохраняется, а под ним активно корродирует железо.

Считают, что нанесение олова на поверхность металлов (лужение) было освоено уже в бронзовом веке. Этому способствовала низкая температура плавления олова. В прошлом особенно часто проводили лужение медной и латунной посуды: тазов, котлов, кувшинов, самоваров и др. Продукты коррозии олова безвредны для человека, поэтому луженая посуда широко применялась в быту. В XV в. во многих странах Европы (Германии, Австрии, Голландии, Англии и Франции) широко использовалась столовая посуда, изготовленная из олова. Имеются сведения, что в рудных горах Богемии оловянные ложки, чашки, кувшины, тарелки начали изготавливать уже в XII в.

Луженое железо до сих пор в больших количествах идет на изготовление тары для хранения пищевых продуктов (консервные банки). Однако в последние годы для этой цели все шире применяется алюминиевая фольга. Посуда из цинка и оцинкованного железа не рекомендуется для хранения пищевых продуктов. Несмотря на то, что металлический цинк покрыт плотной оксидной пленкой, он все же подвергается растворению. Хотя соединения цинка относительно мало ядовиты, в больших количествах они могут оказать вредное действие.

Говоря о металлической таре, уместно отметить, что патент на способ сохранения пищевых продуктов в жестяных банках был выдан парижскому повару Н.Ф. Апперу в 1810 г. Он запаивал продукты в банках из белой жести, а затем нагревал в кипящей соленой воде.

Современная техника включает детали и конструкции из различных металлов и сплавов. Если они находятся в контакте и попадают в раствор электролитов (морская вода, растворы любых солей, кислот и щелочей), то может образоваться гальванический элемент. Более электроотрицательный металл становится анодом, а более электроположительный – катодом. Генерирование тока будет сопровождаться растворением (коррозией) более электроотрицательного металла. Чем больше разность электрохимических потенциалов контактирующих металлов, тем больше скорость коррозии. Почти все книги, особенно популярные, по коррозии металлов описывают случай, произошедший в 20-х годах текущего столетия в США. Один из американских миллионеров, не жалея денег, решил построить самую шикарную яхту. Ее днище было обшито дорогим монель металлом (сплав 70% никеля и 30% меди), а киль, форштевень и раму руля изготовили из стали. В морской воде в подводной части яхты образовался гальванический элемент с катодом из монель металла, а анодом из стали. Он настолько энергично работал, что яхта еще до завершения отделочных работ вышла из строя, ни разу не побывав в море. Интересно, что яхте было дано имя «Зов моря».

Иногда зубные коронки, изготовленные из различных металлов (золота и стали) и близко расположенные друг к другу, доставляют их носителям неприятнейшие болевые ощущения. Поскольку слюна является электролитом, эти коронки образуют гальванический элемент. Электрический ток протекает по десне и вызывает зубную боль.

Пассивация металлов

Каждый школьник знает, что серная кислота взаимодействует с железом в соответствии с уравнением

Fe + H 2 SO 4 = FeSO 4 + H 2

Несколько иначе идет реакция железа с HNO 3:

Fe + 4HNO 3 = Fe(NO 3) 3 + NO + 2H 2 O

Вероятно, многие обратили внимание на то, что серную и азотную кислоты перевозят по железной дороге в стальных цистернах. Об этом свидетельствуют надписи, например «Осторожно, серная кислота». Как это согласуется с теми знаниями, которые отражены в школьных учебниках? Все дело в том, что по железной дороге перевозят не разбавленные, а концентрированные кислоты. Зачем же перевозить воду? Разбавить кислоту можно и на месте потребления.

Оказывается, что в отличие от разбавленных концентрированная серная, так же как и концентрированная азотная кислоты, не взаимодействует с железом. Правильнее сказать, что кратковременное взаимодействие происходит, но оно быстро прекращается. Специалисты говорят, что в крепких растворах этих кислот железо пассивируется. Еще в 1836 г. знаменитый английский химик М. Фарадей высказал предположение, что причиной пассивации является образование на поверхности металла плотной оксидной пленки. В свое время на это предположение не обратили должного внимания. Лишь через 100 лет эти взгляды возродил и развил известный русский ученый В.А. Кистяковский. После него этот взгляд на пассивацию оформился в виде теории. Согласно ей при пассивации на поверхности металла образуется сплошная и плотная оксидная (реже хлоридная, сульфатная, фосфатная) пленка толщиной в несколько десятков нанометров. Например, на поверхности железа образуется оксидная пленка нестехиометрического состава Fe 8 O 11 , Fe 3 O 4 .

Имеется и другой взгляд на причину пассивации металлов, согласно которому она обусловлена слоем адсорбированного кислорода или какого-либо другого окислителя. Считают, что при адсорбции происходит насыщение валентности поверхностных атомов металла, что и приводит к снижению его химической активности.

Первая теория наиболее распространена, хотя не исключено, что в разных случаях процессы пассивации согласуются то с одной, а то с другой теорией.

Металлы можно перевести в пассивное состояние не только под действием окислителей, но и электрохимически, подав на них положительный потенциал.

Способность металлов пассивироваться широко используют для их защиты от коррозии. Например, известно, что хранение лезвий безопасных бритв в растворах солей хромовых кислот позволяет дольше сохранять их острыми. В ином случае под действием влажного воздуха железо, особенно на острие лезвия, окисляется и покрывается рыхлым слоем ржавчины.

Пассивируя металл, т.е. создавая оксидные или солевые пленки, можно проводить окраску или тонирование металлов. Толщина таких пленок соизмерима с длиной волны видимого света, поэтому цвет тонированной поверхности зависит от толщины покрытия и цвета металла. Для химического оксидирования с целью окраски широко используют персульфатный раствор, а для электрохимического – изделие делают анодом. В последнем случае говорят, что окрашивание проводят путем анодирования. Тонированию чаще всего подвергают изделия из меди и ее сплавов, а также из алюминия, олова, никеля.

Тонирование может также обусловливаться сульфидной пленкой. Приводим распространенный состав тонирующего раствора: CuSO 4 (10...12 г/л), Pb(NO 3) 2 (10...12 г/л), Na 2 S 2 O 3 (100...180 г/л), сегнетова соль (15...20 г/л). Тонирование изделий при комнатной температуре в этом растворе позволяет получить следующую цветовую гамму: желтый (5 мин), коричневый (7 мин), красный (10 мин), фиолетовый (13 мин), синий (17 мин), зеленый (20 мин). Электрохимический метод тонирования отличается более широкой цветовой гаммой и лучшей воспроизводимостью цветов по сравнению с химическим.

Издавна известен процесс воронения и синения сталей. По существу, это термический способ их оксидирования. Его проводят на воздухе при температуре 350...360°C. Поверхность изделий предварительно покрывают тонким слоем 15...20%-ного раствора асфальтового лака в бензине и подсушивают на воздухе. Такой же эффект может быть получен при оксидирующей обработке изделий в кипящем растворе щелочи в присутствии нитратов и нитритов щелочных металлов.

К сказанному можно добавить, что оксидирование металлов в промышленных масштабах осуществляют не только для их противокоррозионной защиты и декорировки изделий, но и для придания электроизоляционных свойств поверхностному слою и увеличению коэффициента отражения зеркал. Оксидный слой также используют в качестве грунта под окраску и лакировку.

Ингибиторы коррозии металлов

Применение ингибиторов – один из эффективных способов борьбы с коррозией металлов в различных агрессивных средах (в атмосферных, в морской воде, в охлаждающих жидкостях и солевых растворах, в окислительных условиях и т.д.). Ингибиторы – это вещества, способные в малых количествах замедлять протекание химических процессов или останавливать их. Название ингибитор происходит от лат. inhibere, что означает сдерживать, останавливать. Ингибиторы взаимодействуют с промежуточными продуктами реакции или с активными центрами, на которых протекают химические превращения. Они весьма специфичны для каждой группы химических реакций. Коррозия металлов – это лишь один из типов химических реакций, которые поддаются действию ингибиторов. По современным представлениям защитное действие ингибиторов связано с их адсорбцией на поверхности металлов и торможением анодных и катодных процессов.

Первые ингибиторы были найдены случайно, опытным путем, и часто становились клановым секретом. Известно, что дамасские мастера для снятия окалины и ржавчины пользовались растворами серной кислоты с добавками пивных дрожжей, муки, крахмала. Эти примеси были одними из первых ингибиторов. Они не позволяли кислоте действовать на оружейный металл, в результате чего растворялись лишь окалина и ржавчина.

Ингибиторами, не зная того, давно пользовались и на Руси. Уральские оружейники для борьбы с ржавчиной готовили «травильные супы» – растворы серной кислоты, в которые добавлялись мучные отруби. Одним из наиболее простых ингибиторов атмосферной коррозии металлов является нитрит натрия NaNO 2 . Его используют в виде концентрированных водных растворов, а также растворов, загущенных глицерином, оксиэтилцеллюлозой или карбоксиметилцеллюлозой. Нитрит натрия используют для консервирования изделий из стали и чугуна. Для первой применяют. 25%-ные водные растворы, а для второго – 40%-ные. После обработки (обычно окунанием в растворы) изделия заворачивают в парафиновую бумагу. Лучшим действием обладают загущенные растворы. Срок хранения изделий, обработанных загущенными растворами, увеличивается в 3...4 раза по сравнению с водными растворами.

По данным 1980 г., число известных науке ингибиторов коррозии превысило 5 тыс. Считают, что 1 т ингибитора дает в народном хозяйстве экономию около 5000 руб.

Работа по борьбе с коррозией имеет важнейшее народнохозяйственное значение. Это весьма благодатная область для приложения сил и способностей.







Магниевый анод. Служит для защиты бойлера от коррозии
(а заодно является источником магния для юных химиков)