История лазерной печати

Цветные лазерные принтеры начинают активно завоевывать рынок печати. Если еще несколько лет назад цветная лазерная печать была для большинства организаций и тем более для отдельных граждан чем-то недосягаемым, то сейчас купить цветной лазерный принтер может позволить себе весьма широкий круг пользователей. Быстрорастущий парк цветных лазерных принтеров приводит к тому, что растет и интерес к ним со стороны служб технической поддержки.

Принципы цветной печати

В принтерах, как и в полиграфии для создания цветных изображений применяется субтрактивная цветовая модель, а не аддитивная, как в мониторах и сканерах, в которых любой цвет и оттенок получается смешением трех основных цветов – R (красный), G (зеленый), B (синий). Субтрактивная модель цветоделения называется так потому, что для образования какого-либо оттенка надо вычесть из белого цвета “лишние” составляющие. В печатающих устройствах для получения любого оттенка в качестве основных цветов используют: Cyan (голубой, бирюзовый), Magenta (пурпурный), Yellow (желтый) . Эта цветовая модель получила название CMY по первым буквам основных цветов.

В субтрактивной модели при смешивании двух или более цветов дополнительные цвета получаются посредством поглощения одних световых волн и отражения других. Голубая краска, например, поглощает красный цвет и отражает зеленый и синий; пурпурная краска поглощает зеленый цвет и отражает красный и синий; а желтая краска поглощает синий цвет и отражает красный и зеленый. При смешивании основных составляющих субтрактивной модели можно получить различные цвета, которые описаны ниже:

Голубой + Желтый = Зеленый

Пурпурный + Желтый = Красный

Пурпурный + Голубой = Синий

Пурпурный + Голубой + Желтый = Черный

Стоит отметить, что для получения черного цвета необходимо смешать все три составляющие, т.е. голубой, пурпурный и желтый, однако получить качественный черный цвет таким образом, практически невозможно. Получаемый цвет будет не черным, а скорее грязно-серым. Для устранения такого недостатка к трем основным цветам добавляется еще один – черный. Такая расширенная цветовая модель называется CMYK (C yan-M agenta-Y ellow-blacK – голубой-пурпурный-желтый-черный). Введение черного цвета позволяет значительно повысить качество цветопередачи.

Принтер HP Color LaserJet 8500

После того, как мы обсудили общие принципы построения и работы цветных лазерных принтеров, стоит ознакомиться более подробно с их устройством, механизмами, модулями и блоками. Это лучше всего сделать на примере какого-нибудь принтера. В качестве такого примера давайте возьмем принтер фирмы Hewlett-Packard Color LaserJet 8500.

Основными его характеристиками являются :
- разрешающая способность: 600 DPI;
- скорость печати в “цветном” режиме: 6 стр/мин.;
- скорость печати в “черно-белом” режиме: 24 стр./мин.

Основные узлы принтера и их взаимное расположение приводится на рис.5.

Формирование изображения начинается с того, что с поверхности фотобарабана снимаются (нейтрализуются) остаточные потенциалы. Это делается для того, чтобы последующий заряд фотобарабана был более равномерным, т.е. перед зарядом он полностью разряжается. Снятие остаточных потенциалов осуществляется путем засвечивания всей поверхности барабана специальной лампой предварительного (кондиционирующего) экспонирования, которая представляет собой линейку светодиодов (рис.7).

Далее на поверхности фотобарабана создается высоковольтный (до -600В) отрицательный потенциал. Заряжается барабан коротроном в виде ролика из токопроводящей резины (рис.8). На коротрон подается переменное напряжение синусоидальной формы с отрицательной постоянной составляющей. Переменная составляющая (АС) обеспечивает равномерное распределение зарядов на поверхности, а постоянная составляющая (DC) заряжает барабан. Уровень постоянной составляющей может регулироваться при изменении плотности печати (плотности тонера), что делается с помощью драйвера принтера или регулировками через панель управления. Увеличение отрицательного потенциала приводит к уменьшению плотности, т.е. к более светлому изображению, уменьшение же потенциала – наоборот, к более плотному (темному) изображению. Фотобарабан (его внутренняя металлическая основа) должен быть обязательно “заземлен”.

После всего этого на поверхности фотобарабана лазерным лучом создается изображение в виде заряженных и незаряженных участков. Световой пучок лазера, попадая на поверхность барабана, разряжает данный участок. Лазером засвечиваются те участки барабана, на которых должен быть тонер. Те участки, которые должны быть белыми, лазером не засвечиваются, и на них остается высокий отрицательный потенциал. Луч лазера перемещается по поверхности барабана с помощью вращающегося шестигранного зеркала, находящегося в сборке лазера. Изображение на барабане называют скрытым электрографическим изображением, т.к. оно представлено в виде невидимых электростатических потенциалов.

Скрытое электрографическое изображение становится видимым после прохождения через узел проявки. Проявительный модуль черного тонера является стационарным и находится в постоянном соприкосновении c фотобарабаном (рис.9).

Цветной проявительный модуль представляет собой карусельный механизм с поочередной подачей “цветных” картриджей к поверхности барабана (рис.10). Черный тонер-порошок является магнитным однокомпонентным, а цветные порошки – однокомпонентные, но немагнитные. Любой тонер-порошок заряжается до отрицательного потенциала за счет трения о поверхность проявительного вала и дозировочный ракель. За счет разности потенциалов и кулоновского взаимодействия зарядов, отрицательно заряженные частички тонера притягиваются к тем участкам фотобарабана, которые разряжены лазером и отталкиваются от участков с высоким отрицательным потенциалом, т.е. от тех, которые не засвечивались лазером. В каждый момент времени осуществляется проявка тонером только одного цвета. В момент проявки на проявительный вал подается напряжение смещения, которое вызывает перенос тонера с проявительного вала на фотобарабан. Это напряжение представляет собой переменное напряжение прямоугольной формы с отрицательной постоянной составляющей. Уровень постоянной составляющей может регулироваться при изменении плотности тонера. После окончания процедуры проявки изображение на фотобарабане становится видимым, и его необходимо перенести на барабан переноса.

Поэтому следующим этапом в создании изображения является передача проявленного изображения на барабан переноса. Этот этап называют этапом первичного переноса. Перенос тонера с одного барабана на другой происходит за счет электростатической разности потенциалов, т.е. отрицательно заряженные частички тонера должны притянуться положительным потенциалом на поверхности барабана переноса. Для этого на поверхность барабана переноса подается положительное напряжение смещения постоянного тока от специального источника питания, в результате чего вся поверхность этого барабана имеет положительный потенциал. При полноцветной печати напряжение смещения на барабане переноса должно постоянно увеличиваться, т.к. после каждого прохода количество отрицательно заряженного тонера на барабане возрастает. И для того, чтобы тонер мог переноситься и ложиться поверх уже существующего тонера, напряжение переноса увеличивается с каждым новым цветом. Этот этап формирования изображения показан на рис.11.

В процессе переноса тонера на барабан переноса отдельные частички тонера могут остаться на поверхности фотобарабана, и они должны быть удалены, чтобы не искажать последующее изображение. Для удаления остатков тонера в принтере имеется блок очистки фотобарабана (см. рис 17). В составе этого модуля имеется специальный вал – кисть для снятия заряда с тонера и фотобарабана – это ослабляет силу притяжения тонера к фотобарабану. Также имеется традиционный очистительный ракель, который соскребает тонер в специальный бункер, где он и хранится до тех пор, пока очистительный модуль не будет заменен или не будет вычищен.

Далее фотобарабан снова заряжается (после предварительного разряда), и процесс повторяется до тех пор, пока на барабане переноса не будет полностью сформировано изображение соответствующего цвета. Поэтому размер барабана переноса должен полностью соответствовать формату печати, т.е. в данной модели принтера длина окружности этого барабана соответствует длине листа формата А3 (420 мм). После нанесения тонера одного цвета процесс формирования изображения полностью повторяется с той лишь разницей, что используется проявительный блок другого цвета. Для использования другого проявительного узла карусельный механизм поворачивается на заданный угол и подводит “новый” проявительный вал к поверхности фотобарабана. Таким образом, при формировании полноцветного изображения, состоящего из четырех цветовых составляющих, барабан переноса проворачивается четыре раза, и на каждом обороте к уже существующему тонеру добавляется тонер другого цвета. При этом первым наносится порошок желтого цвета, потом пурпурного, потом голубого и уже последним наносится черный порошок. В итоге, на барабане переноса создается полноцветное видимое изображение, состоящее из частичек четырех разноцветных тонер-порошков.

После того, как тонер-порошок оказывается на поверхности барабана переноса, он проходит через блок дополнительного заряда. Этот блок (рис.12) представляет собой проволочный коротон, на который подается переменное напряжение синусоидальной формы (АС) с отрицательной постоянной составляющей (DC). Этим напряжением тонер порошок дополнительно заряжается, т.е. его отрицательный потенциал становится выше, что будет способствовать более эффективному переносу тонера на бумагу. Кроме того, дополнительное напряжение уменьшает значение положительного потенциала барабана переноса, что способствует правильному расположению тонера на барабане переноса и препятствует смещению тонера. Как результат этого – точное воспроизведение цветовых оттенков. Напряжение дополнительного заряда подается на барабан переноса во время нанесения желтого тонера, т.е. в самом начале процесса формирования изображения. При нанесении желтого тонер-порошка напряжение дополнительного заряда устанавливается на минимальное значение, и после нанесения каждого нового цвета это напряжение увеличивается. Максимальное напряжение дополнительного заряда подается во время нанесения черного тонера.

Далее полноцветное видимое изображение с барабана переноса должно быть перенесено на бумагу. Этот процесс переноса получил название вторичного переноса. Вторичный перенос осуществляется еще одним коротроном, выполненным в виде транспортного ремня (рис.13). Тонер перемещается на бумагу под действием электростатических сил, т.е. за счет разности потенциалов тонер-порошка (отрицательный) и коротрона вторичного переноса, на который подается положительное напряжение смещения. Так как вторичный перенос осуществляется только после четырех оборотов барабана переноса, транспортный ремень коротрона должен подать бумагу только тогда, когда все цвета нанесены, т.е. во время уже четвертого оборота, а до этого момента времени ремень должен быть в таком положении, чтобы бумага не касалась барабана переноса.

Таким образом, транспортный ремень во время создания изображения опущен вниз, и не соприкасается с барабаном переноса, а в момент вторичного переноса поднят вверх и касается этого барабана. Перемещение транспортного ремня коротрона осуществляется эксцентриковым кулачком, который приводится в действие электрической муфтой по команде от микроконтроллера (рис.14).

При вторичном переносе лист бумаги может притягиваться к поверхности барабана переноса за счет разницы электростатических потенциалов. Это может стать причиной накручивания листа бумаги на барабан, и соответственно к замятию бумаги. Для предотвращения такого явления в составе принтера имеется система отделения бумаги и снятия с нее статического потенциала. Система представляет собой коротрон, на который подается переменное напряжение синусоидальной формы с положительной постоянной составляющей. Расположение коротрона относительно бумаги и барабана переноса показано на рис.15.

На этапе вторичного переноса некоторые частички тонера не переносятся на бумагу, а остаются на поверхности барабана. Чтобы эти частички не мешали созданию следующего листа и не искажали изображения необходимо произвести очистку барабана переноса и удалить остатки тонера. Очистка барабана переноса является достаточно сложным процессом. Для этой процедуры задействуется специальный ролик очистки, фотобарабан и блок очистки фотобарабана. Очистка барабана переноса должна осуществляться не постоянно, а только после вторичного переноса, т.е. система очистки должна управляться аналогично коротрону переноса. Пока создается изображение, система очистки не активна, а когда начинается перенос тонера на бумагу - включается. Первым этапом очистки является перезаряд остаточного тонер-порошка, т.е. его потенциал меняется с отрицательного на положительный. Для этого применяется ролик очистки, на который подается переменное синусоидальное напряжение с положительной постоянной составляющей. Этот ролик прижимается к поверхности фотобарабана в период очистки, а в процессе создания изображения он откидывается. Управляется ролик эксцентриковым кулачком, который в свою очередь приводится в действие соленоидом (рис.16).

После этого положительно заряженный тонер переносится на фотобарабан, на котором по-прежнему имеется отрицательное напряжение смещения. И уже с поверхности фотобарабана тонер счищается очистительным ракелем блока очистки фотобарабана (рис.17).

Заканчивается создание полноцветного изображения фиксацией тонера на бумаге с помощью температуры и давления. Лист бумаги проходит между двумя роликами блока фиксации (печки), разогревается до температуры порядка 200 ºС, тонер расплавляется и вдавливается в поверхность бумаги. Для предотвращения прилипания тонера к печке на нагревательный вал подается отрицательное напряжение смещения, в результате чего отрицательный тонер-порошок остается на бумаге, а не на тефлоновом валу.

Мы рассмотрели принцип работы только одного принтера одной фирмы. Другими производителями могут применяться и иные принципы формирования изображения и другие технические решения при построении принтеров, однако, все эти решения будут весьма близки к тем, что были рассмотрены ранее.

Вконтакте

Одноклассники

История лазерной печати начинается 22 октября 1938 года, когда американскому физику, изобретателю Честеру Карлсону удалось получить в домашних условиях первую в истории ксерокопию. Изобретатель присвоил процессу получения дубликата бумажного носителя гордое имя «электрография», а изобретённый им аппарат получил название электрографа.

Честер Карлсон

В 1938-1944 гг. Ч. Карлсон пытался усовершенствовать изобретённое им устройство, которое, по словам очевидцев, имело внушительные размеры и сильно пачкалось. Несмотря на очевидную полезность изобретения, долгие годы оно оставалось непризнанным. Пытаясь продвинуть изобретение, Ч. Карлсон обращался в IBM и даже в войска связи США, но везде получил отказ.

6 октября 1942 г. Ч. Карслону удалось получить патент на своё изобретение, а спустя 2 года, во второй половине 1944 г., его технологией заинтересовалась частная некоммерческая организация Battelle Memorial Institute, специализировавшаяся на научных и технологических исследованиях и разработках. Она предложила Ч. Карлсону свои услуги в дальнейшей разработке и продвижении электрографа.

В 1947 г. лицензию на разработку и вывод на рынок электрографа, изобретённого Ч. Карлсоном, приобрела у института компания The Haloid Company.

В 1948 г., заручившись согласием Ч. Карслона, представители The Haloid Company решили переименовать электрографию и дать ей новое, более ёмкое имя. За консультацией пришлось обратиться к профессору филологии Университета штата Огайо, который взял за основу греческие слова xeros (сухой) и grapho (писание, пишу) и на их основе предложил новое название процесса – «ксерография». С этого момента электрограф был переименован в ксерокс , а электрография – в ксерографию.

В 1949 г. The Haloid Company вывела на рынок первый ксерокс «Model A». С этого момента начинается процесс триумфального шествия ксероксов по миру.

Ксерокс «Модель А»

В честь своего детища, принёсшего многомиллиардные прибыли, The Haloid Company была переименована в 1958 г. в Haloid Xerox Inc, а в 1961 г. – в XEROX Corporation. Последнее название компании сохраняется по сей день. XEROX Corporation вкладывала значительные денежные средства в научные исследования и разработки, благодаря чему в 1969 г. один из сотрудников компании Гэри Старквеатер изобрёл технологию копирования, совместимую с принтерами.

Первый лазерный принтер был собран в компании Xerox в 1969 г. Новинку назвали EARS, однако она так и не была выпущена в массовое производство. И лишь в 1977 г. компания XEROX Corporation выпустила официальный лазерный принтер – Xerox-9700 Electronic Printing System. Эта модель имела по истине огромные размеры, равно как и цена устройства в 350 тысяч долларов, которая делала её не доступной для большинства пользователей. Наряду с этим Xerox-9700 Electronic Printing System остаётся самым быстрым лазерным принтером в мире и позволяет получать до 120 страниц напечатанного текста в минуту.

Лазерный принтер XEROX-9700

Следующий лазерный принтер был выпущен компанией XEROX Corporation в 1981 г. в составе домашней типографии Star 8010. Лазерная печать здесь была дополнена текстовым и графическим редакторами, редактором для работы с графическими файлами. Домашняя типография стоила баснословно дорого – 17 тысяч долларов и была недоступна для большинства потребителей.

Лазерный принтер в составе домашней типографии Star 8010

В начале 80-х гг. ХХ века спрос на лазерные принтеры достиг своего апогея. Главной задачей производителей на данном этапе являлось уменьшить принтеры, увеличить скорость их печати и снизить себестоимость производства.

В 1982 г. компания Canon выпустила первый компактный настольный принтер LBP-10. В 1983 г. миру была продемонстрирована новая модель LBP-CX.

Лазерный принтер Canon LBP-CX

В 1984 г. «лазерная лихорадка» захватила компанию Hewlett Packard , которая при поддержке Canon выпустила первый принтер LaserJet производительностью 8 страниц в минуту. Тогда же появились первые опытные образцы Laser Writer компании Apple. В 1986 г. на рынок вышло новое поколение современных лазерных принтеров -

Многих пользователей оргтехники интересуют ответ на вопрос о том, когда появился первый лазерный принтер. Итак, данная модель печатающего устройства обладает весьма длинной и богатой на разные события историей. Она берет начало в 1938-м году, когда американский физик и изобретатель Честер Карлсон смог получить первое в истории человечества ксерографическое изображение.

Стоит отметить, что в качестве основы технологии его создания использовалось статическое электричество, которое переносило сухие чернила (будущий тонер) на поверхность бумаги. Возможным это стало только благодаря многолетней работе и упорству этого талантливого человека. Именно благодаря ему удалось отказаться от применения существовавших в те годы приборов, называемых мимеографами и существенно снизить стоимость получаемых отпечатков.

Таким образом, самый первый принтер лазерного типа был создан именно Честером Карлсоном, который изобрел такой способ печати, как электрография и дал старт дальнейшему развитию истории создания принтера. Суть созданной им технологии заключается в использовании фотобарабана, представляющего собой алюминиевую трубку со светочувствительным слоем. На эту деталь осуществляется подача отрицательного заряда и луч лазера, пробегая по ее поверхности, снимает часть заряда в зонах, предназначенных для нанесения печати.

Фотобарабан, в свою очередь, во время работы вращается и покрывается красящим порошком в тех местах, где заряд уменьшился при помощи луча лазера. В дальнейшем эта трубка из алюминия соприкасается с листом и передает ему весь тонер, прилипший к светочувствительному слою. Затем бумага подвергается воздействию специальной печи, где красящий порошок крепко спекается с его поверхностью.

Честер Карлосон после получения первого в мире ксерографического изображения еще долго не мог воплотить свои идеи в реальность. Получив отказ от войск связи страны и IBM, ему спустя несколько лет, в 1946-м году удалось наконец-то найти фирму, которая дала согласие заняться производством разработанных им электростатических копиров. Данной организацией оказалась Haloid Company, основанная в 1906-м году. Изначально эта компания специализировалась на производстве фотобумаги, но в дальнейшем она сменила название на Haloid Xerox (1958-й год), после чего стала именоваться Xerox Corporation (1961-й год).

Первый аппарат был выпущен в продажу под названием Model A лишь в 49-м году прошлого столетия. В целом он был довольно сложным в использовании, т.к. здесь требовался ручной труд и весьма громоздким. Чтобы сделать копию документа с помощью Model A, пользователю требовалось выполнить несколько ручных действий. Т.е. этот аппарат не работал в автоматическом режиме, что создавало некоторые неудобства при его использовании. Но на этом развитие первого принтера, использовавшего для печати технологию электрографии и выпущенного в массовое производство, не остановилось.

Появление первого лазерного принтера

Спустя десять лет после появления Model A на рынке стали реализовывать новый ксерограф, который на этот раз был полностью автоматизирован. Назывался он следующим образом: Xerox 914. Следует отметить, что возникновение новой модели такого аппарата позволило существенно упростить печать копий. Xerox 914 был способен выдавать около семи копий ежеминутно! Именно этот изобретенный в 1959-м году аппарат стал прообразом всех принтеров, использующих лазерную технологию печати, которые начали появляться в дальнейшем.

Что касается непосредственно лазерных принтеров, то над их разработкой компания Xerox начала усиленно трудиться в 69-м году прошлого века. Но успеха удалось добиться лишь девять лет спустя, когда Гэри Старкуезеру удалось улучшить технологию работы имеющихся в те годы копиров с помощью добавления к ней лазерного луча. Таким образом, появился первый принтер лазерного типа. Аппарат, которому дали название Xerox 9700 мог распечатывать около 120 страниц ежеминутно. Но его размеры были уж очень большими, а стоимость заоблачной для тех времен – 350 долларов США. По этой причине данная модель не могла стать действительно широко распространенным и доступным для каждого дома вариантом.

Стоит добавить, что появление первого лазерного принтера могло произойти и раньше, если верить компании IBM, которая утверждает, что уже в 1976-м году их лазерное печатающее устройство под названием IBM 3800 уже вовсю работало в F.W.Woolworth – Североамериканский Дата Центр. В целом споры о том, кто изобрел первый принтер, основанный на лазерной технологии, печати идут до сих пор.

Дальнейшее развитие

В 1979-м году представило пользователям новую модель лазерного принтера, которая на этот раз была настольной — LBP-10. Через год компания выпустила еще один новенький аппарат, на этот раз — LBP-CX. Следует отметить, что история развития принтеров в начале 80-х годов стала набирать некоторые обороты, т.к. спрос на эти аппараты достиг высоких значений.

Но для развития своей маркетинговой политики и продвижения продаж на рынке, связанном с устройствами обработки данных компании Canon требовались сильные партнеры. В первую очередь она обратилась с предложением к одному из подразделений Xerox Corporation, но в ответ получила отказ, т.к. данная компания сама на тот период времени занималась вместе с одной японской фирмой разработкой лазерного печатающего устройства, которое должно было стать лучшим настольным вариантом в мире.

В итоге выбор Canon пал на HP и итогом совместной деятельности этих двух компаний стал выпуск модели LaserJet (1984-й год), которая могла печатать до восьми страниц ежеминутно. Продажи нового принтера достаточно быстро росли, в результате чего данный сегмент рынка в те годы в большей степени принадлежал HP.

Дальнейшая история принтера, использующего лазерную технологию печати, связана с тем, что качество отпечатков новых моделей к началу 90-х годов прошлого столетия стало значительно лучше, а их стоимость упала ниже 1 тысячи долларов. Что касается первой модели лазерного принтера, обладающей цветной печатью, то она смогла появиться на свет в 1993-м году под брэндом компании QMS. Спустя пару лет, Apple удалось выпустить устройство, стоимостью 7.5 тысяч долларов.

Таким образом, спустя несколько десятков лет лазерные принтеры превратились в действительно доступные устройства, которые стали широко применять не только в офисах, но и в домашних условиях. Кроме того, ассортимент их моделей, имеющийся в современных магазинах просто поражает воображение. Поэтому выбирать оптимальное устройство нужно тщательно и кропотливо, ориентируясь не только на его стоимость или производителя, но также технические характеристики.

История лазерных принтеров началась в 1938 году с разработки технологии печати сухими чернилами. Честер Карлсон , работая над изобретением нового способа переноса изображений на бумагу, использовал статическое электричество. Метод получил название электрографии и впервые был использован корпорацией Xerox, выпустившей в 1949 году копировальный аппарат Model A. Однако для работы этого механизма отдельные операции требовалось производить вручную. Через 10 лет был создан полностью автоматический Xerox 914, который считается прообразом современных лазерных принтеров.

Идея «нарисовать» то, что позднее должно быть распечатано, непосредственно на копировальном барабане лазерным лучом принадлежит Гэри Старквитеру (Gary Starkweather). Начиная с 1969 года, компания занималась разработкой и в 1977 году выпустила серийный лазерный принтер Xerox 9700, который печатал со скоростью 120 страниц в минуту.

Аппарат был очень большим, дорогим, предназначался исключительно для предприятий и учреждений. А первый настольный принтер разработала Canon в 1982, через год – новая модель LBP-CX. Компания HP в результате сотрудничества с Canon в 1984 году начала производство серии Laser Jet и сразу же заняла лидирующее положение на рынке лазерных принтеров для домашнего пользования.

В настоящее время монохромные и цветные печатающие устройства выпускаются многими корпорациями. Каждая из них использует собственные технологии, которые могут существенно различаться, но общий принцип работы лазерного принтера характерен для всех устройств, а процесс печати можно разделить на пять основных этапов.

Печатающий барабан (Optical Photoconductor, OPC) – это металлический цилиндр, покрытый фоточувствительным полупроводником, на котором формируется изображение для последующей печати. Вначале OPC снабжается зарядом (положительным или отрицательным). Сделать это можно одним из двух способов используя:

  • коротрон (Corona Wire), или коронатор;
  • ролик заряда (Primary Charge Roller, PCR), или заряжающий вал.

Коротрон представляет собой блок из проволоки и металлического каркаса вокруг нее.

Провод коронатора – это вольфрамовая нить с углеродным, золотым или платиновым покрытием. Под действием высокого напряжения между проволокой и каркасом возникает разряд, светящаяся ионизированная область (корона), создается электрическое поле, которое передает статический заряд фотобарабану.

Обычно в блок встраивается механизм, очищающий провод, так как его загрязнение сильно ухудшает качество печати. Использование коротрона имеет определенные недостатки: царапины, скопление пыли, частичек тонера на нити или ее изгиб может привести к усилению электрического поля в этом месте, резкому снижению качества распечаток, и, возможно, повреждению поверхности барабана.

Во втором варианте несущую конструкцию с нагревательным элементом внутри обертывает гибкая пленка, сделанная из специальной термоустойчивой пластмассы. Технология считается менее надежной, используется в принтерах для малого бизнеса и домашнего использования, где не ожидается больших нагрузок оборудования. Для предотвращения прилипания листа к печке и закручивания его вокруг вала предусмотрена планка с отделителями бумаги.

Цветная печать

Для формирования цветного изображения используются четыре основных цвета:

  • черный,
  • желтый,
  • пурпурный,
  • голубой.

Печать осуществляется по тому же принципу, что и черно-белая, но прежде принтер разбивает картинку, которую нужно получить, на монохромные изображения для каждого из цветов. В процессе работы цветные картриджи переносят на бумагу свои рисунки, а их наложение друг на друга дает итоговый результат. Существует две технологии цветной печати.

Многопроходная

При этом способе используется промежуточный носитель – вал или лента переноса тонера. За один оборот на ленту наносится один из цветов, затем в нужное место подается другой картридж и поверх первого изображения накладывается второе. За четыре прохода на промежуточном носителе формируется полное изображение, которое переносится на бумагу. Скорость печати цветного изображения в принтерах, использующих эту технологию, в четыре раза меньше, чем монохромного.

Однопроходная

Принтер включает в себя комплекс из четырех отдельных печатающих механизмов под общим управлением. Цветные и черный картриджи выстроены в линейку, каждому соответствует отдельный лазерный блок и ролик переноса, а бумага проходит под фотобарабанами, последовательно собирая все четыре монохромных изображения. Только после этого лист попадает в печку, где тонер закрепляется на бумаге.

Печатайте с удовольствием.

Толчком к созданию первых лазерных принтеров послужило появление новой технологии, разработанной фирмой Canon. Специалистами этой фирмы, специализирующейся на разработке копировальной техники, был создан механизм печати LBP-CX. Фирма Hewlett-Packard в сотрудничестве с Canon приступила к разработке контроллеров, обеспечивающих совместимость механизма печати с компьютерными системами PC и UNIX. Принтер HP LaserJet впервые был представлен в начале 1980-х годов. Первоначально конкурируя с матричными принтерами, лазерный принтер быстро завоевал популярность во всем мире. Другие компании-разработчики копировальной техники вскоре последовали примеру фирмы Canon и приступили к исследованиям в области создания лазерных принтеров. Toshiba, Ricoh и некоторые другие, менее известные компании, тоже были вовлечены в этот процесс. Однако успехи фирмы Canon в области создания высокоскоростных механизмов печати и сотрудничество с Hewlett-Packard позволили им добиться поставленной цели. В результате на рынке лазерных принтеров модель LaserJet вплоть до 1987-88 годов занимала доминирующее положение (модель обеспечивала разрешение 300 dpi и печатала со скоростью 8 страниц в минуту; цена на момент выхода составляла 3495 долларов). Следующей вехой в истории развития лазерного принтера явилось использование механизмов печати с большей разрешающей способностью под управлением контроллеров, обеспечивающих высокую степень совместимости устройств.

Другим важным событием явилось появление цветных лазерных принтеров. Фирмы XEROX и Hewlett-Packard представили новое поколение принтеров, которые поддерживали цветное представление изображения и позволяющие повысить как производительность печати, так и точность цветопередачи.

3. Принцип работы лазерных принтеров.

Среди современной компьютерной периферии едва ли найдется устройство, вобравшее в себя боль­ше технологических достижений, новейших мате­риалов и конструкторского искусства, нежели ла­зерный принтер. Правда, лазер в составе принтера используется маленький, мощностью не более нескольких сот милливатт. Однако он тоже обладает свойством, за которое так ценятся лазеры: дает очень узкий направленный пучок когерентного монохроматического излучения. В принтере этот луч используется как тончайшее «перо», которым и рисуется заданное изображение.

Рис. 1. Блок-схема лазерного принтера: 1 - фотобарабан; 2 - девелопер; 3 - лист бумаги; 4- валик подачи; 5, 6 - термозакрепляющие ва­лики; 7 - ракель; 8 - лампа; 9 - очищающий ракель; 10 - валик восстановления заряда.

Воспроизведение текста и графики в лазерном принтере осуществляется в три стадии: экспози­ция, проявка и печать.

На первой стадии данные из компьютера посту­пают в буфер строки и с помощью сканирующей системы, в которую входит лазер, переносятся на отрицательно заряженную поверхность специаль­ного фотобарабана (1 на рис. 1).

Лазерная засветка осуществляется следующим способом: тонкий луч лазера светит на зеркало, которое вращается с высокой скоростью. Отражен­ный луч через систему зеркал и призму попадает на барабан и за счет поворота зеркала нейтрализу­ет заряды по всей длине фотобарабана. Затем про­исходят поворот барабана на один шаг (этот шаг измеряется в долях дюйма, и именно он определя­ет разрешение принтера по вертикали) и вычерчи­вается новая линия.

Точки, которые на бумаге должны получиться темными, разряжаются светом лазерного луча. Заряды на освещенных течках поверхности бараба­на нейтрализуются благодаря фотопроводящим свойствам барабана. Таким образом, на поверхнос­ти барабана формируется скрытое электростати­ческое изображение.

Скорость вращения зеркала очень высока. Она составляет 7-15 тыс. об./мин. Для того чтобы уве­личить скорость печати, не увеличивая скорость вращения зеркала, его выполняют в виде много­гранной призмы.

На второй стадии с помощью второго барабана (2), называемого девелопером, на фотобарабан на­носится тонер - мельчайший красящий порошок. В процессе работы барабан-девелопер, частицы то­нера и фотобарабаи всегда заряжены отрицатель­но, однако в точках, засвеченных лазерным лучом, потенциал поверхности фотобарабана уменьшает­ся с -900 В до -200 В. Напряжение на барабане-девелопере составляет при этом -500 В. Таким образом, разность потенциалов, притягивающая тонер на разряженные области фотобарабана, оказывается равной 300 В; соседние заряженные участ­ки поверхности, напротив, отталкивают частицы.

Рядом с барабаном-девелопером расположен ракель (7). Это резиновое лезвие, которое предназ­начено для снятия излишков тонера, оставляя для печати только один слой приставших к бумаге ча­стиц. Это лезвие сделано плавающим, как в хоро­ших бритвах.

Затем «проявленный» участок барабана прока­тывается по листу бумаги (3), который подается снизу еще одним валиком (4), тоже заряженным. Электростатическое поле переносит тонер на лист бумаги, и тот прямиком отправляется в узел за­крепления изображения. Этот узел состоит из двух барабанов (5, 6), нагретых до 180-200°С (в зависимости от модели). При такой температуре частицы тонера намертво вплвляются в бумагу. Поэтому выползающий из принтера отпечатанный лист бывает теплым.

Внизу, рядом с подающим бумагу валиком (4), расположена мощная лампа (8) вытянутой формы. Она нужна для того, чтобы поддерживать на по­дающем валике постоянный заряд. Этот заряд при­тягивает частицы тонера и способствует переносу изображения с фотобарабана на бумагу.

Еще один ракель (9) и валик (10) готовят фото­барабан к следующему рабочему циклу. Этот ра­кель очищает фотобарабан от остатков тонера, а заряженный валик при контакте с фотобарабаном восстанавливает заряд на его поверхности.

Такова схема, по которой работают все модели лазерных принтеров. Но конкретная реализация этой схемы в принтерах различных фирм может быть различной.

В большинстве принтеров фотобарабан вместе с барабаном-девелопером входят в состав единого узла - картриджа. Внутри картриджа в специ­альной емкости находится тонер.

Если качество печати определяется в первую очередь механизмом принтера, то скорость - преж­де всего процессором и памятью. Принтер получа­ет информацию от компьютера на языке описания страницы PDL (Page Description Language). Затем он обязан представить всю страницу с рисунками и текстом в виде набора крошечных точек - тех самых, которые потом «нарисует» лазерный луч и на которые прилипнут частицы тонера. При раз­решении 1200х1200 этих точек на странице фор­мата А4 насчитывается почти 140 миллионов. Не­трудно себе представить объем необходимых вы­числений. Неудивительно, что стадия обработки информации так влияет на производительность принтера, т. е. на время, которое проходит между выбором опции Print из меню на экране ПК и вы­падением отпечатанной страницы в приемный ло­ток принтера.

Каждый лазерный принтер содержит быстродей­ствующий процессор, оперативную память и флэш-память (ППЗУ). Объем оперативной памяти обыч­но составляет 1-2 Мбайта с возможностью расши­рения до 8-16 Мбайт. Флэш-память (если она есть) может иметь объем до 4 Мбайт. Кроме того, в не­которых принтерах может быть установлен жест­кий диск. Скорость печати лазерных принтеров составляет (в зависимости от разрешения) от 4 до 20 страниц в минуту.

Обладая значительной флэш-памятью (ППЗУ), принтер выигрывает в скорости за счет того, что не тратит времени на загрузку из компьютера шрифтов и шаблонов. Все эти данные многора­зового использования хранятся в памяти принте­ра. Флэш-память позволяет записать и держать наготове до двух десятков шрифтов.

Вся страница перед печатью должна быть за­гружена во внутреннюю память принтера в виде растрового (Bitmap) представления. Правда, встро­енные шрифты и иногда PostScript позволяют ге­нерировать принтеру это растровое представление прямо по мере надобности, и тогда не важно, сколь­ко у принтера внутренней памяти. Для цветных принтеров требуемый объем внут­ренней памяти возрастает не менее чем в три раза. Следует отметить, что для полутонового рисунка реальная разрешающая способность принтера уменьшается в 4-8 paз из-за того, что полутоновая «элементарная» точка состоит из многих реальных черно-белых точек, располагаемых с разной частотой рядом друг с другом. Выходом из этой безнадежной ситуации может стать только прин­тер, позволяющий печатать пикселы с градациями серого. В этом случае объем требуемой памяти возрастает в восемь раз для монохромного изобра­жения и в 24 раза - для полноцветного.

Некоторые лазерные принтеры обладают встро­енным интерпретатором языка описания страниц PostScript Level 2. Это означает, что они могут ис­пользовать высококачественные шрифты в формате PostScript и работать с текстом и графикой так, как это делают графические редакторы. Уменьшить, увеличить или повернуть распечатываемую стра­ницу, выполнить инверсию (поменять черное на белое и наоборот) и т. п. - все это доступно прин­теру. PostScript делает возможным удобный ре­жим черновой печати, когда страницы оригинала уменьшаются ровно вдвое (а можно и вчетверо), размещаются по две (или по четыре) на одном листе.

Для повышения скорости печати пользователь может пожертвовать высоким разрешением и пе­реключить принтер в режим печати с разрешени­ем 600 или даже 300 dpi.

В лазерных принтерах для передачи полутонов изображение принято разбивать на ячейки из не­скольких точек. Например, для принтеров с разрешением 300х300 точек на дюйм часто при­меняется квадратная ячейка из 25 точек разме­ром 0,42х0,42 мм (длина стороны 1/60 дюйма), со сторонами, повернутыми на 45 градусов относитель­но вертикали. При этом возможна передача 26 оттенков серого (от 0 до 25 черных-точек в ячей­ке). Именно таковы рекомендации языка PostScript Level 1. Мы видим, что размер ячейки достаточно велик, а число оттенков мало. Поэтому изображе­ние получается несколько зернистым.

При разрешении 1200х1200 точек на дюйм ячей­ка состоит из 128 точек и тоже имеет вид квадра­та, но его размеры уже 0,25х0,25 мм. Качество изоб­ражения улучшается не только потому, что размер ячейки меньше, а и из-за увеличения числа оттен­ков серого до 129.

С одной стороны, лазерные принтеры довольно чувствительны к качеству бумаги, она должна быть хорошего качества. С другой стороны, лазерные принтеры допускают использование качественной бумаги плотностью от 60 до 300 граммов на кв. метр. Конверты и картон отправляются на пе­чать с отдельного лотка и проходят через весь ме­ханизм по особому маршруту, так что им почти не приходится сгибаться.

Принтеры младших моделей, такие как первые HP LaserJet, обеспе­чивали печать только на одной стороне листа. Ма­ло того, в руководствах к ним категорически не рекомендовалось использовать отпечатанный лист повторно, снова закладывая его лоток чистой сто­роной вверх, как это всегда любили делать эконом­ные пользователи. Причина прежде всего в том, что оборотная сторона такого листа, угодившего под горячий валик, могла испачкать механизм и при­вести к снижению качества печати. В настоящее время многие лазерные принтеры обеспечивают возможность двусторонней печати.

HP LJ 1018.