Уравнение с одной переменной корень уравнения. Решение простых линейных уравнений

  • Равенство с переменной называют уравнением.
  • Решить уравнение – значит найти множество его корней. Уравнение может иметь один, два, несколько, множество корней или не иметь их вовсе.
  • Каждое значение переменной, при котором данное уравнение превращается в верное равенство, называется корнем уравнения.
  • Уравнения, имеющие одни и те же корни, называются равносильными уравнениями.
  • Любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
  • Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Примеры. Решить уравнение.

1. 1,5х+4 = 0,3х-2.

1,5х-0,3х = -2-4. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство:

1,2х = -6. Привели подобные слагаемые по правилу:

х = -6 : 1,2. Обе части равенства разделили на коэффициент при переменной, так как

х = -5. Делили по правилу деления десятичной дроби на десятичную дробь:

чтобы разделить число на десятичную дробь, нужно перенести запятые в делимом и делителе на столько цифр вправо, сколько их стоит после запятой в делителе, а затем выполнить деление на натуральное число:

6 : 1,2 = 60 : 12 = 5.

Ответ: 5.

2. 3(2х-9) = 4(х-4).

6х-27 = 4х-16. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: (a-b) c = a c-b c.

6х-4х = -16+27. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

2х = 11. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

х = 11 : 2. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: 5,5.

3. 7х- (3+2х)=х-9.

7х-3-2х = х-9. Раскрыли скобки по правилу раскрытия скобок, перед которыми стоит знак «-»: если перед скобками стоит знак «-», то убираем скобки, знак «-» и записываем слагаемые, стоявшие в скобках, с противоположными знаками.

7х-2х-х = -9+3. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

4х = -6. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

х = -6 : 4. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: -1,5.

3 (х-5) = 7 12 — 4 (2х-11). Умножили обе части равенства на 12 – наименьший общий знаменатель для знаменателей данных дробей.

3х-15 = 84-8х+44. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно отдельно уменьшаемое и отдельно вычитаемое умножить на третье число, а затем из первого результата вычесть второй результат, т.е. (a-b) c = a c-b c.

3х+8х = 84+44+15. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

Уравнение - это равенство, содержащее переменную, обозначенную буквой.

Корень уравнения (или решение уравнения) - это такое значение переменной, при котором уравнение превращается в верное равенство.

Пример: решим уравнение (то есть найдем корень уравнения): 4x - 15 = x + 15

Итак:

4х - х = 15 + 15

3х = 30

х = 30: 3

х = 10

Результат: уравнение имеет один корень - число 10.

Уравнение может иметь и два, три, четыре и более корней.
Например, уравнение (х - 4)(х - 5)(х - 6) = 0 имеет три корня: 4, 5 и 6.

Уравнение может вовсе не иметь корней.
Например, уравнение х + 2 = х не имеет корней, т.к. при любом значении х равенство невозможно.

Равносильность уравнений.

Два уравнения являются равносильными, если они имеют одинаковые корни либо если оба уравнения не имеют корней.

Пример1 :

Уравнения х + 3 = 5 и 3х - 1 = 5 равносильны, так как в обоих уравнениях х = 2.

Пример 2 :

Уравнения х 4 + 2 = 1 и х 2 + 5 = 0 равносильны, так как оба уравнения не имеют корней.

Целое уравнение с одной переменной - это уравнение, левая и правая части которого являются целыми выражениями (о целых выражениях см.раздел «Рациональные выражения»).

Уравнение с одной переменной может быть записано в виде P (x ) = 0, где P (x ) - многочлен стандартного вида.

Например:
y 2 + 3y - 6 = 0
(здесь P (x ) представлен в виде многочлена y 2 + 3y - 6).

В таком уравнении степень многочлена называют степенью уравнения .

В нашем примере представлено уравнение второй степени (так как в нем многочлен второй степени).

Уравнение первой степени.

Уравнение первой степени можно привести к виду:

ax + b = 0,

где x - переменная, a и b - некоторые числа, причем a ≠ 0.

Отсюда легко вывести значение x :

b
x = - —
a

Это значение x является корнем уравнения.

Уравнения первой степени имеют один корень.

Уравнение второй степени.

Уравнение второй степени можно привести к виду:

ax 2 + bx + c = 0,

где x - переменная, a, b, c - некоторые числа, причем a ≠ 0.

Число корней уравнения второй степени зависит от дискриминанта:

Если D > 0, то уравнение имеет два корня;

Если D = 0, то уравнение имеет один корень;

Если D < 0, то уравнение корней не имеет.

Уравнение второй степени может иметь не более двух корней.

(о том, что такое дискриминант и как находить корни уравнения, см.разделы «Формулы корней квадратного уравнения. Дискриминант» и «Другой способ решения квадратного уравнения»).

Уравнение третьей степени.

Уравнение третьей степени можно привести к виду:

ax 3 + bx 2 + cx + d = 0,

где x - переменная, a, b, c, d - некоторые числа, причем a ≠ 0.

Уравнение третьей степени может иметь не более трех корней.

Уравнение четвертой степени.

Уравнение четвертой степени можно привести к виду:

ax 4 + bx 3 + cx 2 + dx + e = 0,

где x - переменная, a, b, c, d, e - некоторые числа, причем a ≠ 0.

Уравнение третьей степени может иметь не более четырех корней.

Обобщение:

1) уравнение пятой, шестой и т.д. степеней можно легко вывести самостоятельно, следуя приведенной выше схеме;

2) уравнение n -й степени может иметь не более n корней.

Пример 1 : Решим уравнение

x 3 - 8x 2 - x + 8 = 0.

Мы видим, что это уравнение третьей степени. Значит, у него может быть от нуля до трех корней.
Найдем их и тем самым решим уравнение.
Разложим левую часть уравнения на множители:

x 2 (x - 8) - (x - 8) = 0.

Применим правило разложения многочлена способом группировки его членов. Для этого поставим перед вторыми скобками число 1:

x 2 (x - 8) - 1(x - 8) = 0.

Теперь сгруппируем многочлены x 2 и -1, являющиеся множителями многочлена x -8. Получим две группы многочленов: (x 2 -1) и (x - 8). Следовательно, наше уравнение примет новый вид:

(x - 8)(x 2 - 1) = 0.

Здесь выражение x 2 - 1 можно представить в виде x 2 - 1 2 . А значит, можем применить формулу сокращенного умножения: x 2 - 1 2 = (x - 1)(x + 1). Подставим в наше уравнение это выражение и получим:

(x - 8)(x - 1)(x + 1) = 0.

x - 8 = 0

x - 1 = 0

x + 1 = 0

Осталось найти корни нашего уравнения:

x 1 = 0 + 8 = 8

x 2 = 0 + 1 = 1

x 3 = 0 - 1 = -1.

Уравнение решено. Оно имеет три корня: 8, 1 и -1.

Пример 2 : Решим уравнение

(x 2 - 5x + 4)(x 2 - 5x +6) = 120

Это уравнение сложнее. Но его можно упростить оригинальным образом - методом введения новой переменной.
В нашем уравнении дважды встречается выражение x 2 - 5x .
Мы можем обозначить его переменной y . То есть представим, что x 2 - 5x = y .

Тогда наше уравнение обретает более простой вид:

(y + 4)(y + 6) = 120.

Раскроем скобки:

y 2 + 4y + 6y + 24 = 120

y 2 + 10y + 24 = 120

Приравняем уравнение к нулю:

y 2 + 10y + 24 - 120 = 0

y 2 + 10y - 96 = 0

Мы получили обычное квадратное уравнение. Найдем его корни. Нет необходимости производить расчеты: о том, как решать подобные уравнения, подробно написано в разделах «Квадратные уравнения» и «Формулы корней квадратного уравнения. Дискриминант». Здесь же мы сразу выведем результат. Квадратное уравнение y 2 + 10y - 96 = 0 имеет два корня:

y 1 = -16

y 2 = 6

Буквой y мы заменили выражение x 2 - 5x . А значит, мы уже можем подставить значения y и найти корни заданного уравнения, тем самым решив задачу:

1) Сначала применяем значение y 1 = -16:

x 2 - 5x = -16

Чтобы решить это уравнение, превращаем его в квадратное уравнение:

x 2 - 5x + 16 = 0

Решив его, мы обнаружим, что оно не имеет корней.

2) Теперь применяем значение y 2 = 6:

x 2 - 5x = 6

x 2 - 5x - 6 = 0

Решив это квадратное уравнение, мы увидим, что у него два корня:

x 1 = -1

x 2 = 6.

Уравнение решено. Оно имеет два корня: -1 и 6.

Метод введения новой переменной позволяет легко решать уравнения четвертой степени, которые являются квадратными относительно x 2 (такие уравнения называют биквадратными ).

И т.п., логично познакомиться с уравнениями и других видов. Следующими по очереди идут линейные уравнения , целенаправленное изучение которых начинается на уроках алгебры в 7 классе.

Понятно, что сначала надо объяснить, что такое линейное уравнение, дать определение линейного уравнения, его коэффициентов, показать его общий вид. Дальше можно разбираться, сколько решений имеет линейное уравнение в зависимости от значений коэффициентов, и как находятся корни. Это позволит перейти к решению примеров, и тем самым закрепить изученную теорию. В этой статье мы это сделаем: детально остановимся на всех теоретических и практических моментах, касающихся линейных уравнений и их решения.

Сразу скажем, что здесь мы будем рассматривать только линейные уравнения с одной переменной, а уже в отдельной статье будем изучать принципы решения линейных уравнений с двумя переменными .

Навигация по странице.

Что такое линейное уравнение?

Определение линейного уравнения дается по виду его записи. Причем в разных учебниках математики и алгебры формулировки определений линейных уравнений имеют некоторые различия, не влияющие на суть вопроса.

Например, в учебнике алгебры для 7 класса Ю. Н. Макарычева и др. линейное уравнение определяется следующим образом:

Определение.

Уравнение вида a·x=b , где x – переменная, a и b – некоторые числа, называется линейным уравнением с одной переменной .

Приведем примеры линейных уравнений, отвечающие озвученному определению. Например, 5·x=10 – это линейное уравнение с одной переменной x , здесь коэффициент a равен 5 , а число b есть 10 . Другой пример: −2,3·y=0 – это тоже линейное уравнение, но с переменной y , в котором a=−2,3 и b=0 . А в линейных уравнениях x=−2 и −x=3,33 a не присутствуют в явном виде и равны 1 и −1 соответственно, при этом в первом уравнении b=−2 , а во втором - b=3,33 .

А годом ранее в учебнике математики Виленкина Н. Я. линейными уравнениями с одним неизвестным помимо уравнений вида a·x=b считали и уравнения, которые можно привести к такому виду с помощью переноса слагаемых из одной части уравнения в другую с противоположным знаком, а также с помощью приведения подобных слагаемых. Согласно этому определению, уравнения вида 5·x=2·x+6 , и т.п. тоже линейные.

В свою очередь в учебнике алгебры для 7 классов А. Г. Мордковича дается такое определение:

Определение.

Линейное уравнение с одной переменной x – это уравнение вида a·x+b=0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

К примеру, линейными уравнениями такого вида являются 2·x−12=0 , здесь коэффициент a равен 2 , а b – равен −12 , и 0,2·y+4,6=0 с коэффициентами a=0,2 и b=4,6 . Но в тоже время там приводятся примеры линейных уравнений, имеющие вид не a·x+b=0 , а a·x=b , например, 3·x=12 .

Давайте, чтобы у нас в дальнейшем не было разночтений, под линейным уравнениями с одной переменной x и коэффициентами a и b будем понимать уравнение вида a·x+b=0 . Такой вид линейного уравнения представляется наиболее оправданным, так как линейные уравнения – это алгебраические уравнения первой степени. А все остальные указанные выше уравнения, а также уравнения, которые с помощью равносильных преобразований приводятся к виду a·x+b=0 , будем называть уравнениями, сводящимися к линейным уравнениям . При таком подходе уравнение 2·x+6=0 – это линейное уравнение, а 2·x=−6 , 4+25·y=6+24·y , 4·(x+5)=12 и т.п. – это уравнения, сводящиеся к линейным.

Как решать линейные уравнения?

Теперь пришло время разобраться, как решаются линейные уравнения a·x+b=0 . Другими словами, пора узнать, имеет ли линейное уравнение корни, и если имеет, то сколько их и как их найти.

Наличие корней линейного уравнения зависит от значений коэффициентов a и b . При этом линейное уравнение a·x+b=0 имеет

  • единственный корень при a≠0 ,
  • не имеет корней при a=0 и b≠0 ,
  • имеет бесконечно много корней при a=0 и b=0 , в этом случае любое число является корнем линейного уравнения.

Поясним, как были получены эти результаты.

Мы знаем, что для решения уравнений можно переходить от исходного уравнения к равносильным уравнениям , то есть, к уравнениям с теми же корнями или также как и исходное, не имеющим корней. Для этого можно использовать следующие равносильные преобразования:

  • перенос слагаемого из одной части уравнения в другую с противоположным знаком,
  • а также умножение или деление обе частей уравнения на одно и то же отличное от нуля число.

Итак, в линейном уравнении с одной переменной вида a·x+b=0 мы можем перенести слагаемое b из левой части в правую часть с противоположным знаком. При этом уравнение примет вид a·x=−b .

А дальше напрашивается деление обеих частей уравнения на число a. Но есть одно но: число a может быть равно нулю, в этом случае такое деление невозможно. Чтобы справиться с этой проблемой, сначала будем считать, что число a отлично от нуля, а случай равного нулю a рассмотрим отдельно чуть позже.

Итак, когда a не равно нулю, то мы можем обе части уравнения a·x=−b разделить на a , после этого оно преобразуется к виду x=(−b):a , этот результат можно записать с использованием дробной черты как .

Таким образом, при a≠0 линейное уравнение a·x+b=0 равносильно уравнению , откуда виден его корень .

Несложно показать, что этот корень единственный, то есть, линейное уравнение не имеет других корней. Это позволяет сделать метод от противного.

Обозначим корень как x 1 . Предположим, что существует еще один корень линейного уравнения, который обозначим x 2 , причем x 2 ≠x 1 , что в силу определения равных чисел через разность эквивалентно условию x 1 −x 2 ≠0 . Так как x 1 и x 2 корни линейного уравнения a·x+b=0 , то имеют место числовые равенства a·x 1 +b=0 и a·x 2 +b=0 . Мы можем выполнить вычитание соответствующих частей этих равенств, что нам позволяют сделать свойства числовых равенств , имеем a·x 1 +b−(a·x 2 +b)=0−0 , откуда a·(x 1 −x 2)+(b−b)=0 и дальше a·(x 1 −x 2)=0 . А это равенство невозможно, так как и a≠0 и x 1 −x 2 ≠0 . Так мы пришли к противоречию, что доказывает единственность корня линейного уравнения a·x+b=0 при a≠0 .

Так мы решили линейное уравнение a·x+b=0 при a≠0 . Первый результат, приведенный в начале этого пункта, обоснован. Остались еще два, отвечающие условию a=0 .

При a=0 линейное уравнение a·x+b=0 принимает вид 0·x+b=0 . Из этого уравнения и свойства умножения чисел на нуль следует, что какое бы число мы не взяли в качестве x , при его подстановке в уравнение 0·x+b=0 получится числовое равенство b=0 . Это равенство верное, когда b=0 , а в остальных случаях при b≠0 это равенство неверное.

Следовательно, при a=0 и b=0 любое число является корнем линейного уравнения a·x+b=0 , так как при этих условиях подстановка вместо x любого числа дает верное числовое равенство 0=0 . А при a=0 и b≠0 линейное уравнение a·x+b=0 не имеет корней, так как при этих условиях подстановка вместо x любого числа приводит к неверному числовому равенству b=0 .

Приведенные обоснования позволяют сформировать последовательность действий, позволяющую решить любое линейное уравнение. Итак, алгоритм решения линейного уравнения таков:

  • Сначала по записи линейного уравнения находим значения коэффициентов a и b .
  • Если a=0 и b=0 , то это уравнение имеет бесконечно много корней, а именно, любое число является корнем этого линейного уравнения.
  • Если же a отлично от нуля, то
    • коэффициент b переносится в правую часть с противоположным знаком, при этом линейное уравнение преобразуется к виду a·x=−b ,
    • после чего обе части полученного уравнения делятся на отличное от нуля число a , что и дает искомый корень исходного линейного уравнения .

Записанный алгоритм является исчерпывающим ответом на вопрос, как решать линейные уравнения.

В заключение этого пункта стоит сказать, что похожий алгоритм применяется для решения уравнений вида a·x=b . Его отличие состоит в том, что при a≠0 сразу выполняется деление обеих частей уравнения на это число, здесь b уже находится в нужной части уравнения и не нужно осуществлять его перенос.

Для решения уравнений вида a·x=b применяется такой алгоритм:

  • Если a=0 и b=0 , то уравнение имеет бесконечно много корней, которыми являются любые числа.
  • Если a=0 и b≠0 , то исходное уравнение не имеет корней.
  • Если же a отлично от нуля, то обе части уравнения делятся на отличное от нуля число a , откуда находится единственный корень уравнения, равный b/a .

Примеры решения линейных уравнений

Переходим к практике. Разберем, как применяется алгоритм решения линейных уравнений. Приведем решения характерных примеров, соответствующих различным значениям коэффициентов линейных уравнений.

Пример.

Решите линейное уравнение 0·x−0=0 .

Решение.

В этом линейном уравнении a=0 и b=−0 , что то же самое, b=0 . Следовательно, это уравнение имеет бесконечно много корней, любое число является корнем этого уравнения.

Ответ:

x – любое число.

Пример.

Имеет ли решения линейное уравнение 0·x+2,7=0 ?

Решение.

В данном случае коэффициент a равен нулю, а коэффициент b этого линейного уравнения равен 2,7 , то есть, отличен от нуля. Поэтому, линейное уравнение не имеет корней.

Возьмем два выражения с переменной: 4х и 5х + 2. Соединив их знаком равенства, получим предложение 4х = 5х + 2. Оно содержит переменную и при подстановке значений переменной обращается в высказывание.

Например, при х = -2 предложение 4х = 5х + 2 обращается в истинное числовое равенство 4-(-2) = 5-(-2) + 2, а при х = 1 - в лож­ное 4-1 = 5-1+2. Поэтому предложение 4х = 5х + 2 есть высказывательная форма. Ее называют уравнением с одной переменной.

В общем виде уравнение с одной переменной можно определить так:

Определение. Пусть f(х) и q(х) - два выражения с переменной х и областью определения X. Тогда высказывательная форма вида f(х) = q(х) называется уравнением с одной переменной.

Значение переменной х из множества X, при котором уравнение обращается в истинное числовое равенство, называется корнем уравнения (или его решением). Решить уравнение - это значит найти множество его корней .

Так, корнем уравнения 4х = 5х + 2, если рассматривать его на множестве R действительных чисел, является число -2. Других корней это уравнение не имеет. Значит множество его корней есть {-2}.

Пусть на множестве действительных чисел задано уравнение (х-1)(х+2)=0. Оно имеет два корня - числа 1 и -2. Следовательно, множество корней данного уравнения таково: {-2,- 1}.

Уравнение (3х + 1) × 2 = 6х + 2, заданное на множестве действительных чисел, обращается в истинное числовое равенство при всех действительных значениях переменной х: если раскрыть скобки в левой части, то получим 6х + 2 = 6х + 2. В этом случае говорят, что его корнем является любое действительное число, а множеством корней множество всех действительных чисел.

Уравнение (3х + 1)-2 = 6х + 1, заданное на множестве действительных чисел, не обращается в истинное числовое равенство ни при одном действительном значении х: после раскрытия скобок в левой части получаем, что 6х + 2 = 6х + 1, что невозможно ни при одном х. В этом случае говорят, что данное уравнение не имеет корней и что множество его корней пусто.

Чтобы решить какое-либо уравнение, его сначала преобразовывают, заменяя другим, более простым; полученное уравнение опять преобразовывают, заменяя более простым, и т.д. Этот процесс продолжают до тех пор, пока не получают уравнение, корни которого можно найти известным способом. Но чтобы эти корни были корнями заданного данного уравнения, необходимо, чтобы в процессе преобразований получились уравнения, множества корней которых совпадают. Такие уравнения называют равносильными.

Определение. Два уравнения f 1 (х) = q 1 (х) и f 2 (х) = q 2 (х) называются равносильными, если множества их корней совпадают.


Например, уравнения х 2 - 9 = 0 и (2х + 6)(х - 3) = 0 равносильны так как оба имеют своими корнями числа 3 и -3. Равносильны и уравнения (3х + 1)-2 = 6х + 1 и х 2 + 1 = 0, так как оба не имеют корней, т.е. множества их корней совпадают.

Определение . Замена уравнения равносильным ему уравнением называется равносильным преобразованием.

Выясним теперь, какие преобразования позволяют получать равносильные уравнения.

Теорема 1 . Пусть уравнение f(х) = q(х) задано на множестве и h(х) - выражение, определенное на том же множестве. Тогда уравнение f(х) = q(х) (1) и f(х) + h(х) = q(х) + h(х) (2) равносильны.

Доказательство. Обозначим через Т 1 , - множество решений уравнения (1), а через Т 2 - множество решений уравнения (2). Тогда уравнения (1) и (2) будут равносильны, если Т 1 = Т 2 . Чтобы убедиться в этом, необходимо показать, что любой корень из Т 1 является корнем уравнения (2) и, наоборот, любой корень из Т 2 , является корнем уравнения (1).

Пусть число а - корень уравнения (1). Тогда а Î Т 1 , и при подстановке в уравнение (1) обращает его в истинное числовое равенство f(а) = q(а), а выражение h(х) обращает в числовое выражение h(а) имеющее смысл на множестве X. Прибавим к обеим частям истинного равенства f(а) = q(а) числовое выражение h(а). Получим, согласно свойствам истинных числовых равенств, истинное числовое равенство f(а) + h(а) = q(а) + h(а), которое свидетельствует о том, что число а является корнем уравнения (2).

Итак, доказано, что каждый корень уравнения (1) является корнем и уравнения (2), т.е. Т 1 Ì Т 2.

Пусть теперь а - корень уравнения (2). Тогда а Î Т 2 , и при подстановке в уравнение (2) обращает его в истинное числовое равенство f(а) + h(а) = q(а) + h(а). Прибавим к обеим частям этого равенства числовое выражение - h(а). Получим истинное числовое равенство f(а) = q(а), что число а - корень уравнения (1).

Итак, доказано, что каждый корень уравнения (2) является и кор­нем уравнения (1), т.е. Т 2 Ì Т 1 .

Так как Т 1 Ì Т 2 и Т 2 Ì Т 1 , то по определению равных множеств Т 1 = Т 2 , а значит, уравнения (1) и (2) равносильны.

Данную теорему 1 можно сформулировать иначе : если к обеим частям уравнения с областью определения Х прибавить одно и то же выраже­ние с переменной, определенное на том же множестве, то получим новое уравнение, равносильное данному.

Из этой теоремы вытекают следствия, которые используются при решении уравнений:

1. Если к обеим частям уравнения прибавить одно и то же число, то получим уравнение, равносильное данному.

2. Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части уравнения в другую, поменяв знак слагаемого на противоположный, то получим уравнение, равносильное данному.

Теорема 2. Пусть уравнение f(х) = q(х), задано на множестве Х и h(х) - выражение, которое определено на том же множестве и не об­ращается в нуль ни при каких значениях х из множества X. Тогда уравнения f(х) = q(х) и f(х) × h(х) = q(х) × h(х) равносильны.

Доказательство этой теоремы аналогично доказательству теоремы 1.

Теорему 2 можно сформулировать иначе : если обе части уравнения с областью определения Х умножить на одно и то же выражение, которое определено на том же множестве и не обращается на нем в нуль, то получим новое уравнение, равносильное данному.

Из этой теоремы вытекает следствие: если обе части уравнения умножить (или разделить) на одно и то же число, отличное от нуля, то получим уравнение, равносильное данному.

Решим уравнение , х Î R, и обоснуем все преобразования, которые мы будем выполнять в процессе решения.