Прямоугольная система координат. Что такое абсцисса Сторона абсцисс

Абсцисса – часто встречаемый термин в математике, который многие не понимают. Понятие абсциссы поможет в понимании многих математических задач. Тема данной статьи посвящена именно ей.

Что такое абсцисса

Перед тем, как понять что такое абсцисса, необходимо узнать о сути еще нескольких терминов, а именно:

  • Прямоугольная система координат. Прямоугольная система координат – система, где есть всего лишь два направления. Такую систему обычно называют двухмерной. Одно направление в виде горизонтальной прямой и обозначается буквой x , второе направление – вертикальная прямая, которая обозначается буквой y . Место пересечения двух этих направлений называется началом координат. Отчет координат начинается именно с этой точки. Те значения горизонтальной прямой, которые находятся правее от начала координат положительны. Те, которые левее- отрицательны. Соответственно, те значения y прямой, которые находятся выше начала координат – положительны, а те которые ниже – отрицательны.
  • Ордината. Координату какой-либо точки, которая соответствует оси y (в системе координат), называют ординатой.

Исходя из последнего условия, можно легко догадаться, что если ордината – это координата на оси y , которая соответствует какой-либо точке, то абсциссой называют координату той же точки, но которая расположена на оси x .

Дана точка A, с координатами (4; 6). Что тут абсцисса, а что ордината?

Запомните, что когда пишутся координаты какой-то точки, то на первом месте указываются координаты на оси x , а на втором – оси y . Таким образом, абсцисса точки A равна 4, а ордината равна 6.

Теперь вы знаете что такое абсцисса и сможете, не задумываясь, вникать в смысл задачи при виде этого слова. Хорошо изучить данную тему, ведь координаты используются во многих сферах – начиная от математики и заканчивая программированием.

Если вы находитесь в некоторой нулевой точке и размышляете над тем, сколько единиц расстояния нужно пройти строго вперёд, а затем - строго вправо, чтобы оказаться в некоторой другой точке, то вы уже пользуетесь прямоугольной декартовой системой координат на плоскости. А если точка находится выше плоскости, на которой вы стоите, и к вашим расчётам добавляется подъём к точке по лестнице строго вверх также на определённое число единиц расстояния, то вы уже пользуетесь прямоугольной декартовой системой координат в пространстве.

Упорядоченная система двух или трёх пересекающихся перпендикулярных друг другу осей с общим началом отсчёта (началом координат) и общей единицей длины называется прямоугольной декартовой системой координат .

С именем французского математика Рене Декарта (1596-1662) связывают прежде всего такую систему координат, в которой на всех осях отсчитывается общая единица длины и оси являются прямыми. Помимо прямоугольной существует общая декартова система координат (аффинная система координат ). Она может включать и не обязательно перпендикулярные оси. Если же оси перпендикулярны, то система координат является прямоугольной.

Прямоугольная декартова система координат на плоскости имеет две оси, а прямоугольная декартова система координат в пространстве - три оси. Каждая точка на плоскости или в пространстве определяется упорядоченным набором координат - чисел в соответствии единице длины системы координат.

Заметим, что, как следует из определения, существует декартова система координат и на прямой, то есть в одном измерении. Введение декартовых координат на прямой представляет собой один из способов, с помощью которого любой точке прямой ставится в соответствие вполне определённое вещественное число, то есть координата.

Метод координат, возникший в работах Рене Декарта, ознаменовал собой революционную перестройку всей математики. Появилась возможность истолковывать алгебраические уравнения (или неравенства) в виде геометрических образов (графиков) и, наоборот, искать решение геометрических задач с помощью аналитических формул, систем уравнений. Так, неравенство z < 3 геометрически означает полупространство, лежащее ниже плоскости, параллельной координатной плоскости xOy и находящейся выше этой плоскости на 3 единицы.

С помощью декартовой системы координат принадлежность точки заданной кривой соответствует тому, что числа x и y удовлетворяют некоторому уравнению. Так, координаты точки окружности с центром в заданной точке (a ; b ) удовлетворяют уравнению (x - a )² + (y - b )² = R ² .

Прямоугольная декартова система координат на плоскости

Две перпендикулярные оси на плоскости с общим началом и одинаковой масштабной единицей образуют декартову прямоугольную систему координат на плоскости . Одна из этих осей называется осью Ox , или осью абсцисс , другую - осью Oy , или осью ординат . Эти оси называются также координатными осями. Обозначим через M x и M y соответственно проекции произвольной точки М на оси Ox и Oy . Как получить проекции? Проведём через точку М Ox . Эта прямая пересекает ось Ox в точке M x . Проведём через точку М прямую, перпендикулярную оси Oy . Эта прямая пересекает ось Oy в точке M y . Это показано на рисунке ниже.

x и y точки М будем называть соответственно величины направленных отрезков OM x и OM y . Величины этих направленных отрезков рассчитываются соответственно как x = x 0 - 0 и y = y 0 - 0 . Декартовы координаты x и y точки М абсциссой и ординатой . Тот факт, что точка М имеет координаты x и y , обозначается так: M (x , y ) .

Координатные оси разбивают плоскость на четыре квадранта , нумерация которых показана на рисунке ниже. На нём же указана расстановка знаков координат точек в зависимости от их расположения в том или ином квадранте.

Помимо декартовых прямоугольных координат на плоскости часто рассматривается также полярная система координат. О способе перехода от одной системы координат к другой - в уроке полярная система координат .

Прямоугольная декартова система координат в пространстве

Декартовы координаты в пространстве вводятся в полной аналогии с декартовыми координатами на плоскости.

Три взаимно перпендикулярные оси в пространстве (координатные оси) с общим началом O и одинаковой масштабной единицей образуют декартову прямоугольную систему координат в пространстве .

Одну из указанных осей называют осью Ox , или осью абсцисс , другую - осью Oy , или осью ординат , третью - осью Oz , или осью аппликат . Пусть M x , M y M z - проекции произвольной точки М пространства на оси Ox , Oy и Oz соответственно.

Проведём через точку М Ox Ox в точке M x . Проведём через точку М плоскость, перпендикулярную оси Oy . Эта плоскость пересекает ось Oy в точке M y . Проведём через точку М плоскость, перпендикулярную оси Oz . Эта плоскость пересекает ось Oz в точке M z .

Декартовыми прямоугольными координатами x , y и z точки М будем называть соответственно величины направленных отрезков OM x , OM y и OM z . Величины этих направленных отрезков рассчитываются соответственно как x = x 0 - 0 , y = y 0 - 0 и z = z 0 - 0 .

Декартовы координаты x , y и z точки М называются соответственно её абсциссой , ординатой и аппликатой .

Попарно взятые координатные оси располагаются в координатных плоскостях xOy , yOz и zOx .

Задачи о точках в декартовой системе координат

Пример 1.

A (2; -3) ;

B (3; -1) ;

C (-5; 1) .

Найти координаты проекций этих точек на ось абсцисс.

Решение. Как следует из теоретической части этого урока, проекция точки на ось абсцисс расположена на самой оси абсцисс, то есть оси Ox , а следовательно имеет абсциссу, равную абсциссе самой точки, и ординату (координату на оси Oy , которую ось абсцисс пересекает в точке 0), равную нулю. Итак получаем следующие координаты данных точек на ось абсцисс:

A x (2; 0) ;

B x (3; 0) ;

C x (-5; 0) .

Пример 2. В декартовой системе координат на плоскости даны точки

A (-3; 2) ;

B (-5; 1) ;

C (3; -2) .

Найти координаты проекций этих точек на ось ординат.

Решение. Как следует из теоретической части этого урока, проекция точки на ось ординат расположена на самой оси ординат, то есть оси Oy , а следовательно имеет ординату, равную ординате самой точки, и абсциссу (координату на оси Ox , которую ось ординат пересекает в точке 0), равную нулю. Итак получаем следующие координаты данных точек на ось ординат:

A y (0; 2) ;

B y (0; 1) ;

C y (0; -2) .

Пример 3. В декартовой системе координат на плоскости даны точки

A (2; 3) ;

B (-3; 2) ;

C (-1; -1) .

Ox .

Ox Ox Ox , будет иметь такую же абсциссу, что и данная точка, и ординату, равную по абсолютной величине ординате данной точки, и противоположную ей по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно оси Ox :

A" (2; -3) ;

B" (-3; -2) ;

C" (-1; 1) .

Решить задачи на декартову систему координат самостоятельно, а затем посмотреть решения

Пример 4. Определить, в каких квадрантах (четвертях, рисунок с квадрантами - в конце параграфа "Прямоугольная декартова система координат на плоскости") может быть расположена точка M (x ; y ) , если

1) xy > 0 ;

2) xy < 0 ;

3) x y = 0 ;

4) x + y = 0 ;

5) x + y > 0 ;

6) x + y < 0 ;

7) x y > 0 ;

8) x y < 0 .

Пример 5. В декартовой системе координат на плоскости даны точки

A (-2; 5) ;

B (3; -5) ;

C (a ; b ) .

Найти координаты точек, симметричных этим точкам относительно оси Oy .

Продолжаем решать задачи вместе

Пример 6. В декартовой системе координат на плоскости даны точки

A (-1; 2) ;

B (3; -1) ;

C (-2; -2) .

Найти координаты точек, симметричных этим точкам относительно оси Oy .

Решение. Поворачиваем на 180 градусов вокруг оси Oy направленный отрезок, идущий от оси Oy до данной точки. На рисунке, где обозначены квадранты плоскости, видим, что точка, симметричная данной относительно оси Oy , будет иметь такую же ординату, что и данная точка, и абсциссу, равную по абсолютной величине абсциссе данной точки, и противоположную ей по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно оси Oy :

A" (1; 2) ;

B" (-3; -1) ;

C" (2; -2) .

Пример 7. В декартовой системе координат на плоскости даны точки

A (3; 3) ;

B (2; -4) ;

C (-2; 1) .

Найти координаты точек, симметричных этим точкам относительно начала координат.

Решение. Поворачиваем на 180 градусов вокруг начала координат направленный отрезок, идущий от начала координат к данной точке. На рисунке, где обозначены квадранты плоскости, видим, что точка, симметричная данной относительно начала координат, будет иметь абсциссу и ординату, равные по абсолютной величине абсциссе и ординате данной точки, но противоположные им по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно начала координат:

A" (-3; -3) ;

B" (-2; 4) ;

C (2; -1) .

Пример 8.

A (4; 3; 5) ;

B (-3; 2; 1) ;

C (2; -3; 0) .

Найти координаты проекций этих точек:

1) на плоскость Oxy ;

2) на плоскость Oxz ;

3) на плоскость Oyz ;

4) на ось абсцисс;

5) на ось ординат;

6) на ось апликат.

1) Проекция точки на плоскость Oxy расположена на самой этой плоскости, а следовательно имеет абсциссу и ординату, равные абсциссе и ординате данной точки, и апликату, равную нулю. Итак получаем следующие координаты проекций данных точек на Oxy :

A xy (4; 3; 0) ;

B xy (-3; 2; 0) ;

C xy (2; -3; 0) .

2) Проекция точки на плоскость Oxz расположена на самой этой плоскости, а следовательно имеет абсциссу и апликату, равные абсциссе и апликате данной точки, и ординату, равную нулю. Итак получаем следующие координаты проекций данных точек на Oxz :

A xz (4; 0; 5) ;

B xz (-3; 0; 1) ;

C xz (2; 0; 0) .

3) Проекция точки на плоскость Oyz расположена на самой этой плоскости, а следовательно имеет ординату и апликату, равные ординате и апликате данной точки, и абсциссу, равную нулю. Итак получаем следующие координаты проекций данных точек на Oyz :

A yz (0; 3; 5) ;

B yz (0; 2; 1) ;

C yz (0; -3; 0) .

4) Как следует из теоретической части этого урока, проекция точки на ось абсцисс расположена на самой оси абсцисс, то есть оси Ox , а следовательно имеет абсциссу, равную абсциссе самой точки, а ордината и апликата проекции равны нулю (поскольку оси ординат и апликат пересекают ось абсцисс в точке 0). Получаем следующие координаты проекций данных точек на ось абсцисс:

A x (4; 0; 0) ;

B x (-3; 0; 0) ;

C x (2; 0; 0) .

5) Проекция точки на ось ординат расположена на самой оси ординат, то есть оси Oy , а следовательно имеет ординату, равную ординате самой точки, а абсцисса и апликата проекции равны нулю (поскольку оси абсцисс и апликат пересекают ось ординат в точке 0). Получаем следующие координаты проекций данных точек на ось ординат:

A y (0; 3; 0) ;

B y (0; 2; 0) ;

C y (0; -3; 0) .

6) Проекция точки на ось апликат расположена на самой оси апликат, то есть оси Oz , а следовательно имеет апликату, равную апликате самой точки, а абсцисса и ордината проекции равны нулю (поскольку оси абсцисс и ординат пересекают ось апликат в точке 0). Получаем следующие координаты проекций данных точек на ось апликат:

A z (0; 0; 5) ;

B z (0; 0; 1) ;

C z (0; 0; 0) .

Пример 9. В декартовой системе координат в пространстве даны точки

A (2; 3; 1) ;

B (5; -3; 2) ;

C (-3; 2; -1) .

Найти координаты точек, симметричных этим точкам относительно:

1) плоскости Oxy ;

2) плоскости Oxz ;

3) плоскости Oyz ;

4) оси абсцисс;

5) оси ординат;

6) оси апликат;

7) начала координат.

1) "Продвигаем" точку по другую сторону оси Oxy Oxy , будет иметь абсциссу и ординату, равные абсциссе и ординате данной точки, и апликату, равную по величине апликате данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oxy :

A" (2; 3; -1) ;

B" (5; -3; -2) ;

C" (-3; 2; 1) .

2) "Продвигаем" точку по другую сторону оси Oxz на то же расстояние. По рисунку, отображающему координатное пространство, видим, что точка, симметричная данной относительно оси Oxz , будет иметь абсциссу и апликату, равные абсциссе и апликате данной точки, и ординату, равную по величине ординате данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oxz :

A" (2; -3; 1) ;

B" (5; 3; 2) ;

C" (-3; -2; -1) .

3) "Продвигаем" точку по другую сторону оси Oyz на то же расстояние. По рисунку, отображающему координатное пространство, видим, что точка, симметричная данной относительно оси Oyz , будет иметь ординату и апликату, равные ординате и апликате данной точки, и абсциссу, равную по величине абсциссе данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oyz :

A" (-2; 3; 1) ;

B" (-5; -3; 2) ;

C" (3; 2; -1) .

По аналогии с симметричными точками на плоскости и точками пространства, симметричными данным относительно плоскостей, замечаем, что в случае симметрии относительно некоторой оси декартовой системы координат в пространстве, координата на оси, относительно которой задана симметрия, сохранит свой знак, а координаты на двух других осях будут теми же по абсолютной величине, что и координаты данной точки, но противоположными по знаку.

4) Свой знак сохранит абсцисса, а ордината и апликата поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси абсцисс:

A" (2; -3; -1) ;

B" (5; 3; -2) ;

C" (-3; -2; 1) .

5) Свой знак сохранит ордината, а абсцисса и апликата поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси ординат:

A" (-2; 3; -1) ;

B" (-5; -3; -2) ;

C" (3; 2; 1) .

6) Свой знак сохранит апликата, а абсцисса и ордината поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси апликат:

A" (-2; -3; 1) ;

B" (-5; 3; 2) ;

C" (3; -2; -1) .

7) По аналогии с симметрии в случае с точками на плоскости, в случае симметрии относительно начала координат все координаты точки, симметричной данной, будут равными по абсолютной величине координатам данной точки, но противоположными им по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно начала координат.








В какой четверти находится каждая точка: А(-2;5), В(4;2), С(3;-6), А(-2;5), В(4;2), С(3;-6), D(7;1), E(-5;-3), M(-5;4), D(7;1), E(-5;-3), M(-5;4), K(-8;-2), P(1;-7), N(1;3), K(-8;-2), P(1;-7), N(1;3), R(-7;-1). R(-7;-1). I I IIIV I III III IV III II Карточка 1.









Самопроверка: 1.Две прямые, образующие при пересечении прямые углы… 2. Плоскость, на которой выбрана система координат,… 3. Координатную прямую у Две перпендикулярные координатные прямые х и у, которые пересекаются в начале отсчета – точке О,… 5.Координатную прямую х … … называются перпендикулярными. …называют координатной плоскостью. …называют осью ординат. …называют системой координат на плоскости. …называют осью абсцисс. Карточка 3.


Экскурсия в зоопарк. Экскурсия в зоопарк. Построить фигуру по заданным координатам. Построить фигуру по заданным координатам. Найти загадку о том, кого вы увидели в Зоопарке. Найти загадку о том, кого вы увидели в Зоопарке. Тренажер«Поймай рыбку» Тренажер«Поймай рыбку»



Слово "ордината" произошло от латинского "ordinatus" - "расположенный в порядке". Ордината - сугубо математический термин, используемый для обозначения координаты точки в прямоугольной системе координат.

Давайте разберемся немного подробнее с тем, что такое ордината.

Абсцисса, ордината и аппликата

В прямоугольной двумерной системе координат для точного определения координат той или иной точки или отрезка используется абсцисса и ордината. Абсцисса - это координата точки по оси OX, ордината - координата по оси OY. Чтобы определить значение абсциссы и ординаты интересующей точки в прямоугольной системе координат необходимо провести перпендикуляры от данной точки к осям OX и OY соответственно. Значение на осях и будут значениями абсциссы и ординаты точки.

Если точка располагается в трехмерной системе координат, добавляется также понятие "аппликата" - это значение точки по оси OZ.

Как отметить точку и построить график с помощью абсциссы и ординаты

Точно так же, как, имея точку в прямоугольной системе координат, можно найти ее абсциссу и ординату, так и, зная значения абсциссы и ординаты, можно отметить точку в системе координат. Координаты точки обычно указываются в следующем формате - А (2; 5), при этом на первом месте указывается значение абсциссы, то есть значение точки по оси OX, а затем значение ординаты - значение по оси OY.

Абсцисса и ордината могут определять точку, пара абсцисс и ординат - прямой отрезок, а для построения, например, параболы, потребуется знать три абсциссы и ординаты.

Для построения того или иного графика используется зависимость значений ординат от абсцисс. Например: у = 2х + 8. Чтобы построить график, необходимо перебирать различные значения х и отмечать на системе координат соответствующие им значения у.

Предмет и задачи геодезии

Геодезия – наука об измерениях на земной поверхности, проводимых с целью определения формы и размеров Земли, составления планов и карт, а также решения различных инженерных задач на местности.

Определение формы и размеров Земли входит в задачи высшей геодезии. Вопросы, связанные с составлением планов и карт и с решением инженерных задач, относятся к геодезии.

Геодезические работы делятся на полевые и камеральные.

Полевые работы состоят из измерений горизонтальных и вертикальных углов, а также горизонтальных, вертикальных и наклонных расстояний. Камеральные работы состоят из вычислений результатов полевых измерений и графических построений.

Геодезия тесно связана с рядом других наук – математикой, физикой, астрономией, географией, геологией, геоморфологией и др.

Инженерная геодезия - решает задачи, связанные:

· с построением опорной геодезической основы для проведения съёмочных и разбивочных работ;

· составлением крупномасштабных планов и профилей для проектирования инженерных сооружений;

· производством разбивочных работ в плане и по высоте при строительстве зданий и сооружений;

· обслуживанием строительно-монтажных операций;

· составлением исполнительных чертежей объектов;

· наблюдениями за деформациями в процессе строительства.

Основные сведения о форме и размерах Земли

Предметом изучения геодезии являются геометрические свойства поверхности Земли.

Физическая поверхность Земли состоит из суши и водной поверхности и имеет сложную форму.

Обобщённое представление о форме Земли можно получить, воспользовавшись понятием «уровенная поверхность».

Уровенной поверхностью называется замкнутая поверхность, огибающая Землю, нормальная к отвесным линиям в любой своей точке.

В геодезии особое значение имеет уровенная поверхность, совпадающая со средним уровнем океанов, находящихся в состоянии покоя. Такая замкнутая поверхность, продолженная под материками перпендикулярно к направлению отвесной линии в каждой точке, называется основной уровенной поверхностью.

Тело, ограниченное основной уровенной поверхностью, называют геоидом .

Геоид не совпадает ни с одной математической фигурой и представляет собой неправильную форму.

Математическая форма Земли соответствует поверхности эллипсоида, который называется референц – эллипсоид Красовского.

Системы координат

Положение точек на земной поверхности определяется в различных системах координат:

· Система географических координат – за начало отсчёта принимается Гринвичский меридиан и плоскость экватора.

· Система геодезических координат определяет положение точек на поверхности эллипсоида вращения.

· Зональная система прямоугольных координат Гаусса (рис.1).

Чтобы установить связь между географическими и прямоугольными координатами, применяют способ проектирования поверхности земного шара на плоскость по частям, которые называют зонами (рис.1). счёт зон ведётся на восток от Гринвичского меридиана.

Прежде чем спроектировать такую зону на плоскость, её проектируют на поверхность цилиндра. После чего цилиндр развёртывают на плоскости и получают на ней изображение проекции данной зоны. Такая проекция называется проекцией Гаусса – Крюгера.

В такой системе начало координат для всех зон принимается в точке пересечения осевого меридиана данной зоны с экватором. Координатными осями являются ось абсцисс – Х и ось ординат – У (рис.2).

Рис. 1 Деление на зоны

Абсциссы, отсчитываемые от экватора к северному полюсу, считаются положительными, к южному – отрицательными. Значения ординат от осевого меридиана на восток – положительные, на запад – отрицательные.

Рис.2. Зональная система координат

· Система прямоугольных координат (рис.3).

В геодезии за ось абсцисс принимается направление среднего осевого меридиана зоны, а за ось ординат – направление экватора.

Рис. 3 Система прямоугольных координат

Оси координат делят плоскость чертежа на четыре части, которые называются координатными четвертями: I – CВ, II – ЮВ, III – ЮЗ, IV – СЗ (рис.3).

· Полярная система координат.

Положение любой точки на плоскости определяется радиус-вектором – r и углом – β, отсчитываемым по ходу часовой стрелки от линии – ОХ (полярной оси) до радиуса -вектора (рис.4).

рис.4 Полярная система координат

Высоты точек

Высоты точек могут быть абсолютными и условными. Если высота точки определена от уровенной поверхности, то она считается абсолютной. От любой другой поверхности – условной.

Превышение (h) – разница между высотами точек.

h А = Н А – Н В

Числовые значения высот точек называются отметками.

В России высоты точек отсчитываются от уровня Балтийского моря.