Реакцией соединения является следующая химическая реакция. Химические реакции

1. Какие реакции называют реакциями обмена? Чем они отличаются от реакций соединения, разложения и замещения?
Реакции обмена – это реакции, в результате которых два сложных вещества обмениваются между собой составными частями. Таким образом, из сложных веществ образуются сложные вещества. В то время как в реакциях разложения из одного сложного образуется несколько простых или сложных веществ, в реакциях соединениях – из нескольких простых или сложных одно сложное, в реакциях замещения – из одного простого и одного сложного образуется одно сложное и одно простое.

2. Можно ли утверждать, что взаимодействие раствора карбоната какого-либо металла и кислоты является только реакцией обмена? Почему?

3. Запишите уравнения реакций обмена между растворами:
а) хлорида кальция и фосфата натрия;
б) серной кислоты и гидроксида железа (III).

4. Какие из реакций обмена, схемы которых

будут протекать до конца? Для ответа воспользуйтесь таблицей растворимости гидроксидов и солей в воде.

5. Определите количество вещества гидроксида натрия, которое потребуется для полной нейтрализации 980 г 30%-го раствора фосфорной кислоты.

6. Вычислите количество вещества и массу осадка, выпавшего при взаимодействии 980 г 20%-го раствора сульфата меди (II) с необходимым количеством гидроксида калия.

1. Реакции соединения. Д.И.Менделеев определял соединение как реакцию, «при которой из двух веществ происходит одно. Итак, при реакциях соединения из нескольких реагирующих веществ относительно простого состава получается одно вещество более сложного состава

A + B + C = D

К реакциям соединения относят процессы горения простых веществ (серы, фосфора, углерода) на воздухе. Например, углерод горит на воздухе С+О2=СО2 (конечно эта реакция протекает постепенно, сначала образуется угарный газ СО). Как правило, эти реакции сопровождаются выделением тепла, т.е. приводят к образованию более устойчивых и менее богатых энергией соединений - являются экзотермическими.

Реакции соединения простых веществ всегда носят окислительно-восстановительный характер. Реакции соединения, протекающие между сложными веществами, могут происходить как без изменения валентности

СаСО3 + СО2 + Н2О = Са (НСО3)2

так и относиться к числу окислительно-восстановительных

2FеСl2 + Сl2 = 2FеСl3.

2. Реакции разложения. Химические реакции разложения, по Менделееву, «составляют случаи, обратные соединению, то есть такие, при которых одно вещество даёт два, или, вообще, данное число веществ - большее их число.

Реакции разложения приводят к образованию нескольких соединений из одного сложного вещества

А = В + С + D

Продуктами разложения сложного вещества могут быть как простые, так и сложные вещества. Примером реакции разложение может служить химическая реакция разложения мела (или известняка под воздействием температуры): СаСО3=СаО+СО2. Для проведения реакции разложения, как правило, требуется нагревание. Такие процессы - эндотермические, т.е. протекают с поглощением теплоты. Из реакций разложения, протекающих без изменения валентных состояний, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот

CuSO4 5H2O = CuSO4 + 5H2O,

Cu(OH)2 = CuO + H2O,

H2SiO3 = SiO2 + H2O.

К реакциям разложения окислительно-восстановительного характера относится разложение оксидов, кислот и солей, образованных элементами в высших степенях окисления

2SO3 = 2SO2 + O2,

4HNO3 = 2H2O + 4NO2O + O2O,

2AgNO3 = 2Ag + 2NO2 + O2,

(NH4) 2Cr2O7 = Cr2O3 + N2 + 4H2O.

Особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты.

Реакции разложения в органической химии, в отличие от реакций разложения в неорганической химии, имеют свою специфику. Их можно рассматривать как процессы, обратные присоединению, поскольку в результате чаще всего образуются кратные связи или циклы.

Реакции разложения в органической химии носят название крекинга

С18H38 = С9H18 + С9H20

или дегидрирования C4H10 = C4H6 + 2H2.

В реакциях двух других типов число реагентов равно числу продуктов.

3. Реакции замещения. Их отличительный признак - взаимодействие простого вещества со сложным. Такие реакции есть и в органической химии. Однако понятие «замещение» в органике шире, чем в неорганической химии. Если в молекуле исходного вещества какой-либо атом или функциональная группа заменяются на другой атом или группу, это тоже реакции замещения, хотя с точки зрения неорганической химии процесс выглядит как реакция обмена.

При реакциях замещения обычно простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное А + ВС = АВ + С

Например, опустив стальной гвоздь в раствор медного купороса получаем железный купорос (железо вытеснило медь из её соли) Fe+CuSO4= FeSO4+Cu.

Эти реакции в подавляющем большинстве принадлежат к окислительно-восстановительным

2Аl + Fe2O3 = 2Fе + Аl2О3,

Zn + 2НСl = ZnСl2 + Н2,

2КВr + Сl2 = 2КСl + Вr2,

2КСlO3 + l2 = 2KlO3 + Сl2.

Примеры реакций замещения, не сопровождающихся изменением валентных состояний атомов, крайне немногочисленны.

Следует отметить реакцию двуокиси кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие ангидриды

СаСО3+ SiO2 = СаSiO3 + СО2,

Са3(РО4)2 + ЗSiO2 = ЗСаSiO3 + Р2О5.

Иногда эти реакции рассматривают как реакции обмена

СН4 + Сl2 = СН3Сl + НСl.

4. Реакции обмена (в том числе и нейтрализации). Реакциями обмена называют реакции между двумя соединениями, которые обмениваются между собой своими составными частями

АВ + СD = АD + СВ

Большое их число протекает в водных растворах. Примером химической реакции обмена может служить нейтрализация кислоты щёлочью

NaOH+HCl=NaCl+Н2О.

Здесь в реагентах (веществах, стоящих слева) ион водорода из соединения HCl обменивается с ионом натрия из соединения NaOH, в результате чего образуется раствор поваренной соли в воде.

Если при реакциях замещения протекают окислительно-восстановительные процессы, то реакции обмена всегда происходят без изменения валентного состояния атомов. Это наиболее распространенная группа реакций между сложными веществами - оксидами, основаниями, кислотами и солями

ZnO + Н2SО4 = ZnSО4 + Н2О,

AgNО3 + КВr = АgВr + КNО3,

СrСl3 + ЗNаОН = Сr(ОН)3 + ЗNаСl.

Частный случай этих реакций обмена - реакции нейтрализации

НСl + КОН = КСl + Н2О.

Обычно эти реакции подчиняются законам химического равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного, летучего вещества, осадка или малодиссоциирующего (для растворов) соединения

NаНСО3 + НСl = NаСl + Н2О + СО2,

Са(НСО3)2 + Са(ОН)2 = 2СаСО3↓ + 2Н2О,

СН3СООNа + Н3РО4 = СН3СООН + NаН2РО4.

Однако очень многие реакции не укладываются в приведённую простую схему. Например, химическая реакция между перманганатом калия (марганцовкой) и иодидом натрия не может быть отнесена ни к одному из указанных типов. Такие реакции, обычно, называют окислительно- восстановительные, например

2KMnO4+10NaI+8H2SO4=2MnSO4+K2SO4+5Na2SO4+5I2+8H2O.

К окислительно-восстановительным в неорганической химии относятся все реакции замещения и те реакции разложения и соединения, в которых участвует хотя бы одно простое вещество. В более обобщенном варианте (уже с учетом и органической химии), все реакции с участием простых веществ. И, наоборот, к реакциям, идущим без изменения степеней окисления элементов, образующих реагенты и продукты реакции, относятся все реакции обмена.

2. Классификация реакций по фазовым признакам

В зависимости от агрегатного состояния реагирующих веществ различают следующие реакции:

1. Газовые реакции:

2. Реакции в растворах:

NaОН(р-р) + НСl(p-p) = NaСl(p-p) + Н2О(ж).

3. Реакции между твердыми веществами:

СаО(тв) +SiO2(тв) = СаSiO3(тв).

3. Классификация реакций по числу фаз

Под фазой понимают совокупность однородных частей системы с одинаковыми физическими и химическими свойствами и отделенных друг от друга поверхностью раздела.

Понятие «реакции соединения» является антонимом понятия «реакции разложения». Попробуйте, используя приём противопоставления, дать определение понятия «реакции соединения». Верно! У вас получилась следующая формулировка.

Рассмотрим этот тип реакций с помощью ещё одной, новой для вас формы записи химических процессов - так называемых цепочек переходов, или превращений. Например, схема

показывает превращение фосфора в оксид фосфора (V) Р 2 O 5 , который, в свою очередь, затем превращается в фосфорную кислоту Н 3 РO 4 .

Число стрелок в схеме превращения веществ соответствует минимальному числу химических превращений - химических реакций. В рассматриваемом примере это два химических процесса.

1-й процесс. Получение оксида фосфора (V) Р 2 O 5 из фосфора. Очевидно, что это реакция соединения фосфора с кислородом.

Поместим немного красного фосфора в ложечку для сжигания веществ и подожжём его. Фосфор горит ярким пламенем с образованием белого дыма, состоящего из маленьких частичек оксида фосфора (V):

4Р + 5O 2 = 2Р 2 O 5 .

2-й процесс. Внесём ложечку с горящим фосфором в колбу. Она заполняется густым дымом из оксида фосфора (V). Вынем ложечку из колбы, прильём в колбу воду и взболтаем содержимое, предварительно закрыв горлышко колбы пробкой. Дым постепенно редеет, растворяется в воде и, наконец, исчезает совсем. Если к полученному в колбе раствору добавить немного лакмуса, он окрасится в красный цвет, что является доказательством образования фосфорной кислоты:

Р 2 O 5 + ЗН 2 O = 2Н 3 РO 4 .

Реакции, которые проводят для осуществления рассматриваемых переходов, протекают без участия катализатора, поэтому их называют некаталитическими. Рассмотренные выше реакции протекают только в одном направлении, т. е. являются необратимыми.

Проанализируем, сколько и каких веществ вступало в рассмотренные выше реакции и сколько и каких веществ в них образовалось. В первой реакции из двух простых веществ образовалось одно сложное, а во второй - из двух сложных веществ, каждое из которых состоит из двух элементов, образовалось одно сложное вещество, состоящее уже из трёх элементов.

Одно сложное вещество может также образоваться и в результате реакции соединения сложного и простого веществ. Например, при производстве серной кислоты из оксида серы (IV) получают оксид серы (VI):

Эта реакция протекает как в прямом направлении, т. е. с образованием продукта реакции, так и в обратном, т. е. происходит разложение продукта реакции на исходные вещества, поэтому в них вместо знака равенства ставят знак обратимости .

В этой реакции участвует катализатор - оксид ванадия (V) V 2 O 5 , который указывают над знаком обратимости:

Сложное вещество также может быть получено и в реакции соединения трёх веществ. Например, азотную кислоту получают по реакции, схема которой:

NO 2 + Н 2 O + O 2 → HNO 3 .

Рассмотрим, как подобрать коэффициенты для уравнивания схемы этой химической реакции.

Число атомов азота уравнивать не нужно: и в левой, и в правой частях схемы по одному атому азота. Уравняем число атомов водорода - перед формулой кислоты запишем коэффициент 2:

NO 2 + Н 2 O + O 2 → 2HNO 3 .

но при этом нарушится равенство числа атомов азота - в левой части остался один атом азота, а в правой их стало два. Запишем коэффициент 2 перед формулой оксида азота (IV):

2NO 2 + Н 2 O + O 2 → 2HNO 3 .

Подсчитаем число атомов кислорода: в левой части схемы реакции их семь, а в правой части - шесть. Чтобы уравнять число атомов кислорода (по шесть атомов в каждой части уравнения), вспомним, что перед формулами простых веществ можно записать дробный коэффициент 1/2:

2NO 2 + Н 2 O + 1/2O 2 → 2HNO 3 .

Сделаем коэффициенты целыми. Для этого перепишем уравнение, удвоив коэффициенты:

4NO 2 + 2Н 2 O + O 2 → 4HNO 3 .

Следует отметить, что почти все реакции соединения относятся к экзотермическим реакциям.

Лабораторный опыт № 15
Прокаливание меди в пламени спиртовки

    Рассмотрите выданную вам медную проволоку (пластину) и опишите её внешний вид. Прокалите проволоку, удерживая её тигельными щипцами, в верхней части пламени спиртовки в течение 1 мин. Опишите условие проведения реакции. Опишите признак, подтверждающий, что произошла химическая реакция. Составьте уравнение проведённой реакции. Назовите исходные вещества и продукты реакции.

    Объясните, изменилась ли масса медной проволоки (пластины) после окончания проведения опыта. Ответ обоснуйте, используя знания о законе сохранения массы веществ.

Ключевые слова и словосочетания

  1. Реакции соединения - антонимы реакций разложения.
  2. Каталитические (в том числе и ферментативные) и некаталитические реакции.
  3. Цепочки переходов, или превращений.
  4. Обратимые и необратимые реакции.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания


Виды реакций :Все химические реакции подразделяют на простые и сложные. Простые химические реакции, в свою очередь, обычно подразделяют на четыре типа: реакции соединения , реакции разложения , реакции замещения и реакции обмена .

Д. И. Менделеев определял соединение как реакцию, «при которой из двух веществ происходит одно. Примером химической реакции соединения может служить нагревание порошков железа и серы, - при этом образуется сульфид железа: Fe+S=FeS. К реакциям соединения относят процессы горения простых веществ (серы, фосфора, углерода,...) на воздухе. Например, углерод горит на воздухе С+О 2 =СО 2 (конечно эта реакция протекает постепенно, сначала образуется угарный газ СО). Реакции горения всегда сопровождаются выделением тепла - являются экзотермическими.

Химические реакции разложения , по Менделееву, «составляют случаи, обратные соединению, то есть такие, при которых одно вещество даёт два, или, вообще, данное число веществ - большее их число. Примером реакции разложение меже служить химическая реакция разложения мела (или известняка под воздействием температуры): СаСО 3 → СаО+СО 2 . Для проведения реакции разложения, как правило, требуется нагревание. Такие процессы - эндотермические, т. е. протекают с поглощением теплоты.

В реакциях двух других типов число реагентов равно числу продуктов. Если взаимодействуют простое вещество и сложное -то эта химическая реакция называется химической реакцией замещения : Например опустив стальной гвоздь в раствор медного купороса получаем железный купорос (здесь железо вытеснило медь из её соли) Fe+CuSO 4 → FeSO 4 +Cu.

Реакции между двумя сложными веществами, при которых они обмениваются своими частями, относят к химическим реакциям обмена . Большое их число протекает в водных растворах. Примером химической реакции обмена может служить нейтрализация кислоты щёлочью: NaOH+HCl→ NaCl+Н 2 О. Здесь в реагентах (веществах, стоящих слева) ион водорода из соединения HCl обменивается с ионом натрия из соединения NaOH, в результате чего образуется раствор поваренной соли в воде

Типы реакций и их механизмы приведены в таблице:

химические реакции соединения

Пример:
S + O 2 → SO 2

Из нескольких простых или сложных веществ образуется одно сложное

химические реакции разложения

Пример:
2HN 3 → H 2 + 3N 2

Из сложного вещества образуется несколько простых или сложных веществ

химические реакции замещения

Пример:
Fe + CuSO 4 → Cu + FeSO 4

Атом простого вещества замещает один из атомов сложного

химические реакции ионного обмена

Пример:
H 2 SO 4 + 2NaCl→ Na 2 SO 4 + 2HCl

Сложные вещества обмениваются своими составными частями

Однако очень многие реакции не укладываются в приведённую простую схему. Например, химическая реакция между перманганатом калия (марганцовкой) и иодидом натрия не может быть отнесена ни к одному из указанных типов. Такие реакции, обычно, называют окислительно - восстановительные реакции , например:

2KMnO 4 +10NaI+8H 2 SO 4 → 2MnSO 4 +K 2 SO 4 +5Na 2 SO 4 +5I 2 +8H 2 O.

Признаки химических реакций

Признаки химических реакций . По ним можно судить, прошла ли химическая реакция между реагентами или нет. К таким признакам принято относить следующие:

Изменение цвета (например, светлое железо покрывается во влажном воздухе бурым налётом оксида железа - химическая реакция взаимодействия железа с кислородом).
- Выпадение осадка (например, если через известковый раствор (раствор гидроксида кальция) пропустить углекислый газ, выпадет белый нерастворимый осадок карбоната кальция).
- Выделение газа (например, если капнуть лимонной кислотой на пищевую соду, то выделится углекислый газ).
- Образование слабодиссоциированных веществ (например, реакции, при которых одним из продуктов реакции является вода).
- Свечение раствора.
Примером свечения раствора может служить реакция с использованием такого реагента как раствор люминола (люминол- это сложное химическое вещество, которое может излучать свет при химических реакциях).

Окислительно-восстановительные реакции

Окислительно-восстановительные реакции - составляют особый класс химических реакций. Их характерной особенностью является изменение степени окисления, по крайней мере, пары атомов: окисление одного (потеря электронов) и восстановление другого (присоединение электронов).

Сложные вещества , понижающие свою степень окисления - окислители , а повышающие степень окисления - восстановители . Например:

2Na + Cl 2 → 2NaCl,
- здесь окислитель - хлор (он присоединяет к себе электроны), а восстановитель - натрий (он отдаёт электроны).

Реакция замещения NaBr -1 + Cl 2 0 → 2NaCl -1 + Br 2 0 (характерна для галогенов) тоже относится к окислительно -восстановительным реакциям. Здесь хлор - окислитель (принимает 1 электрон), а бромид натрия (NaBr) - восстановитель (атом брома отдаёт электрон).

Реакция разложения дихромата аммония ((NH 4) 2 Cr 2 O 7) тоже относится к окислительно-восстановительным реакциям:

(N -3 H 4) 2 Cr 2 +6 O 7 → N 2 0 + Cr 2 +3 O 3 + 4H 2 O

Ещё одна из распространённых классификаций химических реакций - это их разделение по тепловому эффекту. Разделяют эндотермические реакции и экзотермические реакции . Эндотермические реакции - химические реакции, сопровождающиеся поглощением окружающего тепла (вспомните охлаждающие смеси). Экзотермические (наоборот) - химические реакции, сопровождающиеся выделением тепла (например - горение).

Опасные химические реакции :"БОМБА В РАКОВИНЕ"- забавно или не очень?!

Существуют некоторые химические реакции, которые протекают спонтанно при смешивании реагентов. При этом образуются достаточно опасные смеси, которые могут взрываться, воспламеняться или отравлять. Вот одна и них!
В некоторых американских и английских клиниках наблюдались странные явления. Время от времени из раковин раздавались звуки, напоминающие пистолетные выстрелы, а в одном случае неожиданно взорвалась сливная трубка. К счастью, никто не пострадал. Расследование показало, что виновником всего этого был очень слабый (0,01%) раствор азида натрия NaN 3 , который использовали в качестве консерванта физиологических растворов.

Излишки раствора азида в течение многих месяцев, а то и лет сливали в раковины - иногда до 2 л в день.

Сам по себе азид натрия - соль азидоводородной кислоты HN 3 - не взрывается. Однако азиды тяжёлых металлов (меди, серебра, ртути, свинца и др.) - весьма неустойчивые кристаллические соединения, которые взрываются при трении, ударе, нагревании, действии света. Взрыв может произойти даже под слоем воды! Азид свинца Pb(N 3) 2 используется как инициирующее взрывчатое вещество, с помощью которого подрывают основную массу взрывчатки. Для этого достаточно всего двух десятков миллиграммов Pb(N 3) 2 . Это соединение более взрывчато, чем нитроглицерин, а скорость детонации (распространения взрывной волны) при взрыве достигает 45 км/с - в 10 раз больше, чем у тротила.

Но откуда в клиниках могли взяться азиды тяжёлых металлов? Оказалось, во всех случаях сливные трубки под раковинами были изготовлены из меди или латуни (такие трубки легко гнутся, особенно после нагревания, поэтому их удобно устанавливать в сливной системе). Выливаемый в раковины раствор азида натрия, протекая по таким трубкам, постепенно реагировал с их поверхностью, образуя азид меди. Пришлось менять трубки на пластмассовые. Когда в одной из клиник проводили такую замену, оказалось, что снятые медные трубки сильно забиты твёрдым веществом. Специалисты, которые занимались «разминированием», чтобы не рисковать, подорвали эти трубки на месте, сложив их в металлический бак массой 1 т. Взрыв был настолько силён, что сдвинул бак на несколько сантиметров!

Медиков не очень интересовала сущность химических реакций, приводящих к образованию взрывчатки. В химической литературе также не удалось найти описания этого процесса. Но можно предположить, исходя из сильных окислительных свойств HN 3 , что имела место такая реакция: анион N-3, окисляя медь, образовал одну молекулу N2 и атом азота, который вошёл в состав аммиака. Это соответствует уравнению реакции: 3NaN 3 +Cu+3Н 2 О→ Cu(N 3) 2 +3NaOH+N 2 +NH 3 .

С опасностью образования бомбы в раковине приходится считаться всем, кто имеет дело с растворимыми азидами металлов, в том числе и химикам, поскольку азиды используются для получения особо чистого азота, в органическом синтезе, в качестве порообразователя (вспенивающего агента для производства газонаполненных материалов: пенопластов, пористой резины и т. п.). Во всех подобных случаях надо проследить, чтобы сливные трубки были пластмассовыми.

Сравнительно недавно азиды нашли новое применение в автомобилестроении. В 1989 г. в некоторых моделях американских автомобилей появились надувные подушки безопасности. Такая подушка, содержащая азид натрия, в сложенном виде почти незаметна. При лобовом столкновении электрический запал приводит к очень быстрому разложению азида: 2NaN 3 =2Na+3N 2 . 100 г порошка выделяют около 60 л азота, который примерно за 0,04 с надувает подушку перед грудью водителя, спасая тем самым ему жизнь.