Генератор рения 188. Инновации. Обзор существующих и разрабатываемых РФП

Использование: в ядерной медицине для терапевтических целей, для научных исследований и технологического контроля. Сущность изобретения: разработан способ получения генератора рения-188 с высокой радионуклидной чистотой и объемной активностью целевого радионуклида. Мишень из оксида вольфрама облучают нейтронами и растворяют в щелочи. Нерастворенный осадок растворяют в перекиси водорода. Полученный раствор подщелачивают до pH 12-14. Проводят очистку щелочного раствора пропусканием через колонку с оксидом алюминия в OH - -форме и подкисляют раствором соляной кислоты. Затем вольфрам-188 переводят в матрицу, сорбцией на оксиде алюминия в H + -форме в динамическом режиме, либо в статистическом с переносом матрицы в колонку с фильтрующим слоем из оксида алюминия в H + -форме. Элюирование рения-188 проводят растворами натриевых солей. 3 табл.

Изобретение относится к области преобразования химических элементов и получению радиоактивных источников, а именно к способам выделения радионуклида рения-188 из облученной мишени вольфрама радиохимическим методом, и может быть использовано в ядерной медицине для терапевтических целей, для научных исследований и технологического контроля. Известны способы получения генератора рения-188, заключающиеся в том, что облучают мишень из оксида вольфрама или вольфрамовой кислоты нейтронами, растворяют мишень, переводят в сорбируемую форму и затем в нерастворимую матрицу путем сорбции на оксиде алюминия и элюируют рений-188 растворами минеральных кислот и их солей С помощью этих способов невозможно получить генератор рения-188 с высокой объемной активностью, радионуклидной и химической чистотой целевого радионуклида. Представлены невыгодные условия сорбции вольфрама и элюирования рения. Недостаточны либо отсутствуют данные о характеристиках элюата рения-188. Не разработаны режимы изготовления и эксплуатации генераторной колонки, позволяющие создать технологию получения генератора нения-188 и использовать генератор для медицинских целей. Наиболее близким по технической сущности является способ изготовления генератора рения-188, заключающийся в том, что облучают мишень из вольфрама (оксида вольфрама) потоком нейтронов 310 14 н/см 2 с, растворяют оксид вольфрама в 2-10 М щелочи, нагретой до 50-90 o C, перевод в матрицу осуществляют взаимодействием щелочного раствора вольфрамита с кислым раствором, содержащим цирконил-ион, для образования осадка вольфрамита циркония, содержащего W-188, дополнительной обработкой этого осадка - доведением pH от 2,8 до 6, преимущественно 4,3, последовательной промывкой водой или физраствором, центрифугированием, декантацией водой, промывкой полярным органическим растворителем, смешивающимся с водой, затем органическим растворителем, смешивающимся с полярным органическим растворителем с низкой температурой кипения, сушкой осадка, причем однородность осадка достигается механической (шпателем) или ультразвуковой разбивкой стекловидного геля вольфрамита циркония, либо добавкой инертного носителя (оксида алюминия, кварца). Матрицу помещают в емкость для элюирования, а элюирование проводят из колонки растворами натриевых солей. Для очистки элюата рения-188 от примеси вольфрама-188 используется оксид алюминия или циркония в виде второй колонки либо слоя под матрицей, содержащей цирконилвольфрамат, через которую проходит элюент Известный способ является трудоемким. Он включает проведение большого числа операций, применение различных реактивов, органических растворителей, посуды, приборов (например, центрифуги), что осложняет процесс изготовления генератора рения-188 в серийном варианте в условиях высокой радиационной нагрузки. Невысок выход целевого продукта 55-65% Отсутствуют данные о радионуклидной чистоте рения-188 за исключением примеси W-188, необходимые для использования генератора рения-188 в терапевтических целях. Цель изобретения упрощение технологического процесса, позволяющего наладить промышленный выпуск генераторов рения-188 с обеспечением высокой объемной активности и радионуклидной чистоты целевого продукта. Поставленная задача достигается тем, что в способе получения генератора рения-188, включающем облучение мишеней из оксида вольфрама нейтронами, растворение мишени в щелочи, перевод в матрицу, содержащую W-188, помещение матрицы в емкость для элюирования и элюирование рения-188, нерастворенный в щелочи осадок оксидов низковалентных состояний вольфрама растворяют в перекиси водорода, подщелачивают до pH 12-14, объединенный щелочной раствор вольфрама подвергают очистке от радионуклидных примесей пропусканием через колонку с оксидом алюминия в OH - форме, подкисляют раствором соляной кислоты и переводят в матрицу, содержащую W-188, сорбцией на оксиде алюминия в H + -форме. Сорбцию проводят в динамическом режиме на колонке либо в статическом режиме с переносом матрицы в емкость для элюирования с фильтрующим слоем из оксида алюминия в H + -форме. Одним из основных условий получения генератора рения-188 высокой объемной активности и радионуклидной чистоты является получение радиоактивного сырья -материнского радионуклида вольфрама-188 оптимальной удельной и объемной активности и радионуклидной чистоты. Высокая удельная активность достигается использованием высоких потоков нейтронов для облучения мишеней, увеличением времени облучения, использованием мишеней из вольфрама, обогащенного по изотопу W-186. Однако, при этом наблюдается частичное восстановление вольфрама и образование оксидов низковалентных состояний вольфрама в виде нерастворимого в щелочи осадка, количество которого увеличивается при облучении в высоких потоках нейтронов и составляет 5-8% от общего количества W-188 при облучении в потоке (1-2)10 15 н/см 2 с в течение 30-40 эффективных суток и примерно 1% при облучении в потоке 10 14 н/см 2 с в течение 100 эффективных суток. Ввиду высокой стоимости радиоактивного сырья имеет смысл использовать W-188 из осадка в технологическом процессе изготовления генератора. Обработка нерастворенного в щелочи осадка раствором перекиси водорода после декантации или фильтрации щелочного раствора вольфрама при комнатной температуре позволили перевести его в раствор, а обработка щелочью до pH 12-14 позволила разрушить избыток перекиси водорода и объединить с основным щелочным раствором для участия в дальнейшем технологическом процессе. Очистка радиоактивных растворов вольфрама позволяет снизить возможность попадания в элюат рения-188 долгоживущих радионуклидных примесей, нарабатываемых в процессе длительного облучения мишенного материала из различных соединений вольфрама, содержащих малые и ультрамалые химические примеси (по паспорту <0,01%).

186 WO 3 с обогащением 99,79% в облученной мишени обнаруживается 110m Ag (0,2%), 137 Cs (0,17%), 65 Zn (0,06%), 95 Zr- 95 Nb (2,2%), 103 Ru- 103 Rh (1%), 106 Ru- 106 Rh (0,13%), 140 Ba- 140 La. В случае WO 3 "для оптического стекловарения" естественного состава большое количество 134 Cs. В случае наиболее чистого мишенного материала 186 WO 3 с обогащением 96% содержание радионуклидных примесей незначительно, однако вклад их в общую активность увеличивается по мере хранения радиоактивного сырья вследствие распада W-188, тем самым снижая срок годности радиоактивного сырья и генератора, что особенно существенно для генераторов медицинского назначения. При облучении в менее интенсивных потоках нейтронов-ное содержание радионуклидных примесей выше, чем при облучении в потоках 10 15 н/см 2 с. Часть радионуклидных примесей при элюировании попадает в раствор целевого радионуклида Re-188. основными радионуклидными примесями, обнаруженными в элюатах генераторов 188 W- 188 Re, приготовленных из различного радиоактивного сырья, являются 134,137 Cs, 110m Ag, 60 Co, 65 Zn, а также 140 Ba в свежезаряженных генераторах (Т 1/2 12,8 дн). -спектры элюатов рения-188 генераторов активностью 100 мКи приготовлены из неочищенного вольфрама-188. Пример радионуклидных примесей в нескольких элюатах, отобранных в течение месяца после изготовления генераторов 2 мес. после окончания облучения (1) и через 5-6 мес. после изготовления (2) -приведен в табл.1. Проведение очистки от радионуклидных примесей на оксиде алюминия в OH - -форме позволяет сорбировать основную их часть, практически не извлекая вольфрам-188, оптимальные условия разделения наблюдаются в случае использования в качестве сорбента Al 2 O 3 , обработанного непосредственно перед использованием 0,1-1 н NaOH, в качестве водной среды - растворы вольфрама pH 12-14 (табл.2). Обработка оксида алюминия 0,1-1 н NaOH и заправка очистительной колонки непосредственно перед проведением очистки позволяет максимально активировать сорбент и снизить количество растворенного алюминия в очищенном щелочном раствора вольфрама, что наблюдается при использовании необработанного сорбента. Проведение очистки W от радионуклидных примесей в динамических условиях обеспечивает количественное извлечение Cs, Co, Ag, Zn, Ba и распределение их в верхней части хроматографической колонки (табл.3), так как коэффициенты распределения на порядок выше, чем в статических условиях. Подкисление очищенного щелочного раствора вольфрама 1-2 н HCl при переводе в сорбируемую форму изополивольфраматы обеспечивает оптимальную концентрацию вольфрама (505) мг/мл и соответственно оптимальную объемную активность. Использование более концентрированных растворов HCI может привести к выпадению W в осадок, более разбавленных к снижению концентрации и объемной активности W-188. Доведение до pH 12-14 щелочного раствора, полученного при растворении нерастворенного в 2 н NaOH осадка оксидов низковалентных состояний вольфрама в перекиси водорода с последующим подщелачиванием, обеспечивает оптимальную очистку от Cs, Co, Ag, Zn, Ba и минимальную потерю вольфрама на очистительной колонке. Подкисление щелочных растворов вольфрама соляной кислотой и обработка сорбента соляной кислотой обеспечивают оптимальную сорбцию вольфрама в виде изополивольфраматов на оксиде алюминия в H + -форме. Наилучшая сорбция достигается при значении pH раствора вольфрама, равном 3-4, и при обработке оксида алюминия 0,1 н HCl. Сорбция вольфрама в динамических условиях обеспечивает серийный выпуск генераторов в условиях работы с высокой радиоактивностью и дистанционного управления технологическим процессом. Сорбция вольфрама в статических условиях с переносом сорбата в колонку с фильтрующим слоем в случае низкой удельной или объемной активности, т.е. большого весового или объемного количества вольфрама, позволяет получить генератор максимальной активности для данного радиоактивного сырья и при этом снизить вероятность попадания W-188 в элюат целевого радионуклида рения-188, продлить срок годности несвоевременно перерабатываемого радиоактивного сырья или изготовленного генератора. Пример 1. 1 г WO 3 (H 2 WO 4), обогащенного по изотопу W-186 (96-99,8%) или естественного состава, облучали в потоке (1-2)10 15 н/см 2 с в течение 28 сут. Образец после охлаждения в течение 20 сут вскрывали, переносили в колбу 1 на 50 мл (1), содержащую 8 (7,2) мл 2 н NaOH, нагревали на плитке при 200-300 o C в течение 10-20 мин, остужали. Оксид алюминия (2 г) обрабатывали в стакане на 50 мл 0,1-1 н NaOH при нагревании на плитке в течение 5-10 мин, переносили в колонку размером h 10 см, =0,8 см. Щелочной раствор, осторожно отделяя от нерастворенного осадка, пропускали через колонку с Al 2 O 3 в OH - -форме, промывали осадок в колбе и колонку 2-4 мл 1 н NaOH, собирали элюат в колбе на 50 мл. Нерастворимый в щелочи осадок в колбе 1 растворяли в 2 мл 15-20% H 2 O 2 , подщелачивали 2 мл 2 н NaOH до pH 12-14, пропускали щелочной раствор через ту же колонку с Al 2 O 3 в OH - -форме. Объединенный щелочной раствор подкисляли 1 н HCl (12 мл) до pH 3-5, переносили в цилиндр, измеряли объем, отбирали аликвоту для измерения объемной активности, радионуклидных примесей, рассчитывали удельную активность и концентрацию вольфрама. С помощью дозатора готовили флаконы с радиоактивным раствором, обеспечивающим зарядку генератора заданной активности из расчета A 188 w: A 188 Re = 1,3. Готовили серию колонок высотой 7-10 см, 0,8-1,2 см с содержанием Al 2 O 3 1-5 г, предварительно обработанным 0,1 н HCl при нагревании 5-10 мин. Колонки и флаконы с радиоактивным раствором стерилизовали в автоклаве в течение 15 мин при 120 o C и давлении 1,1 атм. Колонки помещали в защитный контейнер с внутренними коммуникациями (типа ГТ-2). зарядку генераторной колонки проводили с помощью вакуумированных флаконов или системы разрежения со скоростью 8-20 мл/мин. Промывали генератора 0,9% NaCl pH 3-4 (30 мл) через 18 ч после зарядки и элюировали Re-188 в виде Na 188 ReO 4 тем же раствором с помощью вакуумированных флаконов объемами по 10 мл. Отбирали и исследовали элюаты Re-188 периодически в течение срока годности генератора полугода, года. Определяли объемную активность, радиохимический выход, радиохимическую чистоту (РХЧ), pH, состав химических и радионуклидных примесей и другие характеристики элюата. Объемная активность составляла 0,1-10 мКи/мл, радиохимический выход 755% в объеме 10 мл, РХЧ 99,9% pH 5,51, содержание неактивных примесей Al, Fe, Cu менее 5 мкг/мл, радионуклидных примесей 134 Cs, 137 Cs, 60 Co, 65 Zn, 110m Ag, 140 Ba менее 10 -6 188 W менее 10 -3 Характеристики элюата удовлетворяют медико-техническим требованиям. Пример 2. Поясняет второй вариант зарядки генератора с наружными коммуникациями. Облучение, растворение образцов, очистку от радионуклидных примесей, перевод в сорбируемую форму проводили как в примере 1. Готовили колонки размером h 10 см, o 1,2 см с содержанием Al 2 O 3 в H + -форме 3-6 г, завальцовывали. Рассчитанный объем радиоактивного раствора 2-10 мл вносили в колонки с помощью дозатора с иглой либо флаконов и системы разрежения. Колонки помещали в защитный контейнер с наружными коммуникациями типа КСУ-2 НРЖ, промывали через 6-18 ч 30-60 мл 0,9% NaCl pH 3-4 и затем элюировали Re-188 растворами натриевых солей периодически в течение года. Характеристики элюата существенно не отличались от характеристик элюатов генераторов, приведенных в примере 1, активностью 1-100 мКи. Пример 3. Поясняет вариант зарядки генераторов с наружными коммуникациями в статическом режиме в случае растворов вольфрама низкой объемной активности. Облучение мишеней из вольфрама проводили в потоках 10 14 н/см 2 с в течение 100-120 сут эффективного времени. Переработку и очистку щелочных растворов от радионуклидных примесей, перевод в сорбируемую форму проводили как в примерах 1, 2. Сорбцию проводили из больших объемов растворов вольфрама низкой удельной и объемной активности (10 мл) в статическом режиме в колбах на 50 мл, содержащих 2-5 г Al 2 O 3 в H + -форме в течение 2 ч при перемешивании. Готовили колонки с 1-2 г Al 2 O 3 в H + -форме в качестве фильтрующего слоя, сорбат из колбы переносили на воронку с бумажным фильтром, промывали 0,9% NaCl pH 3-4 (50-60 мл), переносили в колонку протыканием фильтра стеклянной палочкой, обмывая 5 мл 0,9% NaCl pH 3-4. Колонку завальцовывали, стерилизовали в автоклаве в течение 15 мин при 120 o C и давлении 1,1 атм, помещали в защитный контейнер типа КСУ-2 НРЖ. Содержание W в генераторах до 500 мг. Характеристики элюата за исключением объемной активности Re-188 аналогичны характеристикам элюатов генераторов высокой удельной активности. Содержание радионуклидных примесей не превышало 10 -6 Таким образом, сочетание предлагаемых существенных отличий: растворение нерастворенного в щелочи осадка вольфрама в перекиси водорода и подщелачивание его до pH 12-14, проведение очистки щелочного раствора от радионуклидных примесей пропусканием через колонку со специально обработанным оксидом алюминия, перевод в сорбируемую форму и в матрицу сорбцией на оксиде алюминия в H + -форме в динамическом и статическом режимах с известными признаками является необходимым и достаточным для решения поставленной задачи: упрощения технологического процесса, позволяющего наладить промышленный выпуск генераторов рения-188 с обеспечением высокой объемной активности и радионуклидной чистоты целевого продукта.

Генеральный директор АО «ГНЦ РФ - ФЭИ», доктор физико-математических наук Андрей Говердовский

Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского - старейшая в атомной отрасли многопрофильная научно-исследовательская организация, 70-летие которой мы будем отмечать в мае 2016 года.

Основные усилия коллектива направлены на создание новых энергетических технологий, использующих энергию атомного ядра. На счету института ряд серьезных разработок, реализованных в промышленности и обороне. Однако направленность на текущие и подчас неудовлетворенные потребности населения занимают значимую часть научной и производственной стратегии ФЭИ. В первую очередь, это конечно ядерная медицина в самом широком смысле. В этой области мы не ограничиваемся лишь производством изотопов, пусть даже самых дорогих и востребованных, но и создаем на их основе радиофармпрепараты. При этом работаем в тесной кооперации с медиками.

Последний вполне удачный пример - микроисточники для брахитерапии. Другое серьезное направление - нейтрон-захватная терапия. Если тридцать лет назад использовался ядерный реактор, то сегодня практически готов ускорительный терапевтический комплекс. На очереди обоснование и создание ускорительного изотопно-терапевтического комплекса.

Главная ценность института - это люди. В институте сложился очень стойкий профессиональный коллектив с которым можно уверенно смотреть в будущее.

В настоящее время у радиохимиков ФЭИ имеется большой задел наработанных технологий как по ядерной медицине, так и по общепромышленным технологиям применения изотопов.

Институт осуществляет широкое научно-техническое сотрудничество с ведущими научными организациями России, СНГ, многих стран мира.

ГНЦ РФ - ФЭИ вносит существенный вклад в решение целого ряда проблем борьбы за здоровье человека.

ФЭИ для ядерной медицины

Заместитель директора отделения физико-химических технологий - начальник научно-производственного комплекса изотопов и радиофармпрепаратов АО «ГНЦ РФ - ФЭИ», кандидат технических наук Николай Нерозин

Вот уже почти 30 лет в Физико-энергетическом институте им. А.И. Лейпунского проводятся работы, направленные на развитие ядерной медицины в России. Первой ласточкой были генераторы технеция и молибден-99 для их зарядки. Время было интересное: во-первых, перестройка, а во-вторых, дело новое, хотя в рамках того, что делали до сих пор, но по другим программам и для других целей. Буквально через несколько лет было налажено и пущено производство молибдена-99, а за ним и генераторов технеция-99м. Большую поддержку и непосредственную помощь в организации выпуска генераторов оказали сотрудники тогдашнего Института биофизики Минздрава СССР.

Вслед за генератором технеция-99м стали разрабатывать технологии выделения радиоактивных изотопов из облученного топлива, предназначенных для использования в медицинских целях. Для радиохимиков нашего института задача не новая, однако изотопы нужны совершенно другого уровня качества как по химическим, так и по радионуклидным примесям. Благодаря квалифицированным кадрам радиохимиков и их огромному опыту, накопленному в процессе многолетних работ в области радиохимической переработки облученного ядерного топлива, удалось за короткий срок разработать и внедрить технологии выделения целого ряда таких радиоактивных изотопов. Кроме того, были созданы и внедрены уникальные методы их очистки, чтобы удовлетворить особые требования, предъявляемые к продукции медицинского назначения по уровню химических и особенно радиоактивных примесей.

В настоящее время АО «ГНЦ РФ - ФЭИ» производит и поставляет на внутренний и зарубежный рынки более 25 наименований радиоизотопной продукции для ядерной медицины, промышленности и научных исследований (рис. 1 ). К сожалению, из всего списка выпускаемой продукции российскими потребителями востребованы только некоторые позиции.

В настоящее время наши усилия направлены не только на расширение номенклатуры продуктовой линейки продукции для отечественного потребителя, но и на продажу за рубеж конечной высокотехнологичной продукции вместо поставок сырья. Возможности для этого у нас есть. Есть большие компетенции с оправданными амбициями, есть высококвалифицированные специалисты, соответствующая инфраструктура и, особенно, имеется большое желание вывести на передовые рубежи в области ядерной медицины не только АО «ГНЦ РФ - ФЭИ», но и первый Наукоград России г. Обнинск, в котором изначально заложены все предпосылки к этому.

Перспективные проекты

Недавно была утверждена Стратегия развития изотопного бизнеса Госкорпорации «Росатом». Она предполагает в ближайшие годы существенный скачок в развитии различных изотопных производств, включая производство изотопов, радиофармпрепаратов, источников ионизирующих излучений, изделий медицинской техники. ФЭИ подготовил перечень проектов, которые, по нашему мнению, внесут существенный вклад в развитие изотопного бизнеса Госкорпорации «Росатом», позволят увеличить выручку и долю изотопной продукции корпорации на мировом рынке.

Микроисточники для брахитерапии

В первую очередь - это проект, направленный на увеличение производства микроисточников для брахитерапии. В настоящее время более 10 000 россиян нуждаются в этой операции, и участок, который создан сейчас в ФЭИ, не сможет удовлетворить всех нуждающихся своей продукцией, нужен совершенно другой уровень производства, который предполагает создание оборудования для автоматических линий. На разработку такого оборудования и создание высокопроизводительного производства и направлен представленный проект.

Производство альфа-излучателей

Если представленный проект по микроисточникам не требует НИР, то следующий предполагает инновационную составляющую, прежде чем создавать производство. Это проект по разработке технологии и организации производства альфа-излучателей.

В последнее время, с ростом числа онкологических заболеваний, активно ведутся поиск и исследование радионуклидов, которые обладали бы оптимальными терапевтическими свойствами, такими как высокая линейная передача энергии и малая длина пробега частицы. Наиболее подходящими по этим свойствам считаются альфа-излучатели по сравнению с бета-излучателями.

Проведенные в различных странах исследования показали, что альфа-излучатели успешно можно применять для лечения микрометастазов в начальной стадии развития, лейкемии, рака легких и других. Одним из наиболее перспективных альфа-излучающих нуклидов по своим ядерно-химическим свойствам является актиний-225 и висмут-213, дочерний продукт распада актиния-225.

В развитых странах сейчас интенсивно ведутся исследования, направленные на разработку медицинских препаратов на основе этих изотопов, и по некоторым препаратам уже проводятся клинические испытания. С приходом в практическую медицину альфа-излучающих радионуклидов ядерная медицина перейдет на совершенно иной уровень борьбы с онкологическими и другими заболеваниями - молекулярный, который во много раз эффективнее существующих и не ведет к повреждению здоровых тканей, так как воздействует исключительно на пораженную клетку. В настоящее время потребность в актинии-225 в 10 раз превышает его наличие, и этот дефицит из года в год будет увеличиваться. Проект довольно-таки амбициозный, который не только позволит ликвидировать существующий дефицит, но и даст российским производителям контролировать рынок этого продукта.

Наработка изотопов на растворном реакторе

В связи с ситуацией на мировом рынке молибдена-99 в ближайшие годы появится возможность завоевать 20-25% этого рынка, и надо воспользоваться этой возможностью. В качестве альтернативы получения молибдена-99 на реакторе РБМК ФЭИ предлагает воспользоваться идеей по наработке молибдена-99 и других востребованных изотопов на растворном реакторе, проект которого уже более 25 лет прорабатывается в институте. Растворные реакторы, как показывает мировой опыт их эксплуатации, обладают высокой ядерной и радиационной безопасностью.Безопасность обеспечивается в основном за счет пассивных средств - собственной внутренней защитой от любых нарушений нормальной эксплуатации даже без подключения систем безопасности и без вмешательства персонала в управление реактором. Внутренняя защищенность связана с наличием значительного отрицательного эффекта реактивности при уменьшении плотности раствора за счет разогрева (температурный эффект) и при образовании в растворе радиолитического газа (пустотный эффект), что ограничивает рост мощности при возмущениях по реактивности и гасит разгон мощности, выводя ее на безопасный уровень. Для реализации этой технологии предлагается создать производственный комплекс, состоящий из двух или более реакторов (в зависимости от требуемой производительности) и системы радиохимического выделения изотопов. Таким образом можно было бы обеспечить наработку требуемого количества молибдена-99 на низкообогащенном уране (НОУ) и попутно получать наиболее востребованные для ядерной медицины изотопы йод-131, ксенон-133, стронций-89.

Кроме представленных наиболее крупных проектов по развитию изотопного бизнеса, требующих больших инвестиций, имеются и другие, более мелкие с финансовой точки зрения, но не менее важные по социальной значимости. Такие проекты, как расширение номенклатуры закрытых источников ионизирующего излучения для лечения пациентов с заболеваниями органов зрения, разработка технологии и создание производства генераторов рубидия-82 для диагностики сердечно-сосудистых заболеваний и другие. Для большинства из них будут создаваться консорциумы из нескольких предприятий, и только после распределения работ возможно выполнение того или иного проекта.

Радионуклидная терапия

Начальник лаборатории радиофармпрепаратов АО «ГНЦ РФ - ФЭИ» Дмитрий Степченков

В мировой практике для паллиативной терапии костных метастазов сейчас активно используются РФП на основе изотопов 153 Sm, 89 Sr, 32 P, 33 P, 186 Re, 188 Re, 177 Lu, 90 Y, 131 I. Применяется также и альфа-излучатель 223 Ra. В России сейчас используются только два препарата: на основе 153 Sm и 89 Sr; при этом эффективность терапии составляет 60-80%. Для стинтиграфии скелета применяются в основном простейшие дифосфонаты, меченные технецием-99m, и дифосфонаты, меченные рением-186 и рением-188. Радионуклидная терапия в ревматологии также связана с применением довольно широкого спектра РФП на основе изотопов 90 Y, 32 P, 169 Er, 165 Dy, 153 Sm, 89 Sr, 186 Re, 188 Re, 177 Lu.

Генератор рения-188

Достоинством рения-188 как радионуклида для ядерной медициныявляется наличие как бета-, так и гамма-составляющей излучения, первая определяет терапевтический эффект, а вторая - визуализацию распределения препарата в организме. Рений-188 перспективен с точки зрения применения его соединений в бета-лучевой терапии злокачественных новообразований, метастазов, ревматоидных артритов и др. заболеваний открытыми радионуклидными источниками. Проникновение в ткани β-частиц с энергией около 1 МэВ составляет 5 мм, и поэтому характер дозового распределения аналогичен распределению нуклида в ткани. Период полураспада рения-188 хорошо согласуется с требованием равняться нескольким жизненным циклам клетки.

Генератор рения-188 относится к современным отечественным высокотехнологичным изделиям медицинской техники, элюаты которых содержат радионуклид рения-188 и являются основой получения РФП,коллоидов, микросфер, пептидов, антител, разрабатываемых для лечения онкологических и неонкологических заболеваний (рис. 1 ).Рений обладает способностью к комплексообразованию, что позволяет синтезировать радиофармпрепараты (РФП) для диагностики и терапии злокачественных новообразований, костных метастазов, ревматоидных артритов и других заболеваний. Специалистами ФГБУ ГНЦ ФМБЦ им. А.И. Бурназяна разработан и прошел доклинические исследования наноколлоид с 188 Reдля терапии воспалительных заболеваний суставов. Проходят клинические исследования следующие «холодные наборы»: 188 Re- «Фосфорен», «Золерен» - для радионуклидной терапии метастатических поражений костной ткани. По сравнению с другими странами Россия наиболее близка к началу производства подобных препаратов.

Рис. 1. Область применения генератора рения-188

Специалистами АО «ГНЦ РФ - ФЭИ» первыми в России создан генератор рения-188 ГРЕН-1 (188 W/ 188 Reгенератор), генератор применяется для получения стерильного апирогенного раствора перрената натрия (Na 188 ReO 4). Качество элюата соответствует требованиям Европейской и Российской фармакопей. Выпуск генераторов осуществляется согласно требованиям системы обеспечения качества - стандартам серии ГОСТ ISO-9001-2011.

В настоящее время в ГНЦ РФ - ФЭИ проводится комплекс работ по реконструкции производственных помещений в соответствии с требованиями ГОСТ Р 52 249-2009 «Правила организации производства и контроля качества лекарственных средств» (Good Manufacturing Practice).

Для повышения конкурентоспособности 188 W/ 188 Reгенератора на международном рынке ведущими специалистами АО «ГНЦ РФ - ФЭИ» проводятся научные исследования в обоснование способов повышения объемной активности радионуклида 188 Reв элюате генератора 188 W/ 188 Re, новой конструкции генератора со сниженным транспортным индексом, по оптимизации материала защиты (рис. 3 ). Работы согласуются с государственной политикой, направленной на модернизацию производства и обеспечение населения России современными высокотехнологичными средствами диагностики, лечения различных заболеваний и снижение стоимости этих услуг.

Рис. 3. Генератор рения-188 новой конструкции

С целью увеличения объемной активности раствора перрената натрия выполнены исследования зависимости кривой элюирования от номинала генератора 188 W/ 188 Re. Установлено, что для генераторов активностью от 100 до 500 мКи по рению-188 объем элюента составляет не более 5 мл; для генераторов активностью от 500 до 1000 мКи - не более 10 мл (рис. 4, 5 ).

Рис. 4. Профили элюирования генераторов рения-188 номиналом 200 и 100 мКи

Результатом проведенных работ являются разработка стационарного генератора рения-188 номиналом до 5,0 Ки и обоснование способа фракционного (порционного) элюирования генератора рения-188, защищенного патентом РФ на изобретение № 2481660. «Способ получения генераторного радионуклида рений-188». 2011. Баранов Н.Г., Степченков Д.В., Нерозин Н.А., Сулим Е.В., Минко Ю.В., Семенова А.А. В таблице 2 представлены сравнительные показатели объемной активности элюатов из генераторов рения-188 ГРЕН-1 на начало эксплуатации и в течение 2,5 месяцев при штатном и фракционном режимах элюирования.

Рис. 5. Профили элюирования двух генераторов рения-188 номиналом 1 Ки

На рис. 6 представлена кривая элюирования стационарного исследовательского генератора рения-188, установленная в течение 4 месяцев эксплуатации генератора номиналом 3,7 Ки.

Рис. 6. Профиль элюирования стационарного генератора рения-188 номиналом 3,7 Ки в течение 4 месяцев

Параметры объемной активности элюатов из генераторов рения-188 ГРЕН-1 на начало эксплуатации и в течение 2,5 месяцев при штатном и фракционном режимах элюирования

Таблица 2

Номинальная активность генераторов рения-188 ГРЕН-1, мКи/мл

Режим элюирования

Объем элюата, мл

Начальная объемная активность,

Объемная активность на 30-е сутки,

Объемная активность на 70-е сутки,

фракционный

фракционный

В соответствии с техническими условиями элюирование генераторов проводится с периодичностью 4,0 суток для достижения 99% накопления радионуклида рения-188, что определяется из уравнения накопления дочернего радионуклида рения-188 в генераторной системе вольфрам-188/рений-188 и получения конечного продукта с максимальной объемной активностью. С целью повышения эффективности извлечения радионуклида рения-188 предложено элюирование генератора с интервалом 24 или 48 часов (рис. 7 ).

Рис. 7. Выход радионуклида рения-188 при элюировании генератора вольфрам-188/рений-188

Так, генератор вольфрам-188/рений-188, имеющий номинальную активность 1 Ки вольфрама-188, обеспечивает 750-800 мКи радионуклида рения-188 при достижении равновесия после 4 суток (выход рения-188 более 75%). При последовательном ежедневном элюировании накопление рения-188 достигает 63% (накопление 24 часа, рисунок) и составляет 500 мКи.

«Сухое хранение» колонки генератора 188 W/ 188 Re минимизирует радиолиз.

2
1 Завод «Медрадиопрепарат» – филиал ФГУП «Федеральный центр по проектированию и разви- тию объектов ядерной медицины» ФМБА России, Москва
2 МРНЦ им. А.Ф. Цыба – филиал ФГБУ «НМИЦ радиологии» Минздрава России, Обнинск
3 ГБУ РО «Областная клиническая больница № 2», Ростов-на-Дону

Одним из эффективных методов лечения воспалительных заболеваний суставов является радиосиновэктомия (радиосиновиортез). Метод основан на внутрисуставном введении радиофармпрепаратов (РФП), содержащих бета-излучающие изотопы. При локальном введении РФП в сустав происходит воздействие на синовиальную оболочку сустава, что ведет к формированию ее поверхностного фиброза и подавлению воспаления. В зависимости от размеров пораженного сустава применяются РФП, отличающиеся мощностью излучения изотопа, входящего в его состав. В мировой практике накоплен богатый опыт применения препаратов для радиосиновэктомии начиная с 1923 г. Представленный обзор литературы подтверждает эффективность и безопасность данного метода. Положительный ответ при ревматоидном артрите может достигать 85%. При гемофилической артропатии он бывает еще выше. Общая лучевая нагрузка не представляет опасности для здоровых органов и тканей. В России ведутся разработки инновационных препаратов для радиосиновэктомии на основе рения-188, одного из самых перспективных медицинских изотопов.

Ключевые слова: радиосиновэктомия, радиосиновиортез, синовит, ревматоидный артрит, рений-188.

Для цитирования: Зверев А.В., Крылов В.В., Ханов А.Г., Кочетова Т.Ю. Радиосиновэктомия – метод лечения воспалительных заболеваний суставов с помощью изотопов // РМЖ. Медицинское обозрение. 2017. №1. С. 36-41

Radiosynovectomy - a method of inflammatory joints diseases treatment with the use of isotopes
Zverev A.V. 1 , Krylov V.V. 2 , Khanov A.G. 3 , Kochetova T.Yu. 2

1 «Medradiopreparat» factory - branch of «Federal center for design and development of nuclear medicine facilities» of Federal Medical and Biological Agency of Russia, Moscow
2 Medical Radiological Research Center named after A. Tsyb - branch of «National Medical Research Radiological Center», Obninsk
3 Regional Clinical Hospital No. 2, Rostov-on-Don

Radiosynovectomy is one of the effective methods of treatment of inflammatory joints diseases. The method is based on the intra-articular introduction of radiopharmaceuticals (RFAs) containing beta-emitting isotopes. When the RFA is locally introduced into the joint, it affects the synovium of the joint, which leads to the formation of its superficial fibrosis and the suppression of inflammation. The choice of a particular RFA with the certain radiation power of isotope, which is part of its composition, depends on the size of the tender joint. A large world practice experience in the use of radiopharmaceutical agents has been accumulated since 1923. The presented literature review confirms the effectiveness and safety of this method. A positive response in rheumatoid arthritis can reach 85%. It can be even higher in hemophilic arthropathy. The total radiation load does not pose a risk to healthy organs and tissues. Russian scientists are developing the innovative preparations for radiosynovectomy based on rhenium-188 as one of the most promising medical isotopes.

Key words: radiosynovectomy, radiosynoviorthosis, synovitis, rheumatoid arthritis, rhenium-188.
For citation: Zverev A.V., Krylov V.V., Khanov A.G., Kochetova T.Yu. Radiosynovectomy - a method of inflammatory joints diseases treatment with the use of isotopes // RMJ. MEDICAL REVIEW. 2017. № 1. P. 36–41.

Статья посвящена возможностям метода лечения воспалительных заболеваний суставов с помощью изотопов - радиосиновэктомии. Метод основан на внутрисуставном введении радиофармпрепаратов, содержащих бета-излучающие изотопы.

Радиосиновэктомия или радиосиновиортез (РСО) – метод с доказанной эффективностью для местного лечения хронических воспалительных заболеваний суставов. При локальном введении радиоактивного вещества в сустав происходит воздействие на синовиальную оболочку сустава, что ведет к формированию ее поверхностного фиброза и стойкому подавлению воспаления. Метод является альтернативой хирургической синовэктомии и предназначен для местного лечения практически всех видов хронических синовитов, за исключением инфекционного. Показаниями для РСО являются различные синовиты: при ревматоидном артрите (РА), серонегативных артритах, гемофилической артропатии, рецидивирующих внутрисуставных выпотах после внутрисуставных вмешательств, пигментном виллонодулярном синовите, остеоартрозе, после суставного протезирования.
Термин «радиосиновиортез» был предложен Delbarre et al. и означает восстановление (ортез) синовиальной оболочки с помощью радионуклидов. Вводимые в пораженный воспалением сустав в виде коллоидов или микросфер радиофармпрепараты (РФП) распределяются по поверхности синовиальной оболочки, захватываются макрофагами и вызывают поверхностный фиброз синовии, что ведет к подавлению воспаления. Это дает эффект, сравнимый с эффектом хирургической синовэктомии, однако собственно эктомии, т. е. удаления ткани при этом не происходит. В англо-американской литературе используется термин «радиосиновэктомия» или «радиационная синовэктомия», а в немецкой – «радиосиновиортез».
Первые упоминания в литературе о воздействии радиоактивных элементов на ткани суставов относятся к 1923 г. и принадлежат C. Ishido . Его работа называлась «О действии радиоактивного тория на суставы» и была посвящена изучению влияния на суставы лабораторных животных изотопа тория (228 Th). Это была «эпоха радия», когда радиоактивные элементы использовались в совершенно неожиданных сферах. Промышленно производились мыло и шампуни с радием, губные помады, пудры и даже шоколад. Презервативы, обработанные радием, считались средством особой силы, предотвращающим заболевания, передаваемые половым путем, а «радиевая вода» была «эликсиром жизненной энергии». Она стоила очень дорого, но богатые люди тогда могли позволить себе употреблять ее, в т. ч. при болезнях суставов. Позже, в 1952 г., К. Fellinger и J. Schmid впервые применили внутрисуставное введение изотопов в качестве средства локальной терапии у пациентов, страдающих ревматическими заболеваниями .
В 1960-х гг. для РСО использовались изотопы золота (198 Au), испускающие не только бета-частицы, но и обладающие мощным гамма-излучением. Их применение было сопряжено с высоким риском облучения персонала и требовало изоляции пациентов в специальных палатах .
С 1990-х гг. в Германии было начато широкое использование РСО, в т. ч. и в амбулаторном режиме, поскольку при внутрисуставных введениях бета-излучающих препаратов опасность облучения окружающих людей с превышением дозы в 1,5 мЗв за календарный год на расстоянии 1 м является практически нереальной. Иными словами, РСО с использованием бета-излучателей не вызывает радиационной опасности ни для людей, ни для окружающей среды. Радионуклид проникает в ткани сустава на несколько миллиметров и практически не выводится из организма. Таким образом, основанием для госпитализации пациентов могут явиться медицинские показания, а не требования радиационной безопасности. В настоящее время в Германии примерно 63 тыс. суставов в год подвергаются РСО. Это число превосходит количество процедур радиойодтерапии при заболеваниях щитовидной железы .
В России метод успешно применялся до 1990-х гг. Причем даже наиболее старый препарат – радиоколлоид на основе золота (198 Au) показывал хорошую результативность . Однако, к сожалению, на сегодняшний день данный метод в нашей стране недоступен, и пациенты вынуждены проходить лечение за рубежом.

Показания и противопоказания к РСО

Метод РСО показан для местного лечения многих видов хронических синовитов . Показания для РСО с каждым годом дополняются и совершенствуются. С учетом немецких методических рекомендаций и рекомендаций Европейской ассоциации ядерной медицины РСО применяются для локальной терапии синовитов при таких заболеваниях, как :
РА;
серонегативные спондилоартропатии (т. е. реактивный артрит, псориатический артрит);
гемартроз при гемофилии;
рецидивирующий внутрисуставной выпот (после артроскопии);
пигментный виллонодулярный синовит;
остеоартроз (ОА);
недифференцированные артриты, сопровождающиеся синовитами и суставными выпотами;
после суставного протезирования: стойкие выпоты, так называемая «полиэтиленовая болезнь» (термин, появившийся за рубежом и означающий появление стойкого воспаления после эндопротезирования сустава из полиэтиленового материала).
К противопоказаниям относятся:
инфекционный артрит;
детский возраст;
беременность;
лактация.
В зависимости от размеров суставов рекомендуются разные РФП, основанные на радионуклидах с различной энергией бета-частиц и разной длиной их пробега в тканях организма.
Для оказания корректной медицинской помощи необходимо тесное сотрудничество специалистов ядерной медицины с ревматологами и ортопедами. Чаще всего РСО рекомендуют применять в тех случаях, когда методы консервативной терапии исчерпаны, и внутрисуставное введение кортикостероидов также не дает необходимых результатов.

Обзор существующих и разрабатываемых РФП

Одно из первых сообщений о применении изотопов для терапии было опубликовано в 1952 г. (Fellinger K., Schmid J.) . Механизм действия заключается в следующем. Связываясь с недиффундирующим коллоидом размером 1–20 микрон, радиоизотоп остается в синовиальной жидкости, а затем фагоцитируется макрофагами синовиальной оболочки, оказывая локальное лучевое воздействие. Облучение клеток-мишеней синовиальной оболочки первоначально останавливает воспалительный ответ и впоследствии приводит к регрессу синовиальной пролиферации с последующим формированием поверхностного фиброза синовии. В результате это приводит к стойкому подавлению воспаления в суставе, значительному снижению артралгий, улучшению функции сустава.
РФП для РСО состоят из нерастворимых коллоидов, меченных β-излучающими радиоизотопами, или микросфер (макроагрегатов), содержащих изотопы. Благодаря правильному подбору РФП возможно избежать необоснованной лучевой нагрузки на соседние ткани. Коллоидный раствор иттрия-90 (90 Y) со средней длиной пробега β-частиц в мягких тканях 2,8 мм применяется для терапии крупных суставов (например, коленных). Коллоидный раствор рения-186 (186 Re) с длиной пробега β-частиц, равной 1,0 мм, используется для лечения средних суставов (например, локтевых). А коллоидный раствор эрбия-169 (169 Er) с длиной пробега β-частиц 0,3 мм – для лечения мелких суставов пальцев кистей и стоп. Количество радиоактивных изотопов (активность) также зависит от размера пораженного сустава. Так, например, в коленный сустав вводят до 185 МБк 90 Y, а в межфаланговые суставы пальцев кисти – по 15 МБк 169 Er . В таблице 1 представлены некоторые изотопы, входящие в состав коммерчески доступных РФП, применяемых для РСО.

Е. Kresnik et al. было проведено большое исследование по анализу результатов РСО 2190 суставов. Оно показало высокую терапевтическую эффективность метода (73±17%). Наибольшее число положительных ответов на лечение было получено при гемофилическом артрите. Помимо уменьшения симптомов артрита, РСО позволяет привести к уменьшению гиперваскуляризации синовиальной оболочки с последующим значительным снижением числа эпизодов внутрисуставных кровотечений. Число позитивных ответов при РА было ниже и сильно зависело от стадии деструктивных изменений. Так, при начальной стадии (стадия I по Штейнброкеру) эффективность составила 73±12%, тогда как при выраженных деструкциях (стадия III по Штейнброкеру) эффект был только у 52±24% пациентов. В таблице 2 представлены данные по ответам на терапию в зависимости от стадии заболевания.


Как следует из представленных в таблицы 2 данных, для получения наилучшего ответа на РСО его следует провести пациенту до развития деструктивных изменений в суставах.
В различных литературных обзорах начиная с 1950-х гг. положительные ответы на лечение отмечены в 55–79% случаев для межфаланговых суставов пальцев, в 60–83% – для суставов средних размеров (запястье, локоть, плечо и лодыжка), в 40–85% – для коленных . Диапазон положительных ответов велик, что связано с различиями в критериях оценки ответа на терапию.
Ограниченная доступность РФП для РСО является основным недостатком метода, что не позволяет его широко использовать как стандартную клиническую процедуру. Различные бета-излучающие радионуклиды, которые применялись для мечения коллоидов и потенциально могут быть использованы для проведения РСО, представлены в таблице 3.


В странах Азии и Южной Америки широко применяется РФП на основе коллоида фосфора-32 (32 P), причем основная группа пациентов – дети, страдающие гемофилией . В условиях жесткого дефицита фактора свертывания это является важным способом решения проблем лечения таких пациентов.

Рений-188

Все представленные в таблице 3 РФП, кроме рения-188, производятся на радиофармацевтических заводах и доставляются в клиники по предварительным заказам, что в совокупности с быстрыми периодами полураспада радионуклидов и невозможностью хранения готового РФП сильно осложняет логистику и весь клинико-технологический цикл терапии. Генератор вольфрам-188/рений-188 (188 W/ 188 Re) позволяет получать 188 Re непосредственно в клинике. Рений-188 – дочерний нуклид, образующийся при распаде 188 W, который, в свою очередь, является реакторным продуктом с физическим периодом полураспада (T½) 69 дней. Это дает возможность использовать генератор непосредственно в клинике для приготовления РФП фактически под каждого конкретного больного до 6 мес. при достаточно высокой исходной активности. Коллоидные композиции, меченные генераторным радионуклидом 188Re, способны заменить 90 Y для лечения коленного сустава. Максимальная энергия бета-распада этих радионуклидов схожа, однако благодаря наличию мягкого гамма-излучения (155 кэВ) становится возможным получение сцинтиграфических снимков с целью установления распределения препарата. Ввиду того, что период полураспада у 188 Re значительно короче, чем у 90Y, вводимые активности могут быть больше. Активность, применяемая для взрослых, варьировалась от 555 до 917 МБк по 188 Re , соответственно, для детей использовали меньшие дозировки .
Первый коллоид на основе 188 Re для РСО был описан в 1995 г. Исследования, проведенные на коллоиде серы с 188 Re, показали стабильность 95% in vitro в течение 3 дней . Фармакокинетические исследования микросфер с рением-188 (с размером частиц 15 мкм) показали следующие результаты удерживания в коленном суставе кролика: 98,7, 94,6 и 93,6% после 1, 24 и 48 ч соответственно . Данные фармакокинетики показали очень низкое распространение радиоактивности по всем органам в течение исследования, что указывает на минимальную утечку РФП из коленного сустава животного. Авторы пришли к выводу, что микросферы с 188 Re являются потенциальным кандидатом для радиосиновэктомии. Микросферы, меченные рением-188, были стабильны in vitro на протяжении 3 дней на уровне 98%. Две недели спустя после инъекции в коленный сустав кроликов в синовиальной оболочке произошли увеличение фибробластов и фиброзные изменения в синовиальной сумке. Также обнаружилось дополнительное закупоривание сосудов и капилляров в ответ на радиационное облучение синовиальной оболочки .
Е.В. Lee et al. изучали оловянный коллоид, меченный рением-188 . В сравнении с коллоидом на основе серы он продемонстрировал лучшие показатели объемного и поверхностного распределения . Первый опыт применения у пациентов был получен Р. Li et al. при лечении 29 больных гемофилией. Длительность последующего наблюдения составила 18 мес. В зависимости от толщины синовиальной оболочки, установленной при МРТ, были использованы 3 уровня активностей: 555 МБк (15 мКи), 687 МБк (19 мКи) и 917 МБк (25 мКи). Размеры частиц коллоида сульфида рения (188Re) составили от 2 до 20 мкм.
Отличные результаты в ближайшем периоде были получены у 75%, а сокращение частоты кровотечений – у 100% пациентов. На 18-м мес. исследования эффект сохранялся у 71%. Зависимости между вводимой активностью и терапевтической эффективностью установлено не было. В оценке МРТ были установлены значительное уменьшение толщины синовиальной оболочки и пролиферация синовиальных ворсинок после лечения. Никаких подтверждений повреждения суставного хряща найдено не было. Данные о биораспределении с использованием сцинтиграфии указывают на отсутствие значимых активностей в мочевом пузыре, костном мозге, печени, селезенке и региональных лимфатических узлах, также уровень активности в крови был незначительным. Эти данные обоснованы высокой in vitro стабильностью коллоидов с рением-188 и низким уровнем высвобождения изотопа из препарата.
Под эгидой Международного агентства по атомной энергии (МАГАТЭ) в 2001 г. было проведено сравнительное исследование радиофармацевтических препаратов, предназначенных для радиосиновэктомии . Цель данного исследования заключалась в оценке терапевтической эффективности, выраженной в контроле болевого синдрома коленного сустава у пациентов с РА или гемофильным артритом, при использовании коммерчески доступного радиоколлоида с 90 Y, по сравнению с эффективностью препаратов на основе 188 Re и 32 P. Стратегия заключалась в том, чтобы оценить перспективность использования 188 Re и 32 Р с целью улучшения доступности РСО во всем мире, особенно в Азии и Южной Америке. Изучая биокинетику, фиксировали процент от введенной активности коллоида с 188 Re в крови на 4-й, 12-й, 24-й и 72-й ч. Были получены следующие значения: 0,06±0,05; 0,12±0,09; 0,21±0,19; 0,14±0,08% соответственно. Содержание выведенной активности с 188 Re с мочой составило 1,65±3,00% через 72 ч после терапии. Процент содержания в крови от введенной активности для коллоида с 32Р был значительно выше: 5,8±3,1; 5,7±2,8; 4,4±3,3; 3,8±3,4 после 1, 2, 3 и 24 ч соответственно . Степень высвобождения препарата зависит от размера частиц в составе препарата. Такие различия в содержании активности в крови и моче на двух препаратах могут объясняться более коротким периодом полураспада у рения-188 и более мелким размером частиц в коллоиде 32Р (0,2 0,35 мкм у коллоида с 32 Р по сравнению с 1–10 мкм коллоида олова, меченного 188 Re). Эти биокинетические исследования указывают на то, что 188 Re является наиболее подходящим для РСО. В этом исследовании 96 детей в возрасте от 4 до 12 лет, страдающих гемофилическими артропатиями, были пролечены препаратами на основе 188 Re, 32 Р, 90 Y с активностями, соответствующими их возрасту. Было показано, что после проведения РСО количество кровотечений значительно уменьшилось. До проведения РСО в исследуемой группе отмечалось высокое число кровотечений (391 в течение 1 мес.). Спустя 1 мес. после РСО было отмечено уменьшение числа кровотечений до 53 случаев, до 50 – спустя 3 мес., 32 случая – через 6 мес. после РСО. В течение 6 мес. после РСО 48% пациентов вообще не имели внутрисуставных кровотечений (100% снижение), у 38% число кровотечений снизилось на 80%, в 14% случаев – на 50%. По показаниям детей и их опекунов зафиксированы значительное улучшение качества жизни, подтвержденное улучшенной подвижностью, и значительное уменьшение количества пропущенных учебных дней. Исследованная подгруппа из 13 пациентов с гемофилией, пролеченных коллоидом с 188Re, показала схожие результаты .
Исследование по лечению коллоидом на основе 188 Re 16 больных РА также проводилось под эгидой МАГАТЭ. Уровень болей был документирован по 10-балльной шкале. Облегчение боли было значительно выше у пациентов, получавших коллоид 188 Re, по сравнению с контрольной группой, получавшей внутрисуставные введения глюкокортикоидов . За исключением 1 случая с контурированным и обратимым некрозом кожи в месте введения РФП или обратимого набухания коленного сустава никаких других серьезных побочных эффектов зарегистрировано не было . Данные о биокинетике и проведенные клинические исследования подтверждают, что коллоиды с 188Re являются безопасными и эффективными в лечении гемофилии и РА. Однако имеющихся данных еще недостаточно.
Обычно препараты на основе 188 Re используют для введения в крупные суставы, однако исследователи из Индии опубликовали работу об успешном применении коллоида 188 Re для РСО мелкого сустава при РА . 45-летняя пациентка, страдающая РА, жаловалась на отек и боль в суставе безымянного пальца правой руки на протяжении 6 мес. Консервативная терапия была неэффективна. Ей был введен препарат на основе коллоида олова, меченный 188 Re, общей активностью 370 МБк. Палец пациентки был зафиксирован на 48 ч. В течение следующих 3-х мес. отек спал, а боли значительно уменьшились.

Лютеций-177

Одним из весьма перспективных изотопов для применения в радионуклидной терапии является лютеций-177 (Lu-177). Его физические характеристики позволяют использовать его для внутрисуставных введений. Наличие гамма-излучения дает возможность следить за распределением препарата с помощью гамма-камеры.
Были проведены исследования по оценке эффективности РСО с препаратом гидроксиапатит (ГАП), меченным Lu-177, в лечении рецидивирующего синовита, сопровождающегося выпотом в коленных суставах при РА . Десяти пациентам, страдающим стойкими синовитами коленных суставов, был введен ГАП, содержащий Lu-177, активностью по 333±46 МБк. Мониторинг распределения препарата проводили на гамма-камере при сканировании всего тела и гамма-томографической визуализации коленного сустава. Состояние пациентов оценивалось клинически (перед РСО и через 6 мес.). Использовались следующие параметры: индекс учета боли по 100-балльной визуальной аналоговой шкале (ВАШ), оценка улучшения подвижности коленных суставов и учет интенсивности ночных болей. Ответ на РСЭ был классифицирован как плохой при динамике ВАШ на менее чем 25 пунктов, как средний – при динамике ВАШ на ≥ 25–50, как хороший – при динамике ВАШ на ≥ 50–75, как отличный – при снижении ВАШ на 75 и более пунктов. У всех 10 пациентов при сканировании всего тела не было отмечено никакой «утечки» введенной активности в нецелевые органы. Сканирование сустава через 1 мес. после лечения показало полное сохранение ГАП Lu-177 в суставах. У всех пациентов после 6 мес. наблюдения констатированы уменьшение боле и проявлений синовитов, увеличение подвижности суставов. Процент улучшения ВАШ от исходных значений спустя 6 мес. после РСО – 79,5±20,0%. Это в значительной степени было связано с возрастом пациентов (р = 0,01) и длительностью заболевания (р = 0,03). В коленных суставах с 0 и I стадией заболевания по Штейнброкеру отмечен результат значительно лучше, чем в суставах с более выраженными изменениями (стадии III и IV по Штейнброкеру), и получен более стойкий ответ. Клиническая динамика по ВАШ составила 75% против 45,8%. Общий показатель ответа на терапию (ВАШ ≥ 50) составил 80%. Ремиссия боли в течение ночи была достигнута в 100% случаев, а у 80% пациентов улучшилась подвижность коленных суставов. Препарат ГАП Lu-177 был оценен при применении у пациентов с хроническими синовитами коленных суставов ревматоидного происхождения как безопасный и эффективный. РСО с лютецием-177 продемонстрировал высокий терапевтический эффект в течение 6 мес. без каких-либо значимых побочных эффектов. Предварительные исследования показывают, что меченные Lu-177 частицы ГАП являются перспективными и экономически оправданными средствами для РСО.

Иттрий-90

Радиоколлоиды на основе иттрия-90 (Y-90) широко и давно применяются для введения в крупные суставы. Благодаря тому, что Y-90 является «чистым» бета-эмиттером, он безопасен для окружающих, однако это затрудняет его визуализацию после введения пациенту. Группа польских исследователей опубликовала результаты своего опыта применения РСО . В данном исследовании авторы оценивали эффективность применения Y-90 у нескольких групп пациентов с различными заболеваниями суставов. В исследование вошли 70 пациентов в возрасте от 29 до 65 лет, страдающие РА, спондилоартропатиями (СА) и остеоартритом (ОА) с экссудативными синовитами коленных суставов. С лечебной целью внутрисуставно вводили радиофармацевтический коллоид с Y-90 активностью 185–222 МБк в объеме 2–3 мл, затем суставы иммобилизировали на 72 ч. В динамике оценивали скорость оседания эритроцитов (СОЭ) и уровень С-реактивного белка (СРБ), а также проводили УЗИ коленных суставов. Наиболее существенная динамика состояния синовиальной оболочки до и после процедуры была получена в группе больных РА. Уменьшение объема суставного выпота до и после процедуры была статистически значимой во всех группах и сопоставимой между группами. Наибольшее снижение воспалительных параметров до и через 4 нед. после РСО наблюдалось у пациентов с РА.

Важно отметить, что не в каждом случае суставного выпота следует применять РСО. Неудачи могут быть связаны с неверным выбором показаний. Так, в одной работе был проанализирован случай неудачного применения РСО . Лечение проводилось у больного с выпотом коленного сустава и гистологически доказанным неспецифическим артритом. Первоначально был получен частичный ответ на РСО, но позже был отмечен рецидив с выпотом и артралгиями. Последующая хирургическая синовэктомия и гистопатологическая экспертиза показали, что заболевание имело туберкулезное происхождение. Таким образом, в странах, эндемичных по туберкулезу, следует иметь в виду возможную инфекционную этиологию заболевания, прежде чем использовать РСО.

Заключение

РСО – это простой, быстрый и безболезненный для пациента метод лечения различных синовитов. Благоприятный эффект отмечается в 50–80% случаев. Лечение должно проводиться по возможности до развития значительных деструктивных изменений. РСО при РА не заменяет базисную терапию, а действует локально. Однако за счет стойкого подавления хронического суставного воспаления это лечение препятствует активации системного воспалительного ответа. Действие базисной терапии и РСО является синергичным и предполагает совместное участие ревматологов и врачей ядерной медицины. Таким образом, метод РСО по своей эффективности сходен с хирургической синовэктомией, однако не требует длительной госпитализации и последующей реабилитации.
Анализируя возможные перспективы развития метода, точнее сказать, возрождение его на новом уровне развития, следует отметить, что использование препаратов на основе рения-188 представляется наиболее универсальным путем решения этой задачи. Опираясь на его физические характеристики, учитывая уже имеющийся научный опыт, изложенный в публикациях, можно рекомендовать Re- 188 в качества оптимального средства для РСО крупных суставов. Однако, как отмечалось в одной из работ, можно рассмотреть возможность его применения и в суставах самого разного размера . Лечение препаратами на основе Re- 188 можно было бы использовать в соответствии с методическими рекомендациями Европейской ассоциации ядерной медицины . С учетом высокой стоимости и ограниченной распространенности препаратов для РСО генераторное получение 188 Re без носителя позволит приготавливать препарат непосредственно в клинике перед введением пациенту.
В МРНЦ им. А.Ф. Цыба (Обнинск) создан новый оригинальный препарат для РСЭ на основе 188 Re, помещенного в микросферы альбумина с размерами частиц 5–10 мкм. В доклинических исследованиях показано, что при внутрисуставном введении достигается полное удержание в коленном суставе, печени и других органах и тканях – следовое накопление. Поглощенная доза в синовии – 240 Гр (при введении 3 МБк). Через 21 сут отмечается подавление воспаления, вызванного экспериментальным синовитом . Развитие этого метода в России позволит нашим пациентам получать лечение, доступное сейчас только за рубежом.

Литература

1. Delbarre F., Cayla J., Menkes C. J. et al. La synoviorthèse par les radioisotopes. Book La synoviorthèse par les radioisotopes // EditorPresse Med.1968. P. 1045–1050.
2. Ishido C. Über die Wirkung des Radiothoriums auf die Gelenke.Strahlentherapie. Book Über die Wirkung des Radiothoriums auf die Gelenke.Strahlentherapie // Editor. 1923. P. 537–544.
3. Fellinger K., Schmid J. Die lokale Behandlung der rheumatischen Erkrankungen // Wien Z Inn Med. 1952. T. 33. № 9. P. 351–363.
4. Ansell B.M., Crook A., Mallard J.R., Bywaters E.G.L. Evaluation of Intra-articular Colloidal Gold Au 198 in the Treatment of Persistent Knee Effusions // Annals of the Rheumatic Diseases. 1963. Vol 22 (6). P. 435–439.
5. Mödder G. Radiosynoviorthesis (Radiation Synovectomy) // Clinical Nuclear Medicine Biersack H.-J., Freeman L. M. Berlin, Heidelberg: Springer Berlin Heidelberg. 2007. P. 512–518.
6. Дроздовский Б.Я., Иконников А.И., Крылов В.В. Радиосиновиортез в лечении больных ревматоидным артритом // Медицинская радиология. 1990. T. 7. C. 6–9
7. Mödder G. Radiosynoviorthesis. Involvement of nuclear medicine in rheumatology and orthopaedics // Meckenheim. 1995.
8. Mödder G. Nuklearmedizinische Therapy (RadioSynoviorthese) in Rheumatologie und Orthopaedie. Der Nuklearmediziner. 1995. Vol. 18. P. 15–32.
9. Kampen W.U., Brenner W., Kroeger S. et al. Long-term results of radiation synovectomy: a clinical follow-up study // Nucl Med Commun. 2001. Vol. 22(2). P. 239–246.
10. Kampen W.U., Brenner W., Czech N., Henze E. Intraarticular application of unsealed beta-emitting radionuclides in the treatment course of inflammatory joint disorders. Book Intraarticular application of unsealed beta-emitting radionuclides in the treatment course of inflammatory joint disorders // Editor. 2002. P. 77–87.
11. Kampen W.U., Voth M., Pinkert J., Krause A.Therapeutic status of radiosynoviorthesis of the knee with yttrium colloid in rheumatoid arthritis and related indications // Book Therapeutic status of radiosynoviorthesis of the knee with yttrium colloid in rheumatoid arthritis and related indications // Editor. 2007. P. 16–24.
12. Fischer M., Mödder G. Radionuclide therapy of inflammatory joint diseases // Nucl Med Commun. 2002. Vol. 23 (9). P. 829–831.
13. Hoefnagel C.A., Clarke S.E.M., Fischer M. et al. Radionuclide therapy practice and facilities in Europe // European Journal of Nuclear Medicine. 1999. Vol. 26 (3). P. 277–282.
14. Farahati J., Schneider P., Reiners C. Radionuklidtherapie bei entzündlichen Gelenkerkrankungen: Schlusswort // Dtsch Arztebl International. 2006. Vol. 103 (41). P. 2719.
15. Brenner W. Grundlagen und Technik der Radiosynoviorthese // Nuklearmediziner. 2006. Vol. 29 (01). P. 5–14.
16. Das B.K., Mödder G., Pradhan P.K., Shukla A.K. Concept of radiosynovectomy. A novel approach in the treatment of joint disorders // Book Concept of radiosynovectomy. A novel approach in the treatment of joint disorders // Editor. 2004. P. 1–5.
17. Mödder G., Mödder-Reese R. Radiosynoviorthesis (radiation synovectomy): State of the Art 2011 // Book Radiosynoviorthesis (radiation synovectomy): State of the Art 2011 // Editor. 2011. P. 154–155.
18. Kampen W.U., Voth M., Pinkert J., Krause A. Therapeutic status of radiosynoviorthesis of the knee with yttrium colloid in rheumatoid arthritis and related indications // Rheumatology (Oxford). 2007. Vol. 46. P. 16–24.
19. Farahati J., Reiners C., Fischer M. et al. Leitlinie für die Radiosynoviorthese // Nuclear-Medizin. 1999. Vol. 38 (6A). P. 254–255.
20. Clunie G., Fischer M., EANM EANM Procedure Guidelines for Radiosynovectomy // Eur J Nucl Med Mol Imaging. 2003. Vol. 30. P. 12–16.
21. Liepe K., Крылов В.В. Радиосиновиортез в лечении воспалительных заболеваний суставов // Научно-практическая ревматология. 2013. № 6. C. 7 .
22. Kresnik E., Mikosch P., Gallowitsch H.J. et al. Clinical outcome of radiosynoviorthesis: A meta-analysis including 2190 treated joints // Nucl Med Commun. 2002. Vol. 23. P. 683–688.
23. Deutsch E., Brodack J.W., Deutsch K.F. Radiation synovectomy revisited // Eur J Nucl Med. 1993. Vol. 20 (11). P. 1113–1127.
24. Soroa V.E., del Huerto Velazquez Espeche M., Giannone C. et al. Effects of radiosynovectomy with p-32 colloid therapy in hemophilia and rheumatoid arthritis // Cancer Biother Radiopharm. 2005. T. 20, № 3. C. 344–3448.
25. Li P., Chen G., Zhang H., Shen Z. Radiation synovectomy by 188Re-Sulfide in haemophilic synovitis // Haemophilia. 2004. Vol. 10 (5). P. 422–427.
26. Liepe K., Zaknun J. J., Padhy A. et al. Radiosynovectomy using yttrium-90, phosphorus-32 or rhenium-188 radiocolloids versus corticoid instillation for rheumatoid arthritis of the knee // Ann Nucl Med. 2011. Vol. 25 (5). P. 317–323.
27. Wang S. J., Lin W. Y., Hsieh B. T. et al. Jr. Rhenium-188 sulphur colloid as a radiation synovectomy agent // Eur J Nucl Med. 1995. Vol. 22 (6). P. 505–507.
28. Wang S.J., Lin W.Y., Chen M.N. et al. Intratumoral injection of rhenium-188 microspheres into an animal model of hepatoma // J Nucl Med. 1998. Vol. 39 (10). P. 1752–1757.
29. Wang S.J., Lin W.Y., Chen M.N. et al. Histologic study of effects of radiation synovectomy with Rhenium-188 microsphere // Nucl Med Biol. 2001. Vol. 28 (6). P. 727–732.
30. Lee E. B., Shin K. C., Lee Y. J. et al. 188Re-tin-colloid as a new therapeutic agent for rheumatoid arthritis // Nucl Med Commun. 2003.Vol. 24 (6). P. 689–696.
31. Li P., Yu J., Chen G. et al. Applied radioactivity in radiation synovectomy with (188Re)rhenium sulfide suspension // Nucl Med Commun. 2006.Vol. 27 (8). P. 603–609.
32. Ures M., Savio E., Malanga A. et al. Physico-chemical characterisation and biological evaluation of 188-Rhenium colloids for radiosynovectomy // BMC Nucl Med. 2002. Vol. 2 (1). P. 1.
33. Zaknun J.J., Liepe K., Gaudiano J. et al. Blood and urine biokinetics of rhenium-188-in and phosphorus-32 colloids in radiosynovectomy // Eur J Nucl Med Mol Imaging. Vol. 34. Springer 233 spring street, New York, NY 10013 USA, 2007. P. S359–S359.
34. Liepe K., Faulhaber D., Wunderlich G. et al. Radiation Pneumopathy in the Rat After Intravenous Application of 188 Re-Labeled Microspheres // International Journal of Radiation Oncology Biology Physics. 2011. Vol. 81 (2). P. 529–536.
35. Zaknun J.J., Liepe K., Soroa V. et al. Management of haemarthrosis applying radiosynovectomy in haemophilia patients with emphasis on developing countries // Eur J Nucl Med Mol Imaging. 2007. Vol. 34 P. S352.
36. Kamaleshwaran K.K., Rajamani V., Krishnan B. et al. Radiosynovectomy of Proximal Interphalangeal Joint Synovitis in Rheumatoid Arthritis Treated with Rhenium-188 Labeled Tin-colloid and Imaging with Single-photon Emission Computerized Tomography / Computed Tomography: A First Case Report // World Journal of Nuclear Medicine (Online). 2015. Vol. 14 (3). P. 216–218.
37. Shinto A.S., Kamaleshwaran K.K., Chakraborty S. et al. Radiosynovectomy of Painful Synovitis of Knee Joints Due to Rheumatoid Arthritis by Intra-Articular Administration of 177Lu-Labeled Hydroxyapatite Particulates: First Human Study and Initial Indian Experience // World Journal of Nuclear Medicine (Online). 2015. Vol. 14 (2). P. 81–88.
38. Zalewska J., Wegierska M., Barczynska T. et al. Efficacy of radiation synovectomy (radiosynovectomy or radiosynoviorthesis) with yttrium-90 in exudative inflammation of synovial membrane of knee joints in patients with rheumatic diseases - preliminary report // Reumatologia. 2016. Vol. 54 (1). P. 3–9.
39. Sood A., Sharma A., Chouhan D.K. et al. Failed Radiation Synovectomy in Diseased Knee Joint with Missed Tuberculous Synovitis // World J Nucl Med. 2016. Vol. 15 (3). P. 206–208.
40. Clunie G., Fischer M., Eanm. EANM procedure guidelines for radiosynovectomy // Eur J Nucl Med Mol Imaging. 2003. Vol. 30 (3). P. 12–16.
41. Петриев В.М. Закономерности образования комплексного соединения 188Re с микросферами альбумина крови человека // Радиохимия. 2009. T. 51, № 5. C. 446–451 .
42. Скворцов В.Г., Степаненко В.Ф., Петриев В.М. и др. Фармакокинетические и дозиметрические характеристики нового радиофармпрепарата Re-188-микросферы альбумина // Радиационная биология. Радиоэкология. 2010. T. 50, № 6. C. 703–711 .


Научно-технический семинар "Re-188 и радиофармацевтические препараты на его основе. Перспективы развития и применения" прошёл 21 июня 2018 года на базе ГНЦ РФ - ФЭИ.

На полях мероприятия на вопросы корреспондентов электронного издания сайт ответил начальник лаборатории ГНЦ РФ - ФЭИ Дмитрий СТЕПЧЕНКОВ.

ПРОДОЛЖЕНИЕ ПОСЛЕ ФОТО

Дмитрий Степченков, фото Сергей Стожилов

Дмитрий Владимирович, пожалуйста, несколько слов о семинаре.

Семинар посвящён генераторам рения-188, радиоактивного изотопа, использующегося в ядерной медицине для проведения терапевтических процедур. На его основе изготавливаются остеотропные препараты, то есть препараты, способные усваиваться в костях.

В мире для лечения костных метастаз используются различные радиофармпрепараты, в том числе на основе хлорида стронция-89 или самария-153. Но у них есть свои недостатки.

Так, у самария-153 относительно короткий период полураспада, порядка 46 часов. Транспортировать его от производителя до медицинского учреждения возможно только в тех случаях, когда доставка занимает небольшое время. А препараты на основе стронция в нашей стране тоже не получили широкого распространения.

Генераторы рения удобны в транспортировке на любые расстояния. Это относительно небольшие изделия. Вес собственно генератора составляет примерно 15 кг, а вес контейнера с полностью укомплектованным набором - примерно 20 кг. Получают рений-188 из генератора непосредственно в медицинском учреждении.

По какой реакции в генераторе получается рений-188?

Материнский изотоп - вольфрам-188. Он претерпевает бета-распад с периодом 69,4 суток, в результате которого получается рений-188, а он в свою очередь испытывает бета-распад с образованием стабильного осмия-188.

Важное преимущество рения-188 с точки зрения ядерной медицины состоит в том, что его бета-распад сопровождается гамма-линией. Бета-излучение даёт терапевтический эффект, а гамма-составляющая позволяет получить распределение введённого радиофармпрепарата по организму, то есть обеспечивает визуализацию.

Где производится вольфрам-188?

Вольфрам-188 нарабатывается в высокопоточных реакторах. В мире есть два крупнейших производителя этого изотопа - реактор HFIR в Окриджской национальной лаборатории (США) и димитровградский НИИАР, где он производится в нейтронной ловушке реактора СМ.

Насколько мы знаем, на HFIR сейчас вольфрам-188 практически не производится, а вот на российском реакторе работы по его получению продолжаются.

Возможно ли использовать для наработки вольфрама-188 реакторы с менее высокими потоками, чем в HFIR или СМ?

Всё упирается в физику и экономику. В связи с тем, что наработка вольфрама-188 происходит путём облучения вольфрама-186 через промежуточную стадию образования относительно короткоживущего изотопа вольфрам-187, то на реакторе с тепловым спектром нейтронов не удастся получить значимое количество вольфрама-188. Кроме того, он будет содержать примесь вольфрама-187.

На высокопоточных реакторах с точки зрения наработки вольфрама-188 мы добиваемся оптимальной продолжительности кампании облучения с максимальным выходом продукта.

Первые работы по медицинскому применению рения-188 в нашей стране велись в 80-ые годы Институтом биофизики Минздрава СССР (в настоящее время - ФГБУ ГНЦ ФМБЦ им. А.И.Бурназяна ФМБА России).

Они совпали по времени с длительным остановом реактора СМ-2, поэтому облучение вольфрамовых мишеней проводили на реакторе ИЯФ АН Узбекистана с плотностью потока менее 10 14 н/см 2 /c. - Прим. сайт.

Какие задачи по рению-188 выполняет ФЭИ?

Наш институт осуществляет переработку материнского сырья (соединения вольфрама-188), получаемого в АО "ГНЦ НИИАР". Мы делаем из него активную фармацевтическую субстанцию, которая потом применяется в генераторах рения-188.

Изобретение относится к области получения радиоактивных изотопов медицинского и научного назначения без носителя в радиохимически чистом виде.

Способ включает реакторное облучение нейтронами матрицы из оксида вольфрама, ее термическую обработку в среде кислорода до выхода в газовую фазу и конденсации целевого изотопа, извлекаемого затем посредством реагента. Матрицу из оксида вольфрама формируют в виде полого цилиндра, толщина стенки которого составляет не более 3 мм. Устройство содержит контейнер, выполненный в виде двух соосных цилиндров, между стенками которых расположена полость для размещения облучаемого оксида вольфрама, закрытая с одной стороны, и сублимационный аппарат, включающий конденсор и нагреваемую часть с патрубком для подачи кислорода, над которым установлена мембрана. В верхней части соосных цилиндров расположена сквозная трубка для прохождения среды облучения.

Технический результат заключается в повышении удельной активности материнского изотопа вольфрам-188, удельной активности дочернего рений-188 путем повышения его химического выхода и количественного осаждения на ограниченной поверхности. 2 н. и 1 з.п. ф-лы, 2 ил.

Рисунки к патенту РФ 2476942

Изобретение относится к области получения радиоактивных изотопов медицинского и научного назначения без носителя в радиохимически чистом виде, а также для создания радиоизотопных генераторов.

Известны способы получения радиоактивного изотопа рений-188 из облученного нейтронами оксида вольфрама (WO 3) или порошка металлического вольфрама с последующим разделением материнского вольфрам-188 и дочернего целевого рений-188.

В большинстве вариантов разделения используют либо экстракционные, либо сорбционные методы [Зыков М.П., Романовский В.Н., Филяшин А.Т. и др. «Экстракционный генератор рения-188» / Труды Радиевого института им.В.Г.Хлопина, т.XII, 2007, с.86-95; Патент RU № 2091878, публ. 27.09.1997; Патент US № 7329400, публ. 12.02.2008]. Общим недостатком всех этих способов является необходимость проведения длительных и сложных процедур растворения облученных нейтронами образцов вольфрама или его оксида, что приводит к увеличению объемов радиоактивных отходов, загрязнению нежелательными примесями, привнесенными с использованными реагентами, а также повышению себестоимости целевого изотопа за счет применения реагентов. При этом для экстракционных генераторов, использующих органические реагенты, характерно образование продуктов радиолиза, при возможном образовании третьей фазы за счет радиационной полимеризации. В целом это приводит к снижению фактора разделения генераторной пары. Недостатком является и необходимость размещения экстракционных генераторов с блоком растворения в боксах с мощной биологической защитой значительных объемов со сложной системой транспортных и управляющих коммуникаций для подачи реагентов для растворения и экстракции, полученных радиоактивных растворов в экстракторы и отбора рений-содержащих фракций.

Другим известным способом разделения генераторной пары вольфрам-188/рений-188 и получения радиофармацевтического рения-188 без носителя, является термосублимационный метод, основанный на летучести высшего оксида рения (VII) - Re 2 O 7 .

Известен способ получения радионуклида рений-188, включающего наработку материнского вольфрам-188 в процессе облучения нейтронами мишени из металлического вольфрама, обогащенного по вольфрам-186 с последующим термохроматографическим выделением рений-188. В данном способе, с целью обеспечения высокой удельной активности целевого радионуклида, используют мишень, обогащенную до 97% по вольфраму-186, что, несмотря на повышение в 3,4 раза выхода целевого рений-188, в десятки раз повышает его себестоимость. При этом каждый раз перед проведением процедуры выделения рения-188 требуется проведение процесса восстановления водородом исходной вольфрамовой мишени до металла .

Известно устройство, которое было использовано для сублимационного выделения таллия-199 из облученных альфа-частицами золотых мишеней , содержащее нагреваемую кварцевую печь, на дно печи помещают мишень облученной стороной вверх, а над ней устанавливают охлаждаемый водой конденсатор, выполненный из стекла в виде цилиндра. Полученный на стенках конденсатора конденсат таллия смывают физиологическим раствором хлорида натрия. Такая конструкция сублимационного аппарата не подходит для выделения целевого изотопа из мишеней, где радионуклид распределен в массе мишени, а не в поверхностном слое, как в известном способе.

Известен способ получения рений-188 [Патент RU № 2102809 «Способ получения радионуклида без носителя», публ. 20.01.1998], выбранный в качестве прототипа, включающий реакторное облучение оксидно-вольфрамовой матрицы нейтронами, ее термическую обработку при температуре полиморфного превращения в течение времени, достаточного для выхода целевого изотопа в газовую фазу, его конденсации и извлечение посредством реагента. В этом способе также используется обогащенная вольфрамом-186 мишень, но восстановитель добавлен непосредственно к материалу мишени. Это делает весьма проблематичным ее повторное использование (облучение, особенно весьма дорогостоящих мишеней из обогащенного вольфрама), поскольку необходимо полное отделение вещества-восстановителя от активируемой матрицы, а при сжигании возможно образование карбидов и загрязнение вольфрама примесями, находящимися в восстановителе, с последующей их активацией. При этом несомненным является тот факт, что происходит частичное восстановление возгоняемого Re 2 O 7 до нелетучих низших окислов снижающего степень выделения рений-188 из мишени.

Устройство для проведения процесса выделения дочернего радиоизотопа [Патент RU № 2102809, публ. 20.01.1998], взятое за прототип, содержит контейнер для размещения облучаемого оксида вольфрама, выполненный в виде ампулы, и сублимационный аппарат, выполненный в виде ампулы из кварцевого стекла, открытой с одного конца, другой конец запаян. Запаянным концом ампулу вставляют в трубчатую печь примерно до половины длины. После термической обработки и выхода в газовую фазу радиоактивных атомов они могут быть собраны с помощью холодного предмета - конденсора. Возгоняемый рений-188 в химической форме Re 2 O 7 будет осаждаться на внутренних стенках в части ампулы, имеющей более низкую температуру не компактно, а довольно широким фронтом, так как упругость паров Re 2 O 7 изменяется от 3 мм рт.ст. при 230°С до 711 мм рт.ст. при 360°С [Л.В.Борисова, A.M.Ермаков. Аналитическая химия рения. М.: Наука, 1974, с.20]. При этом весьма затруднителен смыв целевого нуклида требуемым количеством физиологического раствора и невозможность получения радиофармацевтического препарата, свободного от материнского изотопа вольфрам-188, поскольку сублимат и материнский изотоп находятся в одной ампуле.

С другой стороны в прототипе совершенно не учитывается другой важный фактор, непосредственно влияющий на радиоактивность выделяемого целевого нуклида, а именно - эффект самоэкранирования, который характеризует уменьшение плотности потока нейтронов в облучаемой мишени по мере проникновения активирующих нейтронов от поверхности в ее глубину. Расчеты показывают, что на глубине 1 см от поверхности мишени поток активирующих нейтронов практически равен нулю как по тепловой, и тем более по резонансной составляющей нейтронного спектра. В целом это приводит к значительному снижению эффективного сечения активации и, как следствие, активности материнского вольфрам-188.

Задачей предлагаемого изобретения является создание способа и устройства, обеспечивающих повышение радиационного и химического выхода рения-188 из облученных вольфрамовых матриц.

Технический результат заключается в повышении удельной активности материнского изотопа вольфрам-188, удельной активности дочернего рений-188 путем повышения его химического выхода и количественного осаждения на ограниченной поверхности.

Указанный технический результат достигается тем, что в способе получения радионуклида рений-188 без носителя, включающем, как и прототип, реакторное облучение вольфрамсодержащей матрицы нейтронами, ее термическую обработку при температуре полиморфного превращения в течение времени, достаточного для выхода в газовую фазу и конденсации целевого изотопа, извлекаемого затем посредством реагента, в отличие от прототипа матрицу из оксида вольфрама формируют в виде полого цилиндра, толщина стенки которого составляет не более 3 мм, а термическую обработку проводят в среде кислорода.

Технический результат достигается также тем, что в устройстве для осуществления способа, содержащем, как и прототип, контейнер для размещения облучаемого оксида вольфрама и сублимационный аппарат, включающий нагреваемую часть и конденсор, в отличие от прототипа контейнер выполнен в виде двух соосных цилиндров, между стенками которых расположена полость для размещения облучаемого оксида вольфрама, закрытая с одной стороны, при этом расстояние между стенками цилиндров не превышает 3 мм, а в нагреваемой части сублимационного аппарата расположен патрубок для подачи кислорода, над которым размещена мембрана.

Целесообразно, чтобы в верхней части соосных цилиндров была расположена сквозная трубка для прохождения среды облучения.

В предлагаемом способе термосублимационного выделения рения-188, включающем облучение оксида вольфрама природного изотопного состава нейтронами, размещение облученной мишени в устройстве для термической обработки, ее нагревание при температуре изомерного перехода (720-730°С) в атмосфере кислорода. Кислородная среда необходима для доокисления рения и повышения химического выхода возгоняемой формы, так как в материнской матрице вольфрам находится в степени окисления +6, а рений возгоняется в степени окисления +7 (Re 2 O 7).

Изобретение поясняется чертежами. На фиг.1 приведена конструкция контейнера для размещения облучаемого оксида вольфрама, на фиг.2 - сублимационный аппарат.

Контейнер для размещения облучаемого оксида вольфрама (фиг.1) состоит из двух соосных цилиндров 1, 2, выполненных из кварцевых трубок разного диаметра и высоты. При этом внешний диаметр внутреннего цилиндра 1 должен быть как максимум на 3 мм меньше внутреннего диаметра внешнего цилиндра 2. Верхняя часть внутреннего цилиндра 1 герметично запаяна, в нижней части контейнера герметично устанавливается кварцевое кольцо 3, которое припаивается к внешнему и внутреннему цилиндрам 2, 1. В верхней части внутреннего цилиндра 1 расположен герметичный патрубок 4, соединяющий внутреннюю полость внутреннего цилиндра с внешней поверхностью внешнего цилиндра 2. Данный патрубок 4 необходим для прохождения среды облучения. Через открытую верхнюю часть ампулы проводят заполнение оксидом вольфрама полости между внутренней стенкой внешнего кварцевого цилиндра 2 и внешней стенкой внутреннего цилиндра 1. После заполнения верхняя часть внешнего цилиндра 2 контейнера герметично запаивается. Заполненный и запаянный контейнер помещается в экспериментальный канал реактора для облучения.

Сублимационный аппарат (фиг.2) состоит из внешнего кварцевого стакана 5, съемного охлаждаемого конденсора 6, выполненного из кварца и пористой кварцевой мембраны 7, которая герметично припаяна к внутренним стенкам в нижней части кварцевого стакана 5. В нижней части стакана 5 под мембраной 7 расположен патрубок 8 для подачи кислорода. Мембрана 7 обеспечивает равномерную подачу кислорода по объему облученного материала.

Предлагаемый способ получения целевого радионуклида с более высокой удельной активностью заключается в следующем. Образец из оксида вольфрама помещают в кварцевый контейнер (фиг.1), в котором облучаемый материал формируется в виде полого цилиндра. Это позволяет значительно снизить, как показывают расчеты и данные экспериментов, влияние эффекта самоэкранирования нейтронного потока (эффект поглощения тепловых и резонансных нейтронов веществом облучаемого объекта особенно с большим, более 1 барн, сечением поглощения) и получить более высокие значения удельных активностей при одинаковом интегральном потоке нейтронов и массе образца.

После вскрытия контейнера с облученным оксидом вольфрама его содержимое переносят внутрь кварцевого стакана 5, установленного в нагревательном устройстве, и равномерно распределяют по поверхности мембраны 7. Затем в стакан 5 помещают конденсор 6 на расстоянии 10-12 мм над поверхностью облученного WO 3 и фиксируют. Затем включают нагреватель и начинают процесс термосублимации, во время которого поступающий поток кислорода обеспечивает доокисление рения-188 до возгоняемой химической формы Re 2 O 7 . После проведения процесса отключают нагревательное устройство, вынимают конденсор 6 и смывают рений-188 0,9% водным раствором хлорида натрия, аликвотную часть которого берут для измерения удельной активности.

Предлагаемый способ выделения радиоизотопа, основанный на термическом воздействии на облученную матрицу из оксида вольфрама и на явлении термической сублимации образующегося в процессе радиоактивного распада вольфрама-188, дочернего изотопа рений-188, в виде высшего оксида, не предусматривает сложных и длительных многостадийных физико-химических процедур растворения облученной матрицы и операции с радиоактивными растворами. При этом практически полностью отсутствуют радиоактивные отходы и выбросы радионуклида в атмосферу.

Использование предложенного устройства обеспечивает компактное осаждение целевого радионуклида на ограниченной поверхности и, следовательно, его более высокой удельной активности.

Преимуществом заявляемой группы изобретений является и то, что в сравнении с прототипом используется дешевый исходный материал в виде оксида вольфрама, содержащего только природную смесь изотопов, а более высокая удельная активность получаемого материнского изотопа обеспечивается конструкцией ампулы для облучения, формирующей необходимую конфигурацию мишеней из оксида вольфрама и обеспечивающей снижение влияния эффекта самопоглощения нейтронов.

Сущность предлагаемого изобретения подтверждается следующими примерами.

Пример 1. Облученный, в обычной кварцевой ампуле, потоком нейтронов оксид вольфрама, массой 25 г, природного изотопного состава помещали в устройство для термосублимационного выделения рения-188 и отгоняли целевой изотоп, без продувки кислородом, в течение одного часа при температуре полиморфного перехода около 730-735°С. Конденсор вынимали из устройства и смывали рений-188 0,9% раствором хлорида натрия. В результате проведения процесса было выделено около 75% атомов рений-188 от исходного равновесного количества, накопленного в мишени. При этом остаточная активность рения-188 на конденсоре составила менее 0,5%.

Пример 2. Облученный в контейнере, позволяющем сформировать облучаемый материал в виде полого цилиндра с толщиной слоя 5 мм, тем же потоком нейтронов и массой 25 г оксид вольфрама природного изотопного состава помещали в устройство для термосублимационного выделения рения-188 и отгоняли целевой изотоп в течение того же времени и при условиях, что и в примере 1. Смыв рения-188 с конденсора осуществляли тем же объемом 0,9% раствора хлорида натрия. Полученная удельная активность на 18% превышала соответствующее значение, полученное в предыдущем примере, при том же химическом и радионуклидном выходе.

Пример 3. Облученный в разработанной специальном контейнере тем же потоком нейтронов и массой 25 г оксид вольфрама природного изотопного состава, сформированный в виде полого цилиндра с толщиной слоя облучаемого материала 3 мм, помещали в устройство для термосублимационного выделения рения-188 и отгоняли целевой изотоп в течение того же времени и условиях, что и в примере 1. Смыв рения-188 с конденсора осуществляли тем же объемом 0,9% раствора хлорида натрия. Полученная удельная активность на 36% превышала соответствующее значение, полученное в предыдущем примере, при том же химическом и радионуклидном выходе.

Пример 4. Облученный в контейнере, изготовленном по заявляемой конструкции, теми же потоком нейтронов и массой 25 г оксид вольфрама природного изотопного состава помещали в устройство для термосублимационного выделения рения и отгоняли целевой изотоп в атмосфере кислорода при температуре около 735°С в течение времени, что и в примере 1. Конденсор вынимали и смывали целевой рений-188 двумя миллилитрами 0,9% раствора хлорида натрия. В результате проведения процесса было выделено около 90% атомов рений-188 от исходного равновесного количества, накопленного в мишени, т.е. повысился радиохимический выход целевого изотопа на величину около 15%.

Таким образом, предлагаемый способ позволяет значительно повысить радиационный выход (т.е. активность) материнского изотопа вольфрам-188 за счет облучения вольфрамовой мишени, сформированной в виде полого цилиндра толщиной не более 3 мм, а за счет продувки кислорода во время процесса термической обработки повысить эффективность выделения рения-188 из облученных вольфрамовых матриц.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения радионуклида рений-188 без носителя, включающий реакторное облучение матрицы из оксида вольфрама нейтронами, ее термическую обработку при температуре полиморфного превращения в течение времени, достаточного для выхода в газовую фазу и конденсации целевого радионуклида, извлекаемого затем посредством реагента, отличающийся тем, что матрицу из оксида вольфрама формируют в виде полого цилиндра, толщина стенки которого составляет не более 3 мм, а термическую обработку проводят в среде кислорода.

2. Устройство для получения радионуклида рений-188 без носителя способом по п.1, содержащее контейнер для размещения облучаемого оксида вольфрама и сублимационный аппарат, включающий нагреваемую часть и конденсор, отличающееся тем, что контейнер выполнен в виде двух соосных цилиндров, между стенками которых расположена полость для размещения облучаемого оксида вольфрама, закрытая с одной стороны, при этом расстояние между стенками цилиндров не превышает 3 мм, а в нагреваемой части сублимационного аппарата расположен патрубок для подачи кислорода, над которым установлена мембрана.

3. Устройство по п.2, отличающееся тем, что в верхней части соосных цилиндров расположена сквозная трубка для прохождения среды облучения.