Примеры предложений не являющихся высказываниями. Логика высказываний: теория и применение. Примеры решений задач

Лабораторная работа № 7-8

Алгебра логики

Цель работы: Изучить основы алгебры логики.

Задачи лабораторной работы

В результате прохождения занятия студент должен:

      определения основных понятий (простое и сложное высказывания, логические операции, логические выражения, логическая функция);

      порядок выполнения логических операций;

      алгоритм построения таблиц истинности;

      схемы базовых логических элементов;

      законы логики и правила преобразования логических выражений;

      применять загоны логики для упрощения логических выражений;

      строить таблицы истинности;

      строить логические схемы сложных выражений.

Общие теоретические сведения

Основные понятия алгебры логики

Логической основой компьютера является алгебра логики, которая рассматривает логические операции над высказываниями.

Алгебра логики – это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними.

Логическое высказывание – это любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно.

Пример. «3 – простое число» является высказыванием, поскольку оно истинно.

Не всякое предложение является логическим высказыванием.

Пример. предложение «Давайте пойдем в кино» не является высказыванием. Вопросительные и побудительные предложения высказываниями не являются.

Высказывательная форма – это повествовательное предложение, которое прямо или косвенно содержит хотя бы одну переменную и становится высказыванием, когда все переменные замещаются своими значениями.

Пример. «x+2>5» - высказывательная форма, которая при x>3 является истинной, иначе ложной.

Алгебра логики рассматривает любое высказывание только с одной точки зрения – является ли оно истинным или ложным. Слова и словосочетания «не», «и», «или», «если..., то», «тогда и только тогда» и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками .

Высказывания, образованные из других высказываний с помощью логических связок, называются составными (сложными). Высказывания, которые не являются составными, называются элементарными (простыми).

Пример. высказывание «Число 6 делится на 2» - простое высказывание. Высказывание «Число 6 делится на 2, и число 6 делится на 3» - составное высказывание, образованное из двух простых с помощью логической связки «и».

Истинность или ложность составных высказываний зависит от истинности или ложности элементарных высказываний, из которых они состоят.

Чтобы обращаться к логическим высказываниям, им назначают имена.

Пример. Обозначим через А простое высказывание «число 6 делится на 2», а через В простое высказывание «число 6 делится на 3». Тогда составное высказывание «Число 6 делится на 2, и число 6 делится на 3» можно записать как «А и В». Здесь «и» – логическая связка, А, В – логические переменные, которые могут принимать только два значения – «истина» или «ложь», обозначаемые, соответственно, «1» и «0».

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение (табл. 1).

Таблица 1. Основные логические операции

Обозначение операции

Читается

Название операции

Альтернативные обозначения

Отрицание (инверсия)

Черта сверху

Конъюнкция (логическое умножение)

Дизъюнкция (логическое сложение)

Если … то

Импликация

Тогда и только тогда

Эквиваленция

Либо …либо

Исключающее ИЛИ (сложение по модулю 2)

НЕ Операция, выражаемая словом «не», называется отрицанием и обозначается чертой над высказыванием (или знаком ¬). Высказывание ¬А истинно, когда A ложно, и ложно, когда A истинно.

Пример. Пусть А=«Сегодня пасмурно», тогда ¬А=«Сегодня не пасмурно».

И Операция, выражаемая связкой «и», называется конъюнкцией (лат. conjunctio – соединение) или логическим умножением и обозначается точкой « » (может также обозначаться знаками или &). Высказывание А В истинно тогда и только тогда, когда оба высказывания А и В истинны.

Пример. Высказывание «Число 6 делится на 2, и число 6 делится на 3» - истинно, а высказывание «Число 6 делится на 2, и число 6 больше 10» - ложно.

ИЛИ Операция, выражаемая связкой «или» (в неисключающем смысле этого слова), называется дизъюнкцией (лат. disjunctio – разделение) или логическим сложением и обозначается знаком (или плюсом). Высказывание АВ ложно тогда и только тогда, когда оба высказывания А и В ложны.

Пример: Высказывание «Число 6 делится на 2 или число 6 больше 10» - истинно, а высказывание «Число 6 делится на 5 или число 6 больше 10» - ложно.

ЕСЛИ … ТО Операция, выражаемая связками «если …, то», «из … следует», «... влечет …», называется импликацией (лат. implico – тесно связаны) и обозначается знаком → или  . Высказывание А→В ложно тогда и только тогда, когда А истинно, а В ложно.

Пример. Высказывание «если студент сдал все экзамены на «отлично», то он получит стипендию». Очевидно, эту импликацию следует признать ложной лишь в том случае, когда студент сдал на «отлично» все экзамены, но стипендии не получил. В остальных случаях, когда не все экзамены сданы на «отлично» и стипендия получена (например, в силу того, что студент проживает в малообеспеченной семье) либо когда экзамены вообще не сданы и о стипендии не может быть и речи, импликацию можно признать истинной.

РАВНОСИЛЬНО Операция, выражаемая связками «тогда и только тогда», «необходимо и достаточно», «... равносильно …», называется эквиваленцией или двойной импликацией и обозначается знаком ↔ или ~ или . Высказывание А↔В истинно тогда и только тогда, когда значения А и В совпадают.

Пример: Высказывание «Число является четным тогда и только тогда, когда оно делится без остатка на 2» является истинным, а высказывание «Число является нечетным тогда и только тогда, когда оно делится без остатка на 2» - ложно.

ЛИБО … ЛИБО Операция, выражаемая связками «Либо … либо», называется исключающее ИЛИ или сложением по модулю 2 и обозначается XOR или . Высказывание АВ истинно тогда и только тогда, когда значения А и В не совпадают.

Пример. Высказывание «Число 6 либо нечетно либо делится без остатка на 2» является истинным, а высказывание «Либо число 6 четно либо число 6 делится на 3» – ложно, так как истинны оба высказывания входящие в него.

Замечание. Импликацию можно выразить через дизъюнкцию и отрицание:

Эквиваленцию можно выразить через отрицание, дизъюнкцию и конъюнкцию:

Исключающее ИЛИ можно выразить через отрицание, дизъюнкцию и конъюнкцию:

Вывод. Операций отрицания, дизъюнкции и конъюнкции достаточно, чтобы описывать и обрабатывать логические высказывания.

Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания («не»), затем конъюнкция («и»), после конъюнкции – дизъюнкция («или») и исключающего или и в последнюю очередь – импликация и эквиваленция.

С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой (логическим выражением).

Логическая формула - это символическая запись высказывания, состоящая из логических величин (констант или переменных), объединенных логическими операциями (связками).

Логическая функция - это функция логических переменных, которая может принимать только два значения: 0 или 1. В свою очередь, сама логическая переменная (аргумент логической функции) тоже может принимать только два значения: 0 или 1.

Пример . – логическая функция двух переменных A и B.

Значения логической функции для разных сочетаний значений входных переменных – или, как это иначе называют, наборов входных переменных – обычно задаются специальной таблицей. Такая таблица называется таблицей истинности .

Приведем таблицу истинности основных логических операций (табл. 2)

Таблица 2

Опираясь на данные таблицы истинности основных логических операций можно составлять таблицы истинности для более сложных формул.

Алгоритм построения таблиц истинности для сложных выражений:

    количество строк = 2 n + строка для заголовка,

    n - количество простых высказываний.

    количество столбцов = количество переменных + количество логических операций;

    определить количество переменных (простых выражений);

    определить количество логических операций и последовательность их выполнения.

Пример 1. Составить таблицу истинности для формулы И–НЕ, которую можно записать так:.

1. Определить количество строк:

На входе два простых высказывания: А и В, поэтому n=2 и количество строк =2 2 +1=5.

2. Определить количество столбцов:

Выражение состоит из двух простых выражений (A и B) и двух логических операций (1 инверсия, 1 конъюнкция), т.е. количество столбцов таблицы истинности = 4.

3. Заполнить столбцы с учетом таблиц истинности логических операций (табл. 3).

Таблица 3. Таблица истинности для логической операции

Подобным образом можно составить таблицу истинности для формулы ИЛИ–НЕ, которую можно записать так:

Таблица 4. Таблица истинности для логической операции

Примечание: И–НЕ называют также «штрих Шеффера» (обозначают |)

или «антиконъюнкция» ; ИЛИ–НЕ называют также «стрелка Пирса» (обозначают ↓) или «антидизъюнкция» .

Пример 2. Составить таблицу истинности логического выражения .

Решение:

1. Определить количество строк:

На входе два простых высказывания: А и В, поэтому n=2 и количество строк=2 2 +1= 5.

2. Определить количество столбцов:

Выражение состоит из двух простых выражений (A и B) и пяти логических операций (2 инверсии, 2 конъюнкции, 1 дизъюнкция), т.е. количество столбцов таблицы истинности = 7.

Сначала выполняются операции инверсии, затем конъюнкции, в последнюю очередь операция дизъюнкции.

3. Заполнить столбцы с учетом таблиц истинности логических операций (табл. 5).

Таблица 5. Таблица истинности для логической операции

Логические формулы можно также представлять с помощью языка логических схем.

Существует три базовых логических элемента, которые реализуют три основные логические операции:

    логический элемент «И» – логическое умножение – конъюнктор;

    логический элемент «ИЛИ» – логическое сложение – дизъюнктор;

    логический элемент «НЕ» – инверсию – инвертор.

Поскольку любая логическая операция может быть представлена в виде комбинации трех основных, любые устройства компьютера, производящие обработку или хранение информации, могут быть собраны из базовых логических элементов, как из “кирпичиков”.

Логические элементы компьютера оперируют с сигналами, представляющими собой электрические импульсы. Есть импульс – логический смысл сигнала – 1, нет импульса – 0. На входы логического элемента поступают сигналы-значения аргументов, на выходе появляется сигнал-значение функции.

Преобразование сигнала логическим элементом задается таблицей состояний, которая фактически является таблицей истинности, соответствующей логической функции, только представлена в форме логических схем. В такой форме удобно изображать цепочки логических операций и производить их вычисления.

Алгоритм построения логических схем.

    Определить число логических переменных.

    Определить количество логических операций и их порядок.

    Изобразить для каждой логической операции соответствующий ей логический элемент.

    Соединить логические элементы в порядке выполнения логических операций.

Пример. По заданной логической функции построить логическую схему.

Решение.

    Число логических переменных = 2 (A и B).

    Количество операций = 5 (2 инверсии, 2 конъюнкции, 1 дизъюнкция). Сначала выполняются операции инверсии, затем конъюнкции, в последнюю очередь операция дизъюнкции.

    Схема будет содержать 2 инвертора, 2 конъюнктора и 1 дизъюнктор.

    Построение надо начинать с логической операции, которая должна выполняться последней. В данном случае такой операцией является логическое сложение, следовательно, на выходе должен быть дизъюнктор. На него сигналы подаются с двух конъюнкторов, на которые, в свою очередь, подаются один входной сигнал нормальный и один инвертированный (с инверторов).

Логические законы и правила преобразования логических выражений

Если две формулы А и В одновременно, то есть при одинаковых наборах значений входящих в них переменных, принимают одинаковые значения, то они называются равносильными .

В алгебре логики имеется ряд законов, позволяющих производить равносильные преобразования логических выражений.

1. Закон двойного отрицания: ;

2. Переместительный (коммутативный) закон:

3. Сочетательный (ассоциативный) закон:

4. Распределительный (дистрибутивный) закон:

5. Законы де Моргана:

6. Закон идемпотентности:

7. Законы исключения констант:

8. Закон противоречия:;

9. Закон исключения третьего: ;

10. Закон поглощения:

11. Правило исключения импликации: ;

12. Правило исключения эквиваленции: .

Справедливость этих законов можно доказать составив таблицу истинности выражений в правой и левой части и сравнив соответствующие значения.

Основываясь на законах, можно выполнять упрощение сложных логических выражений. Такой процесс замены сложной логической функции более простой, но равносильной ей, называется минимизацией функции.

Пример. Упростить логическое выражение .

Решение:

Согласно закону де Моргана:

Согласно сочетательному закону:

Согласно закону противоречия и закону идемпотентности:

Согласно закону исключения 0:

Окончательно получаем

/ Задания к лабораторной работе

Пример 1. Установите, какие из следующих предложений являются логическими высказываниями, а какие - нет (объясните почему):

    а) Солнце есть спутник Земли ”;

    б) 2+3 =4 ”;

    в) сегодня отличная погода ”;

    г) в романе Л.Н. Толстого “Война и мир” 3 432 536 слов ”;

    д) Санкт-Петербург расположен на Неве ”;

    е) музыка Баха слишком сложна ”;

    ж) первая космическая скорость равна 7.8 км/сек ”;

    з) железо - металл ”;

    и) если один угол в треугольнике прямой, то треугольник будет тупоугольным ”;

    к) если сумма квадратов двух сторон треугольника равна квадрату третьей, то он прямоугольный ”.

Пример 2. Укажите, какие из высказываний предыдущего упражнения истинны, какие - ложны, а какие относятся к числу тех, истинность которых трудно или невозможно установить.

Пример 3. Приведите примеры истинных и ложных высказываний:

    а) из арифметики; б) из физики;

    в) из биологии; г) из информатики;

    д) из геометрии; е) из жизни.

Пример 4. Сформулируйте отрицания следующих высказываний или высказывательных форм:

    а) “Эльбрус - высочайшая горная вершина Европы”;

    б) “2>=5”;

    в) “10<7”;

    г) “все натуральные числа целые”;

    д) “через любые три точки на плоскости можно провести окружность”;

    е) “теннисист Кафельников не проиграл финальную игру”;

    ж) “мишень поражена первым выстрелом”;

    з) “это утро ясное и теплое”;

    и) “число n делится на 2 или на 3”;

    к) “этот треугольник равнобедренный и прямоугольный”;

    л) "на контрольной работе каждый ученик писал своей ручкой".

Здесь: 1 - истина, 0 - ложь.

  • 1. Х: треугольник АВС - остроугольный. Х: неверно, что треугольник АВС - остроугольный. Это все равно, что: Х: треугольник АВС - прямоугольный или тупоугольный
  • 2. А: Иванова М. На экзамене по математике получила 4. : Неверно, что Иванова М. по математике получила 4.

Определение: Дизъюнкцией высказывания А и В называется высказывание АВ, истинное при условии, что хотя бы одно из высказываний А или В истинно.

Его читают «А или В».

Таблица истинности для АВ

Пример: 1. На этот раз ответчик явился и суд состоялся. - истина

2. В прямоугольном треугольнике сумма двух любых углов больше или равна третьего угла и гипотенуза меньше катета. - ложь

Определение: Импликацией высказываний А и В называется высказывание АВ, ложное лишь при условии, что А истинно, а В ложно.

Его читают: «Если А, то В».

Таблица истинности

Пример: 1. Если я сдам зачет, то пойду в кино.

2. Если треугольник равнобедренный, то углы при его основании равны. Определение: Эквиваленцией высказываний А и В называется высказывание АВ, истинное в том и только в том случае, когда А и В имеют одну и ту же истинность (т.е. либо оба истинны, либо оба ложны).

Читают: «А тогда и только тогда, когда В» или «А необходимо и достаточно для В»

Таблица истинности

Вторая задача, решаемая средствами алгебры высказываний, состоит в том, чтобы определить истинность конкретного высказывания на основе составления его формулы (процесс формализации) и составления таблицы истинности.

Пример: Если Саратов расположен на берегу Невы, то в Африке обитают белые медведи.

А: Саратов расположен на берегу реки Невы;

В: В Африке обитают белые медведи

Определение: Формула, которая истинна независимо от того, какие значения принимают входящие в нее высказывательные переменные, называется тавтологией или тождественно истинной формулой.

Определение: Формулы F 1 и F 2 называются равносильными, если их эквиваленция - тавтология.

Определение: Если формулы F 1 и F 2 равносильны, то предложения Р 1 и Р 2 , которые инициируют эти формулы, называются равносильными в логике высказываний.

Основные, наиболее часто встречающиеся равносильности, называют законами логики. Перечислим некоторые из них:

  • 1. Х Х - закон тождества
  • 2. Х Л - закон противоречия
  • 3. Х И - закон исключения третьего
  • 4. Х - закон двойного отрицания
  • 5. законы коммутативности
  • 6. Х (У Z) (Х У) Z закон ассоциативности

Х (У Z) (Х У) Z закон дистрибутивности

7. законы Де Моргана

8. законы сочленения переменной с константой

Используя законы логики, можно преобразовывать формулы.

4. Из множества формул, равносильных между собой, рассмотрим две. Это - совершенная конъюнктивная нормальная форма (СКНФ) и совершенная дизъюнктивная нормальная форма (СДНФ). Они строятся для данной формулы на основе ее таблицы истинности.

Построение СДНФ:

  • -- выбираются строки, соответствующие значениям истинности (1) данной формулы;
  • -- для каждой выделенной строки составляем конъюнкцию переменных или их отрицаний так, чтобы наборам значений переменных, представленных в строке, соответствовали истинные значения конъюнкции (для этого надо переменные, которые в этой строке принимали значения ложь (0) взять со знаком отрицания, а переменные, принимающие значения истинности (1) без отрицания);
  • -- составляется дизъюнкция полученных конъюнкций.

Из алгоритма следует, что для любой формулы можно составить СДНФ, и притом единственную, если формула не является тождественно ложной, т.е. принимающей только ложные значения.

Составление СКНФ осуществляется по следующему алгоритму:

  • -- выделить те строки таблицы, в которых формула принимает значение ложь (0);
  • -- из переменных, стоящих в каждой такой строке, составить дизъюнкцию, которая должна принимать значения - ложь (0). Для этого все переменные должны войти в нее со значением ложь, следовательно те, которые истинны (1), надо заменить их отрицанием;
  • -- из полученных дизъюнкций составить конъюнкцию.

Очевидно, что любая формула, не являющаяся тавтологией, имеет СКНФ.

СДНФ и СКНФ используются для получения следствий из данной формулы.

Пример: Составить таблицу истинности СДНФ и СКНФ для формулы: .

Таблица истинности СДНФ и СКНФ

5. Рассмотрим высказывательные форму «Река впадает в Черное море». Она содержит одну переменную и может быть представлена в виде «Река х впадает в Черное море».

В зависимости от значений переменной Х предложение является либо истинным, либо ложным, т.е. задается отображение множества рек на двух элементное множество. Обозначим это отображение, тогда:

Таким образом, имеем функцию, все значения которой принадлежат множеству.

Определение: Функция, все значения которой принадлежат множеству, называется предикатом.

Буквы, обозначающие предикаты, называют предикатными символами.

Предикаты могут задаваться:

a) высказывательной формулой,

b) формулой, т.е. задавая интерпретацию предикатного символа,

c) таблицей.

1) Р - «впадать в Черное море».

Эта формула означает, что «Река а впадает в Черное море».

  • 2) Предикат Р задан высказывательной формулой: «быть простым числом на множестве первых 15 натуральных чисел».
  • 3) В табличной форме предикат имеет вид:

Областью определения предикатов может быть любое множество.

Если предикат при каком-либо наборе входящих переменных теряет смысл, то принято считать, что этому набору соответствует значение Л.

Если предикат содержит одну переменную, то его называют одноместным, две переменные - двуместным, n переменных - n-местным предикатом.

Для перевода текстов на язык предикатов и определения их истинности необходимо ввести логические операции над предикаторами и кванторы.

Над предикатами выполняются так же операции: отрицания, конъюнкции, дизъюнкции, импликации, эквиваленции.

Определение: Подмножество множества М, на котором задан предикат Р, состоящий из тех и только тех элементов М, которым соответствует значение И предиката Р, называется множеством истинности предиката Р.

Множество истинности обозначается.

Определение: Отрицанием предиката Р называется предикат, ложный при тех наборах значений переменных, которые обращают Р в истинный, и истинный при тех наборах значений переменных, которые обращают Р в ложный предикат.

Обозначается отрицание.

Быть студентом АБиК.

Не быть студентом АБиК.

Если, то множество, где М - множество, на котором заданы предикаты Р и Q .

Определение: конъюнкцией предикатов и называется предикат истинный при тех и только тех значениях переменных, входящих в него, которые обращают оба предиката и в истинные.

Быть футболистом

Быть студентом

: быть футболистом и быть студентом.

Определение: дизъюнкцией предикатов и называется предикат ложный при тех наборах входящих в него переменных, которые обращают оба предиката в ложные

Быть четным натуральным числом

Быть нечетным натуральным числом

: быть натуральным числом.

Определение: Импликацией предикатов называется предикат, ложный при тех и только тех наборах входящих в него переменных, которые обращают в истинный предикат, а - в ложный.

Обозначается:

Быть простым числом на множестве N

Быть нечетным числом

Ложен при и истинным при других натуральных числах.

Определение: Эквиваленцией предикатов и называется предикат, который становится истинным, если оба предиката и истинны, или оба ложны.

Обозначается:

- «выигрывать», т.е. х выигрывает у

Лучше знать шахматную историю, х знает лучше у

обозначает, что х выигрывает у у в шахматы тогда и только тогда, когда он лучше знает теорию.

Определение: Предикат следует из предиката если импликация истинна при любых входящих в нее значениях переменных.

Обозначаются следования: .

Быть студентом

Ходить в институт

Для превращения предиката в высказывание существуют 2 пути:

1) придание переменной конкретного значения

; х - студент

Иванов - студент.

2) Навешивание кванторов - любой, всякий, каждый

Существует, имеется.

Запись, где обладает свойством Р означает, что всякий предмет х обладает свойством Р. Или по другому, «все х обладают свойством Р».

Запись означает, что существует предмет х, обладающий свойством Р.

Понятие «высказывание» первично. Под высказыванием в логике понимают повествовательное предложение, о котором можно говорить, что оно истинно или ложно. Любое высказывание либо истинно, либо ложно, и никакое высказывание не является одновременно истинным и ложным.

Примеры высказываний: есть четное число», «1 есть простое число». Истинностное значение первых двух высказываний - «истина», истинностное значение последних двух

Вопросительные и восклицательные предложения не являются высказываниями. Определения не являются высказываниями. Например, определение «целое число называется четным, если оно делится на 2» не является высказыванием. Однако повествовательное предложение «если целое число делится на 2, то оно четное» есть высказывание, и притом истинное. В логике высказываний отвлекаются от смыслового содержания высказывания, ограничиваясь рассмотрением его с той позиции, что оно либо истинно, либо ложно.

В дальнейшем будем понимать под значением высказывания его истинностное значение («истина» или «ложь»). Высказывания будем обозначать прописными латинскими буквами, а их значения, т. е. «истина» или «ложь» - соответственно буквами И и Л.

Логика высказываний изучает связи, которые полностью определяются тем, каким образом одни высказывания строятся из других, называемых элементарными. Элементарные высказывания при этом рассматриваются как целые, не разложимые на части, внутренняя структура которых нас не будет интересовать.

Логические операции над высказываниями.

Из элементарных высказываний с помощью логических операций можно получать новые, более сложные высказывания. Истинностное значение сложного высказывания зависит от истинностных значений высказываний, составляющих сложное высказывание. Эта зависимость устанавливается в данных ниже определениях и отражается в истинностных таблицах. В левых столбцах этих таблиц размещаются всевозможные распределения истинностных значений для высказываний, непосредственно составляющих рассматриваемое сложное высказывание. В правом столбце пишут истинностные значения сложного высказывания соответственно распределениям в каждой строке.

Пусть А и В - произвольные высказывания, относительно которых мы не предполагаем, что известны их истинностные значения. Отрицанием высказывания А называется новое высказывание, истинное тогда и только тогда, когда А ложно. Отрицание А обозначается через и читается «не A» или «неверно, что А». Операция отрицания полностью определяется истинностной таблицей

Пример. Высказывание «неверно, что 5 - четное число», имеющее значение И, есть отрицание ложного высказывания «5 - четное число».

С помощью операции конъюнкции из двух высказываний получается одно сложное высказывание, обозначаемое А Д В. По определению, высказывание А Д В истинно тогда и только тогда, когда оба высказывания истинны. Высказывания А и В называются соответственно первым и вторым членами конъюнкции А Д В. Запись «А Д В» читается как «Л и В». Истинностная таблица для конъюнкции имеет вид

Пример. Высказывание «7 - простое число и 6 - нечетное число» ложно, как конъюнкция двух высказываний, одно из которых ложно.

Дизъюнкцией двух высказываний А и В называется высказывание, обозначаемое , истинное в том и только в том случае, когда хотя бы одно из высказываний А и В истинно.

Соответственно этому высказывание А V В ложно в том и только том случае, когда и А и В оба ложны. Высказывания А и В называются соответственно первым и вторым членами дизъюнкции А V В. Читается запись А V В как «A или В». Союз «или» в данном случае носит неразделительный смысл, поскольку высказывание А V В истинно и при истинности обоих членов. Дизъюнкция имеет следующую истинностную таблицу:

Пример. Высказывание «3 Высказывание, обозначаемое , ложное в том и только в том случае, когда А истинно, а В ложно, называется импликацией с посылкой А и заключением В. Высказывание А-+ В читается как «если А, то 5», или «A влечет В», или «из A следует В». Истинностная таблица для импликации такова:

Отметим, что между посылкой и заключением могут отсутствовать причинно-следственные связи, но это не может повлиять на истинность или ложность импликации. Например, высказывание «если 5 - простое число, то биссектриса равностороннего треугольника является медианой» будет истинным, хотя в обычном понимании второе не следует из первого. Истинным также будет высказывание «если 2 + 2 = 5, то 6 + 3 = 9», поскольку истинно его заключение. При данном определении, если заключение истинно, импликация будет истинной независимо от истинностного значения посылки. В том случае, когда ложна посылка, импликация будет истинна независимо от истинностного значения заключения. Эти обстоятельства кратко формулируют так: «истина следует из чего угодно», «из ложного следует все, что угодно».

Алгебра в широком смысле этого слова - наука об общих операциях, аналогичных сложению и умножению, которые могут выполняться над разнообразными математическими объектами.

Многие математические объекты (целые и рациональные числа, многочлены, векторы, множества) вы изучаете в школьном курсе алгебры, где знакомитесь с такими разделами математики, как алгебра чисел, алгебра многочленов, алгебра множеств и т. д. Для информатики важен раздел математики, называемый алгеброй логики ; объектами алгебры логики являются высказывания .

Высказывание - это предложение на любом языке, содержание которого можно однозначно определить как истинное или ложное.

Пример:

Например, относительно предложений «Великий русский учёный М. В. Ломоносов родился в \(1711\) году» и «Two plus six is eight» можно однозначно сказать, что они истинны. Предложение «Зимой воробьи впадают в спячку» - ложно. Следовательно, эти предложения являются высказываниями.

В русском языке высказывания выражаются повествовательными предложениями.

Обрати внимание!

Но не всякое повествовательное предложение является высказыванием.

Пример:

Например, предложение «Это предложение является ложным» не является высказыванием, так как относительно него нельзя сказать, истинно оно или ложно, без того чтобы не получить противоречие. Действительно, если принять, что предложение истинно, то это противоречит сказанному. Если же принять, что предложение ложно, то отсюда следует, что оно истинно.

Побудительные и вопросительные предложения высказываниями не являются.

Например, не являются высказываниями такие предложения, как: «Запишите домашнее задание», «Как пройти в библиотеку?», «Кто к нам пришёл?».

Высказывания могут строиться с использованием знаков различных формальных языков - математики, физики, химии и т. п.

Примерами высказываний могут служить:

«Nа - металл» (истинное высказывание);

«Второй закон Ньютона выражается формулой \(F = ma\) (истинное высказывание);

«Периметр прямоугольника с длинами сторон \(а\) и \(b\) равен \(аb\)» (ложное высказывание).

Не являются высказываниями числовые выражения, но из двух числовых выражений можно составить высказывание, соединив их знаками равенства или неравенства. Например:

  • 3 + 5 = 2 ⋅ 4 (истинное высказывание);
  • «II + VI > VIII» (ложное высказывание).

Не являются высказываниями и равенства или неравенства, содержащие переменные.

Например, предложение \(«x < 12»\) становится высказыванием только при замене переменной каким-либо конкретным значением: \(«5 < 12»\) - истинное высказывание; \(«12 < 12»\) - ложное высказывание.

Обоснование истинности или ложности высказываний решается теми науками, к сфере которых они относятся. Алгебра логики отвлекается от смысловой содержательности высказываний. Её интересует только то, истинно или ложно данное высказывание. В алгебре логики высказывания обозначают буквами и называют логическими переменными . При этом, если высказывание истинно, то значение соответствующей ему логической переменной обозначают единицей \((А = 1)\), а если ложно - нулём \((В = 0)\).

\(0\) и \(1\), обозначающие значения логических переменных, называются логическими значениями .

Логическое высказывание - утверждение, которому всегда можно поставить в соответствие одно из двух логических значений : ложь (0, ложно, false) или истина (1, истинно, true). Логическое высказывание принято обозначать заглавными латинскими буквами. Высказывательной формой называется логическое высказывание, в котором один из объектов заменён переменной. При подстановке вместо переменной какого-либо значения высказывательная форма превращается в высказывание.

Пример: A(x) = «В городе x идет дождь.» A - высказывательная форма, x - объект.


Wikimedia Foundation . 2010 .

Смотреть что такое "Логическое высказывание" в других словарях:

    У этого термина существуют и другие значения, см. Высказывание. Высказывание термин математической логики, обозначающий формализованную структурированную запись мысли с помощью буквенных символов и логических связок, рассматриваемую с точки … Википедия

    Суждение (предложение, высказывание, формула), полученное посредством дедуктивного рассуждения из некоторых исходных суждений. ...ЛОГИЯ (от греч. logos слово учение), часть сложных слов, означающая: наука, знание, учение, напр., геология,… … Большой Энциклопедический словарь

    Суждение (предложение, высказывание, формула), логически вытекающее (или, иначе, логически следующее) из посылок умозаключения (или из посылок вывода, состоящего из ряда умозаключений), т.е. выводимое из посылок на основе правил и законов логики … Философская энциклопедия

    Отношение, существующее между посылками и обоснованно выводимыми из них заключениями. Л.с. относится к числу фундаментальных, исходных понятий логики, точного универсального определения не имеет; в частности, описание его с помощью слов выводимо … Словарь терминов логики

    Логика (др. греч. λογική «наука о рассуждении», «искусство рассуждения» от λόγος «речь», «рассуждение») наука о формах, методах и законах интеллектуальной познавательной деятельности, формализуемых с помощью логического языка. Поскольку это… … Википедия

    Суждение (предложение, высказывание, формула), полученное посредством дедуктивного рассуждения из некоторых исходных суждений. * * * ЛОГИЧЕСКОЕ СЛЕДСТВИЕ ЛОГИЧЕСКОЕ СЛЕДСТВИЕ, суждение (предложение, высказывание, формула), полученное посредством… … Энциклопедический словарь

    Из данного множества посылок высказывание, являющееся истинным при любой интерпретации нелогич. символов (т. е. имен объектов, функций, предикатов), при к рой истинны посылки. Если высказывание Аявляется Л. с. из множества высказываний Г, то… … Математическая энциклопедия

    Суждение (предложение, высказывание, формула), логически вытекающее (или, иначе, логически следующее) из посылок умозаключения (или из посылок вывода, состоящего из ряда умозаключений), т. е. выводимое из посылок на основе правил и… … Большая советская энциклопедия

    логическое ударение - , я. Выделение с помощью интонационных средств какого л. слова в высказывании, которое представляется говорящим наиболее важным, с целью обратить на него внимание слушателя. Часто в этом смысле говорят о месте интонационного центра… … Учебный словарь стилистических терминов

    Понятие диалектической логики, введенное грузинским философом С.Б. Церетели (1907 1966). Б. Л., по определению Церетели, «есть то, отрицание чего утверждает его же. Точнее: это есть утверждение чего либо отрицанием его же». Так, говоря, что нет… … Новейший философский словарь