Какие авто больше подвержены коррозии? Защита металла от коррозии

Определение коррозии и причины её возникновения

Коррозия – это самопроизвольный процесс разрушения металлов и сплавов в условиях природной среды.

При коррозии металлы окисляются и образуются продукты, состав которых зависит от условий среды.

Согласно современным представлениям, все основные изменения в органическом и неорганическом мире связаны с окислительно-восстановительными процессами. Окислительно-восстановительные реакции лежат в основе и коррозионных процессов.

Основной причиной коррозии является термодинамическая неустойчивость металлов и сплавов в окружающей среде. Подавляющее большинство металлов в земной коре находится в виде оксидов, сульфидов и других соединений. При получении металлов в металлургии их переводят из такого стабильного состояния в элементарную форму, которая нестабильна. При контакте металла с внешней окислительной средой появляется движущая сила, стремящаяся превратить их в стабильные соединения, подобные тем, которые находятся в рудах. Примером этого является коррозия стали. В результате этого элементарное железо превращается в окисленное двух- и трёхвалентное, которое соответствует таким минералам, как магнетит (Fe 3 O 4) или лимонит (Fe 2 O 3 ˙H 2 O).

Термодинамическая неустойчивость металлов количественно оценивается знаком и величиной изобарно-изотермического потенциала ΔG (энергии Гиббса). Самопроизвольно протекают те процессы, которые сопровождаются уменьшением энергии Гиббса, то есть для которых ΔG<0. Металлы, стоящие в ряду напряжений до водорода, имеют по сравнению с водородом более отрицательный потенциал, их окисленное состояние термодинамически более устойчиво, чем восстановленное. Для металлов, расположенных после водорода, восстановленное состояние термодинамически более устойчиво, то есть для них ΔG>0. К этой группе металлов относятся коррозионно-стойкие золото, платина, серебро и др.

Классификация коррозионных процессов. Химическая и электрохимическая коррозия

Коррозионные процессы классифицируются:

1. По механизму реакций взаимодействия металла со средой;

2. По типу коррозионной среды;

3. По характеру коррозионных разрушений на поверхности и в объёме металла;

4. По характеру механических воздействий, которым подвергается металл одновременно с действием коррозионной среды.

По первому признаку различают два вида коррозии – химическую и электрохимическую.

Химическая коррозия

Химическая коррозия протекает при взаимодействии металлов с окислителями в средах, не проводящих электрический ток. Механизм химической коррозии можно представить одностадийным процессом окисления металла, то есть взаимодействием поверхности металла с окислителем.



Химическая коррозия – это процесс самопроизвольного разрушения металла в среде окислительного газа (например, кислорода) при повышенной температуре. Скорость химической коррозии зависит от многих факторов, в первую очередь она определяется характером продуктов коррозии. При окислении на поверхности металла образуется твердая пленка оксидов. Скорость окисления определяется состоянием и защитными свойствами поверхностной плёнки. Это зависит от отношения объёмов оксидной плёнки V ок и прокорродированного металла V м, из которого она образовалась. Установлено, что для пористых плёнок, не предохраняющих металл от доступа агрессивных примесей воздуха . А для плёнок, обладающими защитными свойствами, .

Скорость химической коррозии возрастает с увеличением температуры из-за повышения коэффициента диффузии и изменения защитных свойств плёнки. Резкие изменения температуры часто вызывают быстрое разрушение защитной плёнки. Это связано с различными коэффициентами термического расширения металла и плёнки.

По условиям протекания коррозионного процесса различают газовую коррозию (протекающую в газах, парах при высокой температуре в отсутствие воды), и коррозию в жидкостях – неэлектролитах (нефть, фенол, бензин, бензол).

Электрохимическая коррозия

При электрохимической коррозии процесс взаимодействия металла с окислителем состоит из двух сопряженных реакций: анодного растворения металла и катодного восстановления окислителя. Эта коррозия может протекать в электролитах, атмосфере любого влажного газа, а также в почве.

Основным отличием электрохимической коррозии от химической является наличие влаги на поверхности металла, что приводит к контакту двух различных металлов через электролит. При этом возникают короткозамкнутые гальванопары, в результате чего появляется электрический ток. В этом случае процесс коррозии обусловлен работой гальванопары, то есть электрохимической реакцией. По этой причине электрохимическая коррозия более агрессивна по отношению к металлам, чем химическая.

Механизм электрохимической коррозии состоит в том, что происходит анодное окисление металла: M – ne = M n + и катодное восстановление окислителя (Ох) Ох+ne=Red.

Окислителями при коррозии служат молекулы кислорода, хлора, ионы Н + , Fe 3+ , NO 3 – и др. Наиболее часто при коррозии наблюдается ионизация (восстановление) кислорода в нейтральной (щелочной) среде О 2 +2Н 2 О+4е=4ОН – , в кислой среде – восстановление водорода 2Н + +2е=Н 2 .

Коррозия с участием кислорода называется коррозией с поглощением кислорода или коррозией с кислородной деполяризацией. Коррозия с участием ионов водорода называется коррозией с выделением водорода или коррозией с водородной деполяризацией.

Кроме первичных реакций, в растворе протекают вторичные реакции:

М х+ +хОН - =М(ОН) х

В результате взаимодействия металла с кислородом, как и при химической коррозии, образуется оксид металла: М(ОН) 2 =МО+Н 2 О.

Кроме анодных и катодных реакций при электрохимической коррозии происходит движение электронов в металле и ионов в электролите. Электролитами могут быть растворы солей, кислот и оснований, морская и атмосферная вода (содержащая кислород, углекислый, сернистый и др. газы). Основным отличием электрохимической коррозии от процессов в гальваническом элементе является отсутствие внешней цепи.

Равновесные потенциалы водородного и кислородного электродов в зависимости от рН среды находят на основании уравнения Нернста:

φ 2Н + /Н2 =-0,059рН;

φ О2/ОН =1,23-0,059рН.

Коррозия металлов в различных средах

Контактная коррозия

Контактная биметаллическая коррозия является разновидностью электрохимической коррозии, вызванной контактом металлов, имеющих разные электродные потенциалы в электролите. При этом коррозия металла с более отрицательным потенциалом обычно усиливается, а разрушение металла с положительным потенциалом замедляется или полностью прекращается. При конструировании учитывают возможность контактов различных металлов.

Атмосферная коррозия

На скорость атмосферной коррозии влияет влажность и газовый состав атмосферы. Влажность,температура и степень загрязнения атмосферы влияют на качество и состав образующихся на поверхности металла плёнок. Наиболее агрессивны среды, сильно загрязненные промышленными газами (СО 2 , SO 2 , NO 2 , NH 3 , HCl), частицами солей и угольной пылью. В промышленных районах атмосферную коррозию могут интенсифицировать так называемые «кислотные дожди», основными агрессивными компонентами которых являются серные и азотные кислоты. Кислотные дожди (рН<4) легко вызывают коррозию сплавов алюминия, железа и цинка.

В зависимости от влажности атмосферы различают несколько видов атмосферной коррозии: мокрую, влажную и сухую. Мокрая атмосферная коррозия при относительной влажности до 100% наблюдается при наличии адсорбционной капиллярной или химической плёнки влаги на поверхности металла. Её толщина составляет от 0,1 мм до 1 мм. Понижение температуры интенсифицирует процесс конденсации и приводит к появлению капель влаги на поверхности металла.

Влажная коррозия возникает при влажности в атмосфере ниже 100%. Толщина плёнки влаги от 100 А 0 до 0,1 мм. При влажности воздуха менее 60% наблюдается сухая атмосферная коррозия (коррозия под действием кислорода воздуха). Процесс разрушения металла подчиняется законам, характерным для газовой коррозии.

Подземная коррозия

Коррозионные разрушения металлических конструкций в почвах и грунтах вызываются подземной коррозией. Ей подвержены трубопроводы (водные, газовые, нефтяные), опоры электроконтактной сети и др. Скорость коррозии зависит от пористости и состава почвы, величины рН, наличия микроорганизмов. Подземная коррозия протекает по механизму электрохимической коррозии. Почвенная влага играет роль электролита и процесс коррозии протекает следующими образом:

Анодная реакция Fe-2e=Fe 2+

Катодная реакция О 2 +2Н 2 О+4е=4ОН –

Реакции в почве Fe 2+ +2OH - =Fe(OH) 2 , 4Fe(OH) 2 +2H 2 O+O 2 =4Fe(OH) 3 , 2Fe(OH) 3 +(n-3)H 2 O=Fe 2 O 3 nH 2 O.

Поверхность металла в местах ограниченного доступа кислорода выполняет роль катода.

Грунтовая коррозия металлических конструкций чаще всего происходит в условиях, характерных для нейтральных сред, с участием кислорода в качестве деполяризатора. В кислых почвах может происходить коррозия с водородной деполяризацией.

Исследование коррозионной активности грунтов позволили сделать вывод о том, что наиболее коррозионно-активными являются болотистые почвы, торфяники, ил. Песок и известняк практически не коррозионно-активны. Существенное влияние на скорость коррозии металлов оказывает рН почвы. В почвах с рН меньше 6,5 коррозионная активность по отношению к стали повышается. Наибольшей коррозионной активностью обладают почвы с рН<5,5. Нейтральные почвы с рН=6,5–7,5 и слабощелочные до рН=8,5 не коррозионно-активны.

На скорость коррозии влияет также величина удельного электрического сопротивления грунта. Коррозия металлических подземных конструкций зависит от содержания в почве и грунте различных солей. Так, с увеличением содержания хлоридов, сульфатов скорость коррозии возрастает. Повышение температуры также способствует повышению скорости грунтовой коррозии металлов.

Коррозия под действием блуждающих токов

Блуждающими токами называются электрические токи, протекающие в земле при использовании её в качестве токопроводящей среды. Попадая в металлические конструкции, расположенные в грунте, они вызывают коррозию. Источниками возникновения блуждающих токов в почве являются электрифицированные железные дороги постоянного тока, трамваи, линии электропередач.

Поскольку рельсы не достаточно изолированы от земли, а почва является проводником, то часть тока уходит в землю, встречая на своём пути подземные металлические сооружения. Так как контактный провод подсоединен к положительному полюсу тяговой подстанции, а рельс – к отрицательному, то в месте выхода тока из рельса образуется анодная зона, где коррозия разрушает подошву рельса и крепежные детали. При этом, чем меньше переходное сопротивление рельс-земля, тем большая часть тока возвращается к тяговой подстанции через землю и тем интенсивнее анодная зона на рельсе. Этот вид коррозии очень опасен, так как блуждающие токи нередко распространяются на несколько десятков километров и вызывают сильные повреждения металлических конструкций.

Виды коррозионных разрушений

По виду коррозионного разрушения коррозия делится на следующие виды.

1. Сплошная, или общая коррозия. Она может быть равномерной, если фронт коррозионного разрушения распределяется параллельно плоскости металла, и неравномерной, когда скорость коррозии на различных участках неодинакова.

2. Избирательная коррозия. Она характерна для сплавов и твердых растворов.

3. Локальная коррозия. Она связана с образованием и локализацией пораженных коррозией мест в виде «раковин» разной величины.

4. Питтинг - коррозия. Разрушение металла начинается в глубине, с образованием пор; часто приводит к образованию сквозных отверстий.

5. Межкристаллитная коррозия. Разрушение идет по границам металлических кристаллов.

6. Внутрикристаллическая коррозия. Наблюдается при коррозионном растрескивании под действием внешних механических нагрузок или внутренних напряжений.

Тема: Защита металлов от коррозии

Все методы защиты металлов от коррозии условно делятся на следующие группы: легирование металлов, защитные покрытия, электрохимическая защита, изменение свойств коррозионной среды, рациональное конструирование изделий.

Легирование металлов

Это эффективный метод повышения коррозионной стойкости металлов. При легировании в состав сплава вводят компоненты, вызывающие пассивацию металла. В качестве таких компонентов применяют хром, никель, вольфрам и другие металлы. Широкое применение нашло легирование для защиты от газовой коррозии. Введение некоторых добавок в стали (титана, меди, хрома и никеля) приводит к тому, что при коррозии образуется плотная плёнка продуктов реакции, предохраняющая сплав от дальнейшей коррозии. При этом обеспечивается жаростойкость и жаропрочность сплавов.

Жаростойкость обычно обеспечивается легированием металлов и сплавов (например, стали хромом, алюминием и кремнием). Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют плотные защитные плёнки оксидов, например, SiO 2 , Al 2 O 3 , Cr 2 O 3 . Хром и кремний также улучшают жаропрочность сталей. Легирование также используется с целью снижения скорости электрохимической коррозии, особенно коррозии с выделением водорода. К коррозионностойким сплавам относятся нержавеющие стали, в которых легирующими компонентами служат хром, никель и другие металлы.

Защитные покрытия

Слои, искусственно создаваемые на поверхности металлических изделий для предохранения их от коррозии, называются защитными покрытиями. Применяемые в технике покрытия подразделяются на металлические и неметаллические.

Металлические покрытия. Материалами для металлических защитных покрытий могут быть как чистые металлы (цинк, кадмий, алюминий, никель, медь, олово, хром, серебро), так и их сплавы (бронза, латунь и др.). По характеру поведения металлических покрытий при коррозии их можно разделить на анодные и катодные.

К катодным покрытиям относятся покрытия, потенциал которых в данной среде имеют большее значение, чем потенциал основного (покрываемого) металла. В качестве примеров катодных покрытий для стали можно привести медь, никель, кадмий, олово, серебро. При повреждении покрытия возникает коррозионный элемент, в котором основной материал (сталь) служит анодом и растворяется, а материал покрытия – катодом, на котором выделяется водород или поглощается кислород. Следовательно, катодные покрытия могут защищать металл от коррозии лишь при отсутствии пор и повреждений покрытия.

Анодные покрытия имеют меньший потенциал, чем потенциал основного металла. Примером анодного покрытия может служить цинк на стали. В этом случае основной металл будет катодом коррозионного элемента, поэтому он не корродирует.

Для получения металлических защитных покрытий применяются различные способы: электрохимический (гальванические покрытия), погружение в расплавленный металл, термодиффузионный и химический.

Неметаллические защитные покрытия. Они могут быть как неорганическими, так и органическими. Защитное действие этих покрытий сводится в основном к изоляции металла от окружающей среды. В качестве неорганических покрытий применяют неорганические эмали, оксиды металлов, соединения хрома, фосфора и др. К органическим относятся лакокрасочные покрытия, покрытия смолами, полимерными плёнками, резиной.

Электрохимическая защита

Электрохимическую защиту используют для предотвращения разрушения подземных трубопроводов, кабелей, корпусов судов, резервуаров, подводных лодок и т.д.

Электрохимическая защита основана на замедлении катодных и анодных реакций микрогальванических элементов. Она осуществляется присоединением к конструкции источника постоянного тока или дополнительного электрода.

Электрохимическую защиту подразделяют на катодную и анодную.

Катодная защита – наиболее распространенный вид электрохимической защиты. Её используют для борьбы с коррозией таких металлов и сплавов, как сталь, медь, латунь, алюминий в условиях не очень агрессивных сред. Она эффективна для предотвращения коррозионного растрескивания, обесцинкования латуней, питтинга сталей в почвах и морской воде. Наибольшее применение катодная защита получила для борьбы с коррозией подземных сооружений – трубопроводов, газопроводов, кабельных установок.

Катодную поляризацию можно осуществить путём присоединения защищаемой конструкции к отрицательному полюсу (катоду) внешнего источника тока или к металлу, имеющему меньший электродный потенциал. Положительный полюс подсоединяется к вспомогательному электроду, аноду. В процессе защиты анод активно разрушается и подлежит периодическому обновлению. В качестве материла анода применяют лом чугуна, стали, графита и т.п.

Защитный эффект можно оценить по формулам:

, .

Здесь z – защитный эффект, к 1 – показатель скорости коррозии металла без катодной защиты, к 2 – при катодной защите, Δm 1 – уменьшение массы металла без катодной защиты, Δm 2 – при катодной защите, i k – катодная плотность тока.

Протекторная защита. К защищаемой конструкции присоединяют более электроотрицательный металл – протектор, который, растворяясь в окружающей среде, посылает электроны и катодно поляризует конструкцию. После полного растворения протектора или потери контакта его с защищаемой конструкцией протектор необходимо возобновлять. В качестве протектора чаще всего используют сплавы магния и цинка. Алюминий применяется реже, так как он быстро покрывается очень плотной оксидной плёнкой, которая пассивирует его и ограничивает токоотдачу. Протектор работает эффективно, если его переходное сопротивление (между ним и окружающей средой) невелико. В процессе работы протектор может покрываться слоем продуктов коррозии, которые изолируют его от окружающей среды и резко увеличивают переходное сопротивление. Для борьбы с этим протектор помещают в наполнитель (смесь солей), облегчающую растворение продуктов коррозии. Действие протектора ограничивается определенным расстоянием (радиусом действия). В настоящее время протекторную защиту применяют для борьбы с коррозией металлических конструкций в морской и речной воде, грунте и других нейтральных средах. Использование протекторной защиты в кислых средах ограничивается высокой скоростью саморастворения протектора.

Анодная защита. Скорость электрохимической коррозии металла может быть уменьшена и при его анодной поляризации, если она смещает потенциал защищаемого металла в пассивную область.

Метод анодной защиты имеет относительно ограниченное применение, так как пассивация эффективна в основном в окислительных средах при отсутствии активных ионов (например, ионов хлора для железа). Кроме того, анодная защита потенциально опасна: в случае прерывания подачи тока возможно активирование металла и его интенсивное анодное растворение. поэтому анодная защита требует тщательной системы контроля. Защитная плотность тока достаточно низкое и потребление электроэнергии невелико. Другое достоинство анодной защиты – высокая рассеивающая способность, то есть возможность защиты на более удаленном от катода расстоянии и в электрически экранированных участках.

Метод анодной защиты используют для металлов и сплавов, легко пассивирующихся при анодной поляризации; в химической промышленности – для снижения скорости коррозии низкоуглеродистой стали в серной кислоте и в растворах, содержащих аммиак и нитрат аммония.

Защита от коррозии блуждающими токами

Борьба с коррозией блуждающими токами заключается в их уменьшении. Это достигается:

1) Поддержанием в хорошем состоянии контактов между рельсами;

2) Увеличением сопротивления между рельсом и землей (использование шпал, применение щебёночного балласта);

3) Электродренажной защитой. Она обеспечивается путём отвода блуждающих токов от металлического сооружения в сторону их источника. Для этого подземное металлическое сооружение через дренажное устройство соединяется с отрицательной шиной или отсасывающей линией;

4) Применением токоотводов. С этой целью анодные зоны (например, на трубопроводе) с помощью медного проводника соединяют с чугунным ломом (анодом). В результате блуждающие токи вызывают коррозию только этого лома – анода.

Ингибиторы коррозии

Уменьшить коррозию металлической аппаратуры, например, в теплообменных трубках охлаждения дизелей на тепловозах, можно введением в агрессивную среду соединений, значительно снижающих коррозионный процесс. Такой способ снижения скорости коррозии называется ингибированием, а вводимые в среду вещества ингибиторами ил замедлителями коррозии.

Итак, ингибиторы – это такие вещества, введение небольших количеств которых в коррозионную среду, упаковочные средства и во временные защитные покрытия снижает скорость коррозии и уменьшает ее вредные последствия. Защитное действие ингибиторов связано с изменением в состоянии поверхности защищаемого металла и в кинетике реакций, лежащих в основе коррозионного процесса.

Скорость коррозии благодаря введению ингибитора может быть снижена в любое желаемое число раз, а степень защиты доведена почти до 100%. Эффективность ингибитора определяется как его природой, так и природой корродирующего металла, и зависит от температуры.

Ингибиторы коррозии можно классифицировать по различным признакам.

1. По составу их подразделяют на две группы: неорганические и органические. В последнее время широко применяют метало- и кремнийорганические ингибиторы.

2. По областям применения ингибиторы бывают: кислотной коррозии, щелочной коррозии и коррозии в нейтральных средах.

3. По условиям применения – существуют низкотемпературные и высокотемпературные ингибиторы.

4. По особенностям механизма действия ингибиторов бывают адсорбционные и ингибиторы пассивирующего действия.

Ингибиторы коррозии пассивирующего действия для нейтральных сред делятся на:

¨ Ингибиторы окислительного типа, которые проявляют своё действие и в отсутствие кислорода воздуха. Примеры: нитрит натрия NaNO 2 , нитрит аммония NH 4 NO 2 , хромат калия K 2 CrO 4 , дихромат калия K 2 Cr 2 O 7 , молибдат натрия Na 2 MoO 4 и др.

¨ Ингибиторы, не обладающие окислительными свойствами, которые для проявления своего действия нуждаются в кислороде воздуха. Примеры: гидроксид аммония NH 4 NO 3 , гидроксид натрия NaOH, карбонат натрия Na 2 CO 3 , силикат, ортофосфат и тетраборат натрия Na 2 SiO 3 , Na 3 PO 4 и Na 2 B 4 O 7 .

Ингибиторы пассивирующего действия в нейтральных средах окислительного типа при отсутствии хлоридов и сульфатов по отношению к низкоуглеродистым сталям обладают примерно в сто раз большей эффективностью, чем ингибиторы, не обладающие окислительными свойствами. Наименьшая защитная концентрация ингибиторов–окислителей составляет 10 –3 ¸ 10 –4 %, а ингибиторов, не обладающих окислительными свойствами – 0,1 ¸ 0,05%. Ингибиторы коррозии могут вводиться в жидкие среды любой кислотности и в твёрдые материалы: масла, топлива, различные органические жидкости, лакокрасочные, полимерные, фосфатные, оксидные и другие покрытия, а также в упаковочные материалы. Наиболее перспективным является внесение в упаковочные материалы летучих ингибиторов (бензоат аммония, бензоат триэтаноламина, уротропин в смеси с нитритом натрия, нитрит дициклогексиламмония), которые, испаряясь в атмосферу внутри упаковки и адсорбируясь на поверхности металла, переводят его в пассивное состояние.

Замедление скорости коррозии связано прежде всего с исключением из коррозионного процесса части поверхности из-за её экранирования ингибитором. При выборе ингибиторов следует исходить не только из того, как они уменьшают скорость перехода металла в окружающую среду, но и из того, как они влияют на металлические свойства. Поверхностно-активные органические вещества (ПАОВ) с преобладающей катионной функцией более предпочтительны, чем с анионной функцией. Применение подобранных ингибиторов может не только предотвратить растворение металла, но и улучшить его механические свойства.

Защитное действие пассивирующих ингибиторов основано на смещении потенциала металла в положительную сторону и переводе его в пассивное состояние. Такой эффект может быть достигнут различными путями, но во всех случаях причиной снижения скорости коррозии является образование поверхностного защитного слоя. Ингибиторы могут непосредственно участвовать в образовании этого слоя.

Ингибиторы кислотной коррозии применяют при травлении изделий из черных и цветных металлов для удаления с их поверхности окалины и ржавчины, кислотной промывке теплосилового оборудования, при производстве кислот.

Действие ингибиторов атмосферной коррозии так же, как и других типов ингибиторов, сводится прежде всего к изменению ими кинетики электрохимических реакций, лежащих в основе коррозии. Эффективность любых ингибиторов зависит от их концентрации в коррозионной среде, и при некоторых минимальных значениях падает до нуля. Объем окружающей нас воздушной атмосферы практически безграничен и содержание в ней защитной концентрации ингибитора представляется экономически бессмысленно. применение ингибиторов для защиты металлов от атмосферной коррозии возможно поэтому лишь в том случае, если удается ограничить пространство, в которое помещается защищаемый объект, и отделить его от остальной атмосферы. Для этого ингибиторы вводят в смазки, полимерные и другие покрытия; помещают металл в упаковочный материал с внесением ингибитора в свободное пространство между упаковочным материалом и металлическим изделием, или в сам упаковочный материал (например, бумагу).

Немцы, французы, японцы – чьи машины ржавеют больше? На какой срок сегодня производители дают гарантию от коррозии? Что дешевле – ремонт или гарантия? Чем опасна коррозия? Вопросов очень много.

Рано или поздно ржавеет все!

Коррозия или разрушение металла естественным химическим и электрохимическим путем угрожает практически каждому транспортному средству. Она не страшна только пластику и высококачественной нержавеющей стали, неповрежденной термообработкой (например, сваркой).

Алюминий не дает надежной защиты, так как со временем окисляется, а недостаточная изоляция от стали приводит к образованию гальванической пары. Сервисы Audi, хорошо об этом знают. Крышка багажника А8 второго поколения активно корродировала в районе накладки над регистрационным знаком.

Коррозия – естественный процесс, хотя некоторые автомобили ржавеют гораздо сильнее других. Например, Skoda. Felicia второй половины 90-х годов «разрушается»медленно, а старая Октавия - быстро. Решающим фактором являются, как качество исходного материала и дополнительная защита от коррозии, так и дизайнерские линии. Слишком сложные профили в зонах риска, неправильное расположение дренажных каналов или даже чересчур большой сварочный ток приводят к развитию коррозии.

Ржавый ад Мерседес.

До сих пор многие автомобилисты оценивают качество машины в зависимости от страны ее происхождения. Преждевременная коррозия Lada и Dacia сегодня никого не удивляет, как и долголетняя стойкость кузова Volvo. Коррозия автомобилей итальянских и французских брендов в восьмидесятых годах считались стандартом. Сегодня же владельцы «французов» и «итальянцев» смотрят свысока на машины именитых брендов. В частности продукция PSA (Peugeot/Citroen) с начала нового тысячелетия имела лучшую защиту от коррозии, чем автомобили концерна VW. В то время как 15-летний Fiat Punto обзаведется всего лишь парой «бородавок», старый Mercedes E-Class становился похож на «металлом».

Mercedes E-Class W210.

В свое время многие клиенты Мерседес были потеряны на всегда. Одинаково быстро ржавели и А-класс, и S-класс и Vito. Не так давно до 2006 года проблема касалась A-Class (W169) второго поколения. Самой не стойкой к коррозии была модель E-Class W210 (1995-2003). Чуть реже проблема затрагивала C-Class W203 - до 2003 года. Но по факту зацвести мог любой Mercedes до 2005 года выпуска, даже новый W211. Наилучшим образом семя зарекомендовал ML, который собирался в Америке.


Mercedes E-Class W210.

Немцы тоже ржавеют.

Многие без лишних слов считают немецкие автомобили качественными. Однако они тоже ржавеют довольно часто. Например, Ford Mondeo III (2000-2007), Ford Focus I и чуть меньше Focus II. Opel Astra G тоже в аутсайдерах: найти дырявые колесные арки, а иногда и крышку багажника несложно. Обо всех предыдущих моделях этих брендов даже не стоит и говорить.


Ford Focus II.

Старые машины Volkswagen тоже страдали от коррозии. Ситуация значительно улучшилась в 1997 году с приходом Passat B5 и Golf VI. Но как это ни парадоксально, сегодня в Passat B6 2005-2010 года порой обнаруживаются небольшие очаги под тонкими боковыми молдингами дверей. Не эпидемия, но все же.

Стабильное качество с середины 80-х годов демонстрируют лишь Audi и Porsche, за исключением Boxster. В то время в автомобилях бренда BMW довольно часто встречалась коррозия задней части порогов, задних крыльев и крышки багажника. Даже у сравнительно молодых BMW 3 E46 (1998-2005), 5 E39 (1995-2003). Более поздние модели пока таких недугов не показывают.

Азиатские бренды.

Коррозия считается распространенным явлением среди автомобилей японских брендов, примерно до 2002 года. Самыми устойчивыми себя зарекомендовали модели Toyota и Lexus. Лишь эпизодически обнаруживается коррозия порогов в Toyota Urban Cruiser.

С Honda все стало в порядке после 2003 года (Accord, Legend и CR-V второго поколения). В случае с Civic выраженная коррозия существовала только у модели Civic 6G (до 2001 года). В Сивик седьмого поколения лишь иногда обнаруживались точечные очаги.

Огромное разочарование принес Nissan Almera N16 (2000-2006). Удивляли и молодые модели Mazda. Помимо пожилого родстера MX-5, который эксплуатируется преимущественно в сухую погоду, коррозия атаковала Mazda 3 и Mazda 6 первого поколения (2002-2007). Во всех этих трех моделях через несколько лет зацветали края задних крыльев.


Mazda MX-5.

У автомобилей корейских марок ситуация немного лучше, чем обычно принято считать. «Ржавые куски» остались в середине 90-х годов. Более поздние модели имеют лишь незначительные проблемы. Например, первое поколение Hyundai i30 и Kia Ceed: коррозия кромок задних дверей и двери багажника, рамки стекол.

Внедорожники ржавеют чаще.

Внедорожники находятся в группе риска. Причины очевидны – ссадины после контакта с различными предметами и преодоление грязи и воды. Самый известный пример – Suzuki Jimny. Внешние кузовные панели в период шестилетней гарантии выдержат все что угодно. Но шасси, рама и вакуумные трубки подключения переднего моста могут измениться до неузнаваемости. Лишь немногим лучше ситуация с Mitsubishi Pajero III (2000-2006 года). Из корейских внедорожников чаще страдает Kia Sorento первого поколения (2002-2009). В его случае виноваты скопление грязи и воды под пластиковыми накладками и плохая защита по краям дверей.


Suzuki Jimny.

Гарантия – защита или хитрость?

Гарантия производителя от сквозной коррозии не отражает реальное качество антикоррозионной защиты. К тому же следовало бы уточнить, на что же все-таки дается гарантия производителя. Реальная гарантия подразумевает защиту «от сквозной коррозии изнутри», т.е. отсутствие коррозии под оригинальной краской, неповрежденной в результате аварии или воздействия агрессивной среды.

Кроме того гарантия распространяется обычно на пороги, крылья, двери, капот и т.п., т.е. на локальные детали, которые не потребуют больших финансовых затрат и много времени на демонтаж и восстановление. Лишь некоторые производители готовы сделать исключение. Например, Jeep прямо заявляет, что гарантирует компенсацию стоимости ремонта и замены любых элементов, покрытых ржавчиной, лишь в том случае, если коррозия не стала следствием внешних повреждений.

Mercedes готов предоставить длительную гарантию защиты от коррозии лишь в том случае, если автомобиль на протяжении всего времени будет обслуживаться в официальном сервисе.


Mercedes Vito.

Что дешевле: длительная гарантия или ремонт за свой счет?

Большинство брендов, как и Мерседес, готовы за свой счет заменить ржавое крыло на автомобиле старше 10 лет лишь в том случае, если вы каждый год будете терпеливо оплачивать счета за техобслуживание в официальном сервисе.

Но есть несколько оговорок. Во-первых, не все дилеры будут готовы признать коррозию старого автомобиля производственным дефектом. Во-вторых, отремонтировать небольшой дефект гораздо дешевле, чем каждый год ездить в сервис к «официалам» на ТО.


Mitsubishi Pajero 2000-2006.

Профилактика.

Многие автомобилисты не раз замечали интересный парадокс. Автомобили, хранящиеся в гараже, имеют лучшее состояние лакокрасочного покрытия, чем те, что стоят на улице. Но именно гаражные автомобили нередко зацветают быстрей. Этому способствуют плохо проветриваемые гаражи. Зимой соленая слякоть остается внутри всевозможных кузовных щелей и ниш. Теплый двигатель нагревает воздух, создавая благодатные условия для разрушительного воздействия соли. Стоянка на улице под солнцем и ветром – самая дешевая и простая профилактика коррозии.

Сегодня существует большое количество средств для защиты кузова, как снаружи, так и внутри. Многие сервисы готовы выполнить трудоемкую и длительную процедуру антикоррозионной защиты, но не всегда с хорошим качеством.


Dacia Logan.

Гарантия от сквозной коррозии.

В настоящее время производители гарантируют следующие сроки от сквозной коррозии.

  • Alfa Romeo - 8 лет
  • Audi - 12 лет
  • BMW - 12 лет
  • Citroën - 12 лет (Грузопассажирские модели – 6 лет)
  • Chevrolet - 6 лет
  • Chrysler - 8 лет
  • Dacia - 6 лет
  • Fiat - 8 лет
  • Ford - 12 лет (Ка - 8 лет)
  • Honda - 12 лет
  • Hyundai - 12 лет
  • Jaguar - 6 лет
  • Jeep - 7 лет
  • Kia - 12 лет
  • Lancia - 8 лет
  • Land Rover - 6 лет
  • Lada - 3 года (Нива) или 6 лет (остальные)
  • Mazda - 12 лет (BT-50 - 6 лет)
  • Mercedes-Benz - 30 лет
  • Mini - 12 лет
  • Mitsubishi - 12 лет
  • Nissan - 12 лет
  • Opel - 12 лет
  • Peugeot - 12 лет (Грузопассажирские модели – 6 лет)
  • Renault - 12 лет (Master - 6 лет)
  • Seat - 12 лет
  • Subaru - 12 лет
  • Suzuki - 12 лет (Jimny - 6 лет)
  • Skoda - 12 лет
  • Toyota - 12 лет
  • Volkswagen - 12 лет
  • Volvo - 12 лет (1-е поколение XC90 8 лет)

Существует масса различных факторов, которые могут значительно попортить металл. При этом, все металлы так или иначе коррозируют и имеют некоторые недочеты. Например, нельзя соединять медь и алюминий, если они являются частью электрической проводки. Все потому, что образуется такой небольшой электролизер, который понемногу выедает металл. В итоге происходит нагрев, а в итоге и дуговой удар, что может привести к пожару. Некоторые металлы, вроде олова, имеют свойство распадаться. Это, так называемая, оловянная чума. Такое может произойти, например, из-за низкой температуры. Но больше всего коррозии подвержена сталь. Сталь, если это не легированная, то есть смешанна с хромом, имеет свойство ржаветь. А ржавчина – самый страшный враг стали и железа. У нее есть несколько особенностей, которые могут попросту уничтожить металл.

На самом деле, существует масса различных способов, которыми можно предотвратить коррозию металла. В некоторых случаях, это может помочь, а иногда это уже бессмысленно. Для предотвращения коррозии существует специальная антикоррозийная грунт эмаль , которая предотвращает и не допускает ржавчину. Но так ли она опасна? Давайте немного разберемся в этом и как можно предотвратить ржавчину.

Чем опасна ржавчина

Ржавчина – распад стали или железа. При контакте железа и влаги, появляется химическая реакция, которая превращает металл в коррозию. Из-за этого получается, что металл теряет свою прочность и становится более мягким. Это опасно для всех металлических конструкций, так как он становится тоньше. При длительной ржавчине может разрушиться даже очень толстая металлическая балка. Кроме того, это значительно портит внешний вид, особенно, если металл имеет какой-то декоративный смысл.

Способы предотвращения

Для инструментов, обычно, используется обычное масло или специальная смазка. Таким образом, контакт металла и влаги предотвращается. Благодаря этому, не происходит никакой коррозии. А вот большие конструкции маслом покрыть сложно. Поэтому их покрывают эмалью. Их вы можете купить по ссылке http://www.untec.ru , где есть большой выбор. Основная суть эмали в том, что она накладывается, как краска. Держится намного лучше и может быть использована для железобетона или других материалов. Отличный материал, который можно даже использовать без грунтовки, так как и без этого хорошо ложится.

Все мы в своей жизни периодически сталкиваемся с различными видами коррозий. Бывают коррозии металла, бетона и некоторых видов пластмасс. Что бы научиться правильно бороться с коррозией первоначально необходимо понять, что же такое коррозия.

Коррозия – это разрушение твердых тел, вызванное химическими и электрохимическими процессами, развивающимися на поверхности тела при его взаимодействии с внешней средой. Даже само слово коррозия произошло от позднелатинского corrosio – разъедание. Особенный ущерб приносит коррозия металлов. Распространенный и наиболее знакомый всем нам вид коррозии – ржавление железа. Термин «коррозия» применим к металлам, бетону, некоторым пластмассам и другим материалам. Кроме коррозии, металлические (в частности, строительные) конструкции подвергаются действию эрозии – разрушению поверхности материала под влиянием механического воздействия. Эрозию провоцируют дожди, ветры, песчаная пыль и прочие природные факторы. Поэтому арки мостов, строительные фермы и другие сооружения надо защищать комплексно. Таким образом, коррозия – это физико-химическое взаимодействие металла со средой, ведущее к разрушению металла. В результате коррозии металлы переходят в устойчивые соединения – оксиды или соли, в виде которых они находятся в природе. Коррозия съедает до 10 процентов производимого в стране металла. Трудно учесть более высокие косвенные потери от простоев и снижения производительности оборудования, подвергшегося коррозии, от нарушения нормального хода технологических процессов, от аварий, обусловленных снижением прочности металлических конструкций и т.п.

Почему коррозия называется коррозией?

Слово коррозия происходит от латинского «corrodo» – «грызу». Некоторые источники ссылаются на позднелатинское «corrosio» – «разъедание». Не следует путать понятия «коррозия» и «ржавчина». Если коррозия – это процесс, то ржавчина один из его результатов. Это слово применимо только к железу, входящему в состав стали и чугуна. В дальнейшем под термином «коррозия» мы будем подразумевать коррозию металлов. Согласно международному стандарту ISO 8044 под коррозией понимают физико-химическое или химическое взаимодействие между металлом (сплавом) и средой, приводящее к ухудшению функциональных свойств металла (сплава), среды или включающей их технической системы. РЖАВЧИНА – это слой частично гидратированных оксидов железа, образующийся на поверхности железа и некоторых его сплавов в результате коррозии. Коррозионному разрушению подвержены также бетон, строительный камень, дерево, другие материалы; коррозия полимеров называется деструкцией.

Среда, в которой металл подвергается коррозии (корродирует) называется коррозионной или агрессивной средой. В случае с металлами, говоря об их коррозии, имеют ввиду нежелательный процесс взаимодействия металла со средой.

Физико-химическая сущность изменений, которые претерпевает металл при коррозии, является окисление металла. Любой коррозионный процесс является многостадийным:

  1. Необходим подвод коррозионной среды или отдельных ее компонентов к поверхности металла.
  2. Взаимодействие среды с металлом.
  3. Полный или частичный отвод продуктов от поверхности металла (в объем жидкости, если среда жидкая).

Известно, что большинство металлов (кроме Ag, Pt ,Cu, Au) встречаются в природе в ионном состоянии: оксиды, сульфиды, карбонаты и др., называемые обычно рудами металлов. Ионное состояние более выгодно, оно характеризуется меньшей внутренней энергией. Это заметно при получении металлов из руд и их коррозии. Поглощенная энергия при восстановлении металла из соединений свидетельствует о том, что свободный металл обладает более высокой энергией, чем металлическое соединение. Это приводит к тому, что металл, находящийся в контакте с коррозионно-активной средой стремится перейти в энергетически выгодное состояние с меньшим запасом энергии. То есть можно сказать, что первопричиной коррозии является термодинамическая неустойчивость системы, состоящей из металла и компонентов окружающей (коррозионной) среды. Мерой термодинамической неустойчивости является свободная энергия, освобождаемая при взаимодействии металла с этими компонентами. Но свободная энергия сама по себе ещё не определяет скорость коррозионного процесса, т. е. величину, наиболее важную для оценки коррозионной стойкости металла. В ряде случаев адсорбционные или фазовые слои (плёнки), возникающие на поверхности металла в результате начавшегося коррозионного процесса образуют настолько плотный и непроницаемый барьер, что коррозия прекращается или очень сильно тормозится. Поэтому в условиях эксплуатации металл, обладающий большим сродством к кислороду, может оказаться не менее, а более стойким (так, свободная энергия образования окисла у Cr или Al выше, чем у Fe, а по стойкости они часто превосходят Fe).

Классификация коррозионных процессов

По виду (геометрическому характеру) коррозионных разрушений на поверхности или в объёме металла.

Коррозию, захватившая всю поверхность металла, называется сплошной . Её делят на равномерную и неравномерную , в зависимости от того, одинакова ли глубина коррозионного разрушения на разных участках. При местной коррозии поражения локальны и оставляют практически незатронутой значительную (иногда подавляющую) часть поверхности. В зависимости от степени локализации различают коррозионные пятна, язвы и точки (питтинг) . Точечные поражения могут дать начало подповерхностной коррозии, распространяющейся в стороны под очень тонким (например, наклёпанным) слоем металла, который затем вздувается пузырями или шелушится. Наиболее опасные виды местной коррозии – межкристаллитная (интеркристаллитная) , которая, не разрушая зёрен металла, продвигается вглубь по их менее стойким границам, и транскристаллитная, рассекающая металл трещиной прямо через зёрна. Почти не оставляя видимых следов на поверхности, эти поражения могут приводить к полной потере прочности и разрушению детали или конструкции. Близка к ним по характеру ножевая коррозия, словно ножом разрезающая металл вдоль сварного шва при эксплуатации некоторых сплавов в особо агрессивных растворах. Иногда специально выделяют поверхностную нитевидную коррозию, развивающуюся, например, под неметаллическими покрытиями, и послойную коррозию, идущую преимущественно в направлении пластической деформации. Специфична избирательная коррозия, при которой в сплаве могут избирательно растворяться даже отдельные компоненты твёрдых растворов (например, обесцинкование латуней).

По механизму реакций взаимодействия металла со средой (химическая и электрохимическая коррозия).

Коррозия является химической , если после разрыва металлической связи атомы металла непосредственно соединяются химической связью с теми атомами или группами атомов, которые входят в состав окислителей, отнимающих валентные электроны металла. Химическая коррозия возможна в любой коррозионной среде, однако чаще всего она наблюдается в тех случаях, когда коррозионная среда не является электролитом (газовая коррозия, коррозия в неэлектропроводных органических жидкостях). Скорость её чаще всего определяется диффузией частиц металла и окислителя через поверхностную плёнку продуктов коррозии (высокотемпературное окисление большинства металлов газами), иногда – растворением или испарением этой плёнки (высокотемпературное окисление W или Mo), её растрескиванием (окисление Nb при высоких температурах) и изредка – конвективной доставкой окислителя из внешней среды (при очень малых его концентрациях).

Коррозия является электрохимической , если при выходе из металлической решётки образующийся катион вступает в связь не с окислителем, а с другими компонентами коррозионной среды; окислителю же передаются электроны, освобождающиеся при образовании катиона. Такой процесс возможен в тех случаях, когда в окружающей среде существуют два типа реагентов, из которых одни (сольватирующие или комплексообразующие) способны соединяться устойчивыми связями с катионом металла без участия его валентных электронов, а другие (окислители) могут присоединять валентные электроны металла, не удерживая около себя катионы. Подобными свойствами обладают растворы или расплавы электролитов, где сольватированные катионы сохраняют значительную подвижность. Таким образом, при электрохимической коррозии удаление атома из металлической решётки (что составляет суть любого коррозионного процесса) осуществляется в результате двух независимых, но сопряжённых, связанных между собой электрическим балансом, электрохимических процессов: анодного – переход сольватируемых катионов металла в раствор, и катодного – связывание окислителем освобождающихся электронов. Отсюда следует, что процесс электрохимической коррозии можно замедлить не только путём непосредственного торможения анодного процесса, но также воздействуя на скорость катодного. Наиболее распространены два катодных процесса: разряд водородных ионов (2е + 2H + = H 2) и восстановление растворённого кислорода (4е + O 2 + 4H + = 2H 2 O или 4е + O 2 + 2H 2 O = 4ОН -), которые часто называют соответственно водородной и кислородной деполяризацией.

Анодный и катодный процессы с той или иной вероятностью и в той или иной последовательности протекают в любых точках металлической поверхности, где катионы и электроны могут взаимодействовать с компонентами коррозионной среды. Если поверхность однородна, то катодные и анодные процессы равновероятны по всей её площади; в таком идеальном случае коррозию называют гомогенно-электрохимической (отмечая, таким образом, отсутствие какой-либо неоднородности в распределении вероятности электрохимических процессов в любой точке поверхности, что, конечно, не исключает термодинамической гетерогенности взаимодействующих фаз). В действительности на металлических поверхностях существуют участки с различными условиями доставки реагирующих компонентов, с разным энергетическим состоянием атомов или с различными примесями. На таких участках возможно более энергичное протекание либо анодного, либо катодного процессов, и коррозия становится гетерогенно-электрохимической.

По типу коррозионной среды

Некоторые коррозионные среды и вызываемые ими разрушения столь характерны, что по названию этих сред классифицируются и протекающие в них коррозионные процессы.

Как правило, металлические изделия и конструкции подвергаются действию многих видов коррозии – в этих случаях говорят о действии так называемой смешанной коррозии.

Газовая коррозия – коррозия в газовой среде при высоких температурах.

Атмосферная коррозия – коррозия металла в условиях атмосферы при влажности, достаточной для образования на поверхности металла пленки электролита (особенно в присутствии агрессивных газов или аэрозолей кислот, солей и т.д.). Особенностью атмосферной коррозии является сильная зависимость ее скорости и механизма от толщины слоя влаги на поверхности металла или степени увлажнения образовавшихся продуктов коррозии.

Жидкостная коррозия – коррозия в жидких средах. По условиям воздействия жидкой среды на металл этот тип коррозии также характеризуется как коррозия при полном погружении, при неполном погружении, при переменном погружении, имеющие свои характерные особенности.

Подземная коррозия – коррозия металла в грунтах и почвах. Характерной особенностью подземной коррозии является большое различие в скорости доставки кислорода (основной деполяризатор) к поверхности подземных конструкций в разных почвах (в десятки тысяч раз).

По характеру дополнительных воздействий

Коррозия под напряжением развивается в зоне действия растягивающих или изгибающих механических нагрузок, а также остаточных деформаций или термических напряжений и, как правило, ведёт к транскристаллитному коррозионному растрескиванию , которому подвержены, например, стальные тросы и пружины в атмосферных условиях, углеродистые и нержавеющие стали в паросиловых установках, высокопрочные титановые сплавы в морской воде и т. д. При знакопеременных нагрузках может проявляться коррозионная усталость, выражающаяся в более или менее резком понижении предела усталости металла в присутствии коррозионной среды. Коррозионная эрозия (или коррозия при трении) представляет собой ускоренный износ металла при одновременном воздействии взаимно усиливающих друг друга коррозионных и абразивных факторов (трение скольжения, поток абразивных частиц и т. п.). Родственная ей кавитационная коррозия возникает при кавитационных режимах обтекания металла агрессивной средой, когда непрерывное возникновение и «захлопывание» мелких вакуумных пузырьков создаёт поток разрушающих микрогидравлических ударов, воздействующих на поверхность металла. Близкой разновидностью можно считать и фреттинг -коррозию, наблюдаемую в местах контакта плотно сжатых или катящихся одна по другой деталей, если в результате вибраций между их поверхностями возникают микроскопические смещения сдвига.

Утечка электрического тока через границу металла с агрессивной средой вызывает в зависимости от характера и направления утечки дополнительные анодные и катодные реакции, могущие прямо или косвенно вести к ускоренному местному или общему разрушению металла (коррозия блуждающим током ). Сходные разрушения, локализуемые вблизи контакта, может вызвать соприкосновение в электролите двух разнородных металлов, образующих замкнутый гальванический элемент, – контактная коррозия. В узких зазорах между деталями, а также под отставшим покрытием или наростом, куда проникает электролит, но затруднён доступ кислорода, необходимого для пассивации металла, может развиваться щелевая коррозия, при которой растворение металла в основном происходит в щели, а катодные реакции частично или полностью протекают рядом с ней на открытой поверхности.

Принято выделять также биологическую коррозию, идущую под влиянием продуктов жизнедеятельности бактерий и др. организмов, и радиационную коррозию – при воздействии радиоактивного излучения.

Показатель скорости коррозии

Для установления скорости коррозии металла в данной среде обычно ведут наблюдения за изменением во времени какой-либо характеристики, объективно отражающей изменение свойства металла. Чаще всего в коррозионной практике используют следующие показатели.

Показатель изменения массы

Показатель изменения массы – изменение массы образца в результате коррозии, отнесенное к единице поверхности металла S и к единице времени (например, г/м ч).

В зависимости от условий коррозии различают:

1. отрицательный показатель изменения массы
К-m=
где m – убыль массы металла за время коррозии после удаления продуктов коррозии.

2. положительный показатель изменения массы К+m=
где m – увеличение массы металла за время вследствие роста пленки продуктов коррозии.

Если состав продуктов коррозии известен, то можно сделать пересчет от К к К и наоборот К-m= К+m (nok A Me / n Me Aok)
где А и М – атомная и молекулярная масса Ме и окислителя соответственно; n и n валентность металла и окислителя в окислительной среде.

Объемный показатель коррозии

К – объем поглощенного или выделившегося в процессе газа V отнесенный к единице поверхности металла и единице времени (например, см/см ч).
К= об. V / s
объем газа обычно приводят к нормальным условиям.
Применительно к электрохимической коррозии когда процесс катодной деполяризации осуществляется за счет разряда ионов водорода, например, по схеме 2Н + 2е = Н, или ионизация молекул кислорода О + 4е +2НО = 4ОН; вводятся соответственно кислородный (К) и водородный (К) показатель соответственно.
Водородный показатель коррозии – это объем выделившегося Н в процессе коррозии, отнесенный к Su.
Кислородный показатель коррозии – это объем поглощенного в процессе О, отнесенный к Su.

Показатель сопротивления

Изменение электрического сопротивления образца металла за определенное время испытаний также может быть использован в качестве показания коррозии (К).
КR = (R/Ro) 100% за время t
где Ro и R – электрическое сопротивление образца соответственно до и после коррозии.
У этого способа есть некоторый недостаток толщина металла во все время испытаний должна быть одинаковой и по этой причине чаще всего определяют удельное сопротивление, т.е. изменение электрического сопротивления на единицу площади образца (см, мм) при длине равной единице. Этот метод имеет ограничения применения (для листового металла не более 3мм). Наиболее точные данные получают для проволочных образцов. Этот метод не пригоден для сварных соединений.

Механический показатель коррозии

Изменение какого-либо свойства металла за время коррозии. Сравнительно часто пользуются изменением предела прочности. Прочностной показатель при этом выражается:
Кo = (в/во) 100% за время t
где в – изменение предела прочности при растяжении после коррозии образца в течение времени; во – предел прочности до коррозии.

Глубинный показатель коррозии

К – глубина разрушения металла П в единицу времени (например, мм/год).
Глубина коррозионного разрушения П может быть средней или максимальной. Глубинный показатель коррозии можно использовать для характеристики как равномерной, так и неравномерной коррозии (в том числе и местной) металлов. Он удобен для сравнения скорости коррозии металла с различными плотностями. Переход от массового, токового и объемного к глубинному возможен при равномерной коррозии.