Особенности явления преломления света с точки зрения физики. Понятие показателя преломления

Области применения рефрактометрии.

Устройство и принцип действия рефрактометра ИРФ-22.

Понятие показателя преломления.

План

Рефрактометрия. Характеристика и сущность метода.

Для идентификации веществ и проверки их чистоты используют пока-

затель преломления.

Показатель преломления вещества - величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и виданной среде.

Показатель преломления зависит от свойств вещества и длины волны

электромагнитного излучения. Отношение синуса угла падения относительно

нормали, проведенной к плоскости преломления (α) луча к синусу угла пре-

ломления (β) при переходе луча из среды A в среду B называется относи-тельным показателем преломления для этой пары сред.

Величина n есть относительный показатель преломления среды В по

отношению к среде А, а

Относительный показатель преломления среды А по отношению к

Показатель преломления луча, падающего на среду из безвоздушно-

го пространства, называется его абсолютным показателем преломления или

просто показателем преломления данной среды (таблица 1).

Таблица 1 - Показатели преломления различных сред

Жидкости имеют показатель преломления в интервале 1.2-1,9. Твердые

вещества 1,3-4,0. Некоторые минералы не имеют точного значения показате-

ля преломления. Его величина находится в некоторой «вилке» и определяет-

ся присутствием примесей в кристаллической структуре, что определяет цвет

кристалла.

Идентификация минерала по «цвету» затруднительна. Так, минерал корунд существует в виде рубина, сапфира, лейкосапфира, отличаясь по

показателю преломления и цвету. Красные корунды называются рубинами

(примесь хрома), синие бесцветные, голубые, розовые, желтые, зеленые,

фиолетовые - сапфирами (примеси кобальта, титана и др). Светлоокрашен-

ные сапфиры или бесцветный корунд носит название лейкосапфир (широко

применяется в оптике как светофильтр). Показатель преломления этих кри-

сталлов лежит в диапазоне 1,757-1,778 и является основанием для идентифи-

Рисунок 3.1 – Рубин Рисунок 3.2 - Сапфир синий

Органические и неорганические жидкости также имеют характерные значения показателей преломления, которые характеризуют их как химиче-

ские соединения и качество их синтеза (таблица 2):

Таблица 2 - Показатели преломления некоторых жидкостей при 20 °C

4.2. Рефрактометрия: понятие, принцип.

Метод исследования веществ, основанный на определении показателя



(коэффициента) преломления (рефракции) называется рефрактометрией (от

лат. refractus - преломленный и греч. metreo – измеряю). Рефрактометрия

(рефрактометрический метод) применяется для идентификации химических

соединений, количественного и структурного анализа, определения физико-

химических параметров веществ. Принцип рефрактометрии, реализованный

в рефрактометрах Аббе, поясняется рисунком 1.

Рисунок 1 - Принцип рефрактометрии

Призменный блок Аббе состоит из двух прямоугольных призм: освети-

тельной и измерительной, сложенных гипотенузными гранями. Осветитель-

ная призма имеет шероховатую (матовую) гипотенузную грань и предназна-

чена для освещения образца жидкости, помещаемого между призмами.

Рассеянный свет проходит плоскопараллельный слой исследуемой жидкости и, преломляясь в жидкости падает на измерительную призму. Измерительная призма выполнена из оптически плотного стекла (тяжелый флинт) и имеет показатель преломления больше 1,7. По этой причине рефрактометр Аббе измеряет величины n меньшие, чем 1,7. Увеличение диапазона измерения показателя преломления может быть достигнуто только путем замены измерительной призмы.

Исследуемый образец наливают на гипотенузную грань измеритель-ной призмы и прижимают осветительной призмой. При этом между призмами остается зазор 0,1-0,2 мм в котором находится образец, и через

который проходит преломляясь свет. Для измерения показателя преломления

используют явление полного внутреннего отражения. Оно заключается в

следующем.

Если на границу раздела двух сред падают лучи 1, 2, 3, то в зависимо-

сти от угла падения при наблюдении за ними в среде преломления будет на-

блюдаться наличие перехода областей различной освещенности. Оно связано

с падением некоторой части света на границу преломления под углом близ-

ким к 90° по отношению к нормали (луч 3). (Рисунок 2).

Рисунок 2 – Изображение преломляемых лучей

Эта часть лучей не отражается и поэтому образует более светлую об-

ласть при преломлении. Лучи с меньшими углами испытывают и отражение

и преломление. Поэтому образуется область меньшей освещенности. В объ-

ективе видна граничная линия полного внутреннего отражения, положение

которой зависит от преломляющих свойств образца.

Устранение явления дисперсии (окрашивания границы раздела двух областей освещенности в цвета радуги из-за использования в рефрактометрах Аббе сложного белого света) достигается использованием двух призм Амичи в компенсаторе, которые вмонтированы в зрительную трубу. Одновременно в объектив проецируется шкала (Рисунок 3). Для анализа достаточно 0,05 мл жидкости.

Рисунок 3 - Вид в окуляр рефрактометра. (Правая шкала отражает

концентрацию измеряемого компонента в промилле)

Помимо анализа однокомпонентных образцов широко анализируются

двухкомпонентные системы (водные растворы, растворы веществ в каком

либо растворителе). В идеальных двухкомпонентных системах (образующих-

ся без изменения объема и поляризуемости компонентов) зависимость пока-

зателя преломления от состава близка к линейной, если состав выражен в

объемных долях (процентах)

где: n, n1 ,n2 - показатели преломления смеси и компонентов,

V1 и V2 - объемные доли компонентов (V1 + V2 = 1).

Влияние температуры на показатель преломления определяется двумя

факторами: изменением количества частиц жидкости в единице объема и за-

висимостью поляризуемости молекул от температуры. Второй фактор стано-

вится существенным лишь при очень большом изменении температуры.

Температурный коэффициент показателя преломления пропорционален температурному коэффициенту плотности. Поскольку все жидкости при нагревании расширяются, то их показатели преломления уменьшаются при повышении температуры. Температурный коэффициент зависит от величины температуры жидкости, но в небольших температурных интервалах может считаться постоянным. По этой причине большая часть рефрактометров не имеет термостатирования, однако в некоторых конструкциях предусмотрено

водное термостатирование.

Линейная экстраполяция показателя преломления при изменении температуры допустима на небольшие разности температур (10 – 20°С).

Точное определение показателя преломления в широких температурных интервалах производится по эмпирическим формулам вида:

nt=n0+at+bt2+…

Для рефрактометрии растворов в широких диапазонах концентраций

пользуются таблицами или эмпирическими формулами. Зависимость показа-

теля преломления водных растворов некоторых веществ от концентрации

близка к линейной и позволяет определять концентрации данных веществ в

воде в широких диапазонах концентраций (рисунок 4) с помощью рефрак-

тометров.

Рисунок 4 - Показатель преломления некоторых водных растворов

Обычно n жидких и твердых тел рефрактометрами определяют с точ-

ностью до 0,0001. Наиболее распространены рефрактометры Аббе (рисунок 5) с призменными блоками и компенсаторами дисперсии, позволяющие определять nD в "белом" свете по шкале или цифровому индикатору.

Рисунок 5 - Рефрактометр Аббе (ИРФ-454; ИРФ-22)

Билет 75.

Закон отражения света : падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения γ равен углу падения α.

Закон преломления света : падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости их распространения во второй среде υ 2:

Рис 3.1.1 иллюстрирует законы отражения и преломления света.

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотную n 2 < n 1 (например, из стекла в воздух) можно наблюдать явление полного отражения , то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол α пр, который называется предельным углом полного внутреннего отражения (см. рис. 3.1.2).

Для угла падения α = α пр sin β = 1; значение sin α пр = n 2 / n 1 < 1.

Если второй средой является воздух (n 2 ≈ 1), то формулу удобно переписать в виде

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов, которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис 3.1.3). Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой.

Диспе"рсия све"та (разложение света) - это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия) , или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты) . Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора. Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Один из самых наглядных примеров дисперсии - разложение белого света при прохождении его через призму (опыт Ньютона) . Сущностью явления дисперсии является различие скоростей распространения лучей света c различной длиной волны в прозрачном веществе - оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета) . Обычно чем больше частота световой волны, тем больше показатель преломления среды для неё и тем меньше скорость волны в среде:

Опыты Ньютона Опыт по разложению белого света в спектр: Ньютон направил луч солнечного света через маленькое отверстие на стеклянную призму. Попадая на призму, луч преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов – спектр. Опыт по прохождению монохроматического света через призму : Ньютон на пути солнечного луча поставил красное стекло, за которым получил монохроматический свет (красный), далее призму и наблюдал на экране только красное пятно от луча света.Опыт по синтезу (получению) белого света: Сначала Ньютон направил солнечный луч на призму. Затем, собрав вышедшие из призмы цветные лучи с помощью собирающей линзы, Ньютон на белой стене получил вместо окрашенной полосы белое изображение отверстия. Выводы Ньютона: - призма не меняет свет, а только разлагает его на составляющие - световые лучи, отличающиеся по цвету, отличаются по степени преломляемости; наиболее сильно преломляются фиолетовые лучи, менее сильно – красные - красный свет, который меньше преломляется, имеет наибольшую скорость, а фиолетовый - наименьшую, поэтому призма и разлагает свет. Зависимость показателя преломления света от его цвета называется дисперсией.

Выводы: - призма разлагает свет - белый свет является сложным (составным) - фиолетовые лучи преломляются сильнее красных. Цвет луча света определяется его частотой колебаний. При переходе из одной среды в другую изменяются скорость света и длина волны, а частота, определяющая цвет остается постоянной. Границы диапазонов белого света и его составляющих принято характеризовать их длинами волн в вакууме. Белый свет – это совокупность волн длинами от 380 до 760 нм.

Билет 77.

Поглощение света. Закон Бугера

Поглощение света в веществе связано с преобразованием энергии электромагнитного поля волны в тепловую энергию вещества (или в энергию вторичного фотолюминесцентного излучения). Закон поглощения света (закон Бугера) имеет вид:

I=I 0 exp(- x), (1)

где I 0 , I -интенсивности света на входе(х=0) и выходе из слоя среды толщиных, - коэффициент поглощения, он зависит от.

Для диэлектриков =10 -1 10 -5 м -1 , для металлов=10 5 10 7 м -1 , поэтому металлы непрозрачны для света.

Зависимостью () объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающее красный свет, при освещении белым светом будет казаться красным.

Рассеяние света. Закон Релея

Дифракция света может происходить в оптически неоднородной среде, например в мутной среде(дым, туман, запыленный воздух и т.п.). Дифрагируя на неоднородностях среды, световые волны создают дифракционную картину, характеризующуюся довольно равномерным распределением интенсивности по всем направлениям.

Такую дифракцию на мелких неоднородностях называют рассеянием света.

Это явление наблюдается, если узкий пучок солнечных лучей проходит через запыленный воздух, рассеивается на пылинках и становится видимым.

Если размеры неоднородностей малы по сравнению с длиной волны (не более чем 0,1 ), то интенсивность рассеянного света оказывается обратно пропорциональна четвертой степени длины волны, т.е.

I расс ~ 1/ 4 , (2)

эта зависимость носит название закона Релея.

Рассеяние света наблюдается также и в чистых средах, не содержащих посторонних частиц. Например, оно может происходить на флуктуациях (случайных отклонениях) плотности, анизотропии или концентрации. Такое рассеяние называют молекулярным. Оно объясняет, например, голубой цвет неба. Действительно, согласно (2) голубые и синие лучи рассеиваются сильнее, чем красные и желтые, т.к. имеют меньшую длину волны, обуславливая тем самым голубой цвет неба.

Билет 78.

Поляризация света - совокупность явлений волновой оптики, в которых проявляется поперечность электромагнитных световых волн.Поперечная волна - частицы среды колеблются в направлениях, перпендикулярных направлению распространения волны (рис.1 ).

Рис.1 Поперечная волна

Электромагнитная световая волна плоскополяризованная (линейная поляризация), если направления колебаний векторов E и B строго фиксированы и лежат в определенных плоскостях (рис.1 ). Плоскополяризованная световая волна называетсяплоскополяризованным (линейнополяризованным) светом.Неполяризованная (естественная) волна - электромагнитная световая волна, в которой направления колебаний векторов E и B в этой волне могут лежать в любых плоскостях, перпендикулярных вектору скорости v .Неполяризованный свет - световые волны, у которых направления колебаний векторов E и B хаотически меняются так, что равновероятны все направления колебаний в плоскостях, перпендикулярных к лучу распространения волны (рис.2 ).

Рис.2 Неполяризованный свет

Поляризованные волны - у которых направления векторов E и B сохраняются неизменными в пространстве или изменяются по определенному закону. Излучение, у которого направление вектора Е изменяется хаотически -неполяризованное . Примером такого излучения может являться тепловое излучение (хаотически распределенные атомы и электроны).Плоскость поляризации - это плоскость, перпендикулярная направлению колебаний вектора Е. Основной механизм возникновения поляризованного излучения - рассеяние излучения на электронах, атомах, молекулах, пылинках.

1.2. Виды поляризации Существует три вида поляризации. Дадим им определения.1. Линейная Возникает, если электрический вектор Е сохраняет свое положение в пространстве. Она как бы выделяет плоскость, в которой колеблется вектор Е.2. Круговая Это поляризация, возникающая, когда электрический вектор Е вращается вокруг направления распространения волны с угловой скоростью, равной угловой частоте волны, и сохраняет при этом свою абсолютную величину. Такая поляризация характеризует направление вращения вектора Е в плоскости, перпендикулярной лучу зрения. Примером является циклотронное излучение (система электронов, вращающихся в магнитном поле) .3. Эллиптическая Возникает тогда, когда величина электрического вектора Е меняется так, что он описывает эллипс (вращение вектора Е). Эллиптическая и круговая поляризация бывает правой (вращение вектора Е происходит по часовой стрелке, если смотреть навстречу распространяющейся волне) и левой (вращение вектора Е происходит против часовой стрелки, если смотреть навстречу распространяющейся волне) .

Реально, чаще всего встречается частичная поляризация (частично поляризованные электромагнитные волны) . Количественно она характеризуется некой величиной, называемойстепенью поляризации Р , которая определяется как:P = (Imax - Imin) / (Imax + Imin) гдеImax ,Imin - наибольшая и наименьшая плотность потока электромагнитной энергии через анализатор (поляроид, призму Николя…). На практике, поляризацию излучения часто описываютпараметрами Стокса(определяют потоки излучения с заданным направлением поляризации).

Билет 79 .

Если естественный свет падает на границу раздела двух диэлектриков (например, воздуха и стекла), то часть его отражается, а часть преломляется в распространяется во второй среде. Устанавливая на пути отраженного и преломленного лучей анализатор (например, турмалин), убеждаемся в том, что отраженный и преломленный лучи частично поляризованы: при поворачивании анализатора вокруг лучей интенсивность света периодически усаливается и ослабевает (полного гашения не наблюдается!). Дальнейшие исследования показали, что в отраженном луче преобладают колебания, перпендикулярные плоскости падения (на рис. 275 они обозначены точками), в преломленном - колебания, параллельные плоскости падения (изображены стрелками).

Степень поляризации (степень выделения световых волн с определенной ориентацией электрического (и магнитного) вектора) зависит от угла падения лучей и показателя преломления. Шотландский физик Д. Брюстер (1781-1868) установил закон , согласно которому при угле падения i B (угол Брюстера), определяемого соотношением

(n 21 - показатель преломления второй среды относительно первой), отраженный луч является плоскополяризованным (содержит только колебания, перпендикулярные плос­кости падения) (рис. 276). Преломленный же луч при угле падения i B поляризуется максимально, но не полностью.

Если свет падает на границу раздела под углом Брюстера, то отраженный и прело­мленный лучи взаимно перпендикулярны (tgi B = sini B /cosi B , n 21 = sini B / sini 2 (i 2 - угол преломления), откуда cosi B =sini 2). Следовательно, i B + i 2 = /2, но i B = i B (закон от­ражения), поэтому i B + i 2 = /2.

Степень поляризации отраженного и преломленного света при различных углах падения можно рассчитать из уравнений Максвелла, если учесть граничные условия для электромагнитного поля на границе раздела двух изотропных диэлектриков (так называемые формулы Френеля).

Степень поляризации преломленного света может быть значительно повышена (многократным преломлением при условии падения света каждый раз на границу раздела под углом Брюстера). Если, например, для стекла (п= 1,53) степень поляриза­ции преломленного луча составляет 15%, то после преломления на 8-10 наложенных друг на друга стеклянных пластинок вышедший из такой системы свет будет практически полностью поляризованным. Такая совокупность пластинок называется стопой. Стопа может служить для анализа поляризованного света как при его отражении, так и при его преломлении.

Билет 79 (для шпоры)

Как показывает опыт при преломлении и отражении света преломленный и отраженный свет оказывается поляризованными,причем отраж. свет может быть полностью поляризоанным при некотором угле падения,а прилом. свет всегда является частично поляризованным.На основании формул Фринеля можно показать,что отраж. свет поляризован в плоскости перпендикулярный плоскости падения,а прелом. свет поляризован в плоскости параллельной плоскости падения.

Угол падения при котором отраж. свет является полностью поляризованным назвается углом Брюстера.Угол Брюстера определяется из закона Брюстера: -закон Брюстера.В этом случае угол между отраж. и прелом. лучами будет равен.Для системы воздух-стекло угол Брюстера равен.Для получения хорошей поляризации,т.е. ,при преломлении света используют много поелом-х поверхностей,которые носят название Стопа Столетова.

Билет 80 .

Опыт показывает, что при взаимодействии света с веществом основное действие (физиологическое, фотохимическое, фотоэлектрическое и др.) вызывается колебаниями вектора , который в связи с этим иногда называют световым вектором. Поэтому для описания закономерностей поляризации света следят за поведением вектора.

Плоскость, образованная векторами и, называется плоскостью поляризации.

Если колебания вектора происходят в одной фиксированной плоскости, то такой свет (луч) называется линейно-поляризованным . Его условно обозначают так. Если луч поляризован в перпендикулярной плоскости (в плоскости хоz , см. рис. 2 во второй лекции), то его обозначают.

Естественный свет (от обычных источников, солнца), состоит из волн, имеющих различные, хаотически распределенные плоскости поляризации (см. рис. 3).

Естественный свет иногда условно обозначают так. Его называют также неполяризованным.

Если при распространении волны вектор поворачивается и при этом конец вектораописывает окружность, то такой свет называется поляризованным по кругу, а поляризацию – круговой или циркулярной (правой или левой). Существует также эллиптическая поляризация.

Существуют оптические устройства (пленки, пластины и т.д.) – поляризаторы , которые из естественного света выделяют линейно поляризованный свет или частично поляризованный свет.

Поляризаторы, использующиеся для анализа поляризации света называются анализаторами .

Плоскостью поляризатора (или анализатора) называется плоскость поляризации света, пропускаемого поляризатором (или анализатором).

Пусть на поляризатор (или анализатор) падает линейно поляризованный свет с амплитудой Е 0 . Амплитуда прошедшего света будет равнаЕ=Е 0 сosj , а интенсивностьI=I 0 сos 2 j.

Эта формула выражает закон Малюса :

Интенсивность линейно поляризованного света, прошедшего анализатор, пропорциональна квадрату косинуса угла j между плоскостью колебаний падающего света и плоскостью анализатора.

Билет 80(для шпоры)

Поляризаторы-приборы дающие возможность получить поляризованный свет.Анализаторы-это приборы с помощью которых можно проанализировать является ли свет поляризованным или нет.Конструктивно поляризатор и анализатор это одно и тоже.З-н Малюса.Пусть на поляризатор падает свет интенсивности,если свет является естеств-ым то у него все направления вектора E равны вероятны.Каждый вектор можно разложить на две взаимно перпендикулярные составляющие:одна из которых параллельна плоскости поляризации поляризатора,а другая ей перпендикулярна.

Очевидно интенсивность света вышедшего из поляризатора будет равна.Обозначим интенсивность света вышедшего из поляризатора через ().Если на пути поляриз-го свеа поставить анализатор главная плоскость которого составляет угол с главной плоскостью поляризатора,тогда интенсивность вышедшего из анализатора определяется законом.

Билет 81.

Изучая свечение раствора солей урана под действием -лучей радия, советский физик П. А. Черенков обратил внимание на то, что светится и сама вода, в которой солей урана нет. Оказалось, что при пропускании-лучей (см. Гамма-излучение) через чистые жидкости все они начинают светиться. С. И. Вавилов, под руководством которого работал П. А. Черенков, высказал гипотезу, что свечение связано с движением электронов, выбиваемых-квантами радия из атомов. Действительно, свечение сильно зависело от направления магнитного поля в жидкости (это наводило на мысль, что его причина - движение электронов).

Но почему движущиеся в жидкости электроны испускают свет? Правильный ответ на этот вопрос в 1937 г. дали советские физики И. Е. Тамм и И. М. Франк.

Электрон, двигаясь в веществе, взаимодействует с окружающими его атомами. Под действием его электрического поля атомные электроны и ядра смещаются в противоположные стороны - среда поляризуется. Поляризуясь и возвращаясь затем в исходное состояние, атомы среды, расположенные вдоль траектории электрона, испускают электромагнитные световые волны. Если скорость электрона v меньше скорости распространения света в среде (- показатель преломления), то электромагнитное поле будет обгонять электрон, а вещество успеет поляризоваться в пространстве впереди электрона. Поляризация среды перед электроном и за ним противоположна по направлению, и излучения противоположно поляризованных атомов, «складываясь», «гасят» друг друга. Когда, атомы, до которых еще не долетел электрон, не успевают поляризоваться, и возникает излучение, направленное вдоль узкого конического слоя с вершиной, совпадающей с движущимся электроном, и углом при вершине с. Возникновение светового «конуса» и условие излученияможно получить из общих принципов распространения волн.

Рис. 1. Механизм образования волнового фронта

Пусть электрон движется по оси ОЕ (см. рис. 1) очень узкого пустого канала в однородном прозрачном веществе с показателем преломления (пустой канал нужен, чтобы в теоретическом рассмотрении не учитывать столкновений электрона с атомами). Любая точка на линии ОЕ, последовательно занимаемая электроном, будет центром испускания света. Волны, исходящие из последовательных точек О, D, Е, интерферируют друг с другом и усиливаются, если разность фаз между ними равна нулю (см. Интерференция). Это условие выполняется для направления, составляющего угол 0 с траекторией движения электрона. Угол 0 определяется соотношением:.

Действительно, рассмотрим две волны, испущенные в направлении под углом 0 к скорости электрона из двух точек траектории - точки О и точки D, разделенных расстоянием . В точку В, лежащую на прямой BE, перпендикулярной ОВ, первая волна при -через время В точку F, лежащую на прямой BE, волна, испущенная из точки, придет в момент временипосле испускания волны из точки О. Эти две волны будут в фазе, т. е. прямаябудет волновым фронтом, если эти времена равны:. Та какусловие равенства времен дает. Во всех направлениях, для которых, свет будет гаситься из-за интерференции волн, испущенных из участков траектории, разделенных расстоянием Д. Величина Д определяется очевидным уравнением, где Т - период световых колебаний. Это уравнение всегда имеет решение, если.

Если , то направления, в котором излученные волны, интерферируя, усиливаются, не существует,не может быть больше 1.

Рис. 2. Распределение звуковых волн и формирование ударной волны при движении тела

Излучение наблюдается только, если .

На опыте электроны летят в конечном телесном угле, с некоторым разбросом по скоростям, и в результате излучение распространяется в коническом слое около основного направления, определяемого углом .

В нашем рассмотрении мы пренебрегли замедлением электрона. Это вполне допустимо, так как потери на излучение Вавилова - Черенкова малы и в первом приближении можно считать, что теряемая электроном энергия не сказывается на его скорости и он движется равномерно. В этом принципиальное отличие и необычность излучения Вавилова - Черенкова. Обычно заряды излучают, испытывая значительные ускорения.

Электрон, обгоняющий свой свет, сходен с самолетом, летящим со скоростью, большей скорости звука. В этом случае перед самолетом тоже распространяется коническая ударная звуковая волна, (см. рис. 2).

Лабораторная работа

Преломление света. Измерение показателя преломления жидкости

с помощью рефрактометра

Цель работы : углубление представлений о явлении преломления света; изучение методики измерения показателя преломления жидких сред; изучение принципа работы с рефрактометром.

Оборудование : рефрактометр, растворы поваренной соли, пипетка, мягкая ткань для протирания оптических деталей приборов.

Теория

Законы отражения и преломления света. Показатель преломления.

На границе раздела сред свет меняет направление своего распространения. Часть световой энергии возвращается в первую среду, т.е. происходит отражение света. Если вторая среда прозрачна, то часть света при определенных условиях проходит через границу раздела сред, меняя при этом, как правило, направление распространения. Это явление называется преломлением света (рис. 1).

Рис. 1. Отражение и преломление света на плоской границе раздела двух сред.

Направление отраженного и преломленного лучей при прохождении света через плоскую границу раздела двух прозрачных сред определяются законами отражения и преломления света.

Закон отражения света. Отраженный луч лежит в одной плоскости с падающим лучом и нормалью, восстановленной к плоскости раздела сред в точке падения. Угол падения равен углу отражения
.

Закон преломления света. Преломленный луч лежит в одной плоскости с падающим лучом и нормалью, восстановленной к плоскости раздела сред в точке падения. Отношение синуса угла паденияα к синусу угла преломленияβ есть величина постоянная для данных двух сред, называемая относительным показателем преломления второй среды по отношению к первой:

Относительный показатель преломления двух сред равен отношению скорости распространения света в первой средеv 1 к скорости света во второй средеv 2:

Если свет идет из вакуума в среду, то показатель преломления среды относительно вакуума называется абсолютным показателем преломления этой среды и равен отношению скорости света в вакууме с к скорости света в данной средеv:

Абсолютные показатели преломления всегда больше единицы; для воздуха n принят за единицу.

Относительный показатель преломления двух сред можно выразить через их абсолютные показатели n 1 иn 2 :

Определение показателя преломления жидкости

Для быстрого и удобного определения показателя преломления жидкостей существует специальные оптические приборы – рефрактометры, основной частью которых являются две призмы (рис. 2): вспомогательная Пр. 1 и измерительнаяПр.2. В зазор между призмами наливается исследуемая жидкость.

При измерениях показателей могут быть использованы два метода: метод скользящего луча (для прозрачных жидкостей) и метод полного внутреннего отражения (для темных, мутных и окрашенные растворов). В данной работе используется первый из них.

В методе скользящего луча свет от внешнего источника проходит сквозь грань призмы Пр.1, рассеивается на ее матовой поверхностиАС и далее через слой исследуемой жидкости проникает в призмуПр.2. Матовая поверхность становится источником лучей всех направлений, поэтому она может наблюдаться сквозь граньЕ F призмыПр.2. Однако граньАС можно наблюдать сквозьЕ F только под углом, большим некоторого предельного минимального углаi . Величина этого угла однозначно связана с показателем преломления жидкости, находящейся между призмами, что и случит основной идеей конструкции рефрактометра.

Рассмотрим прохождение света через грань ЕF нижней измерительной призмыПр.2. Как видно из рис. 2, применяя дважды закон преломления света, можно получить два соотношения:

(1)

(2)

Решая эту систему уравнений, нетрудно прийти к выводу, что показатель преломления жидкости

(3)

зависит от четырех величин: Q , r , r 1 и i . Однако не все они независимы. Так, например,

r + s = R , (4)

где R - преломляющий угол призмы Пр.2 . Кроме того, задав углу Q максимальное значение 90°, из уравнения (1) получим:

(5)

Но максимальному значению угла r , как это видно из рис. 2 и соотношений (3) и (4), соответствуют минимальные значения углов i и r 1 , т.е. i min и r min .

Таким образом, показатель преломления жидкости для случая «скользящих» лучей связан только с углом i . При этом существует минимальное значение угла i , когда грань АС еще наблюдается, т. е. в поле зрения она кажется зеркально белой. Для меньших углов наблюдения грань не видна, и в поле зрения это место кажется черным. Поскольку зрительная труба прибора захватывает сравнительно широкую угловую зону, то в поле зрения одновременно наблюдаются светлый и черный участки, граница между которыми соответствует минимальному углу наблюдения и однозначно связана с показателем преломления жидкости. Используя окончательную расчетную формулу:

(ее вывод опущен) и ряд жидкостей с известными показателями преломления, можно проградуировать прибор, т. е. установить однозначное соответствие между показателями преломления жидкостей и углами i min . Все приведенные формулы выведены для лучей одной какой-либо длины волны.

Свет различных длин волн будет преломляться с учетом дисперсии призмы. Таким образом, при освещении призмы белым светом граница раздела будет размыта и окрашена в различные цвета вследствие дисперсии. Поэтому в каждом рефрактометре есть компенсатор, который позволяет устранить результат дисперсии. Он может состоятьиз одной или двух призм прямого зрения - призм Амичи. Каждая призма Амичи состоит из трех стеклянных призм с различными показателями преломления и различной дисперсией, например, крайние призмы изготовлены из кронгласа, а средняя - из флинтгласа (кронглас и флинтглас - сорта стекол). Поворотом призмы компенсатора с помощью специального устройства добиваются резкого без окраски изображения границы раздела, положение которой соответствует значению показателя преломления для желтой линии натрияλ =5893 Å (призмы рассчитаны так, чтобы лучи с длиной волны 5893 Å не испытывали вних отклонения).

Лучи, прошедшие компенсатор, попадают в объектив зрительной трубы, далее через обращающую призму проходят через окуляр зрительной трубы в глаз наблюдателя. Схематический ход лучей показан на рис. 3.

Шкала рефрактометра отградуирована в значениях показателя преломления и концентрации раствора сахарозы в воде и расположена в фокальной плоскости окуляра.

Экспериментальная часть

Задание 1. Проверка рефрактометра.

Направьте свет с помощью зеркала на вспомогательную призму рефрактометра. Подняв вспомогательную призму, пипеткой нанесите несколько капель дистиллированной воды на измерительную призму. Опустив вспомогательную призму, добейтесь наилучшей осве­щенности поля зрения и установите окуляр на отчетливую видимость перекрестия и шкалы показателей преломления. Поворачивая камеру измерительной призмы, получите в поле зрения границу света и тени. Вращая головку компенсатора, добейтесь устранения окраски границы света и тени. Совместите границу света и тени с точкой перекрестия и измерьте показатель преломления воды n изм . Если рефрактометр исправен, то для дистиллированной воды должно получиться значениеn 0 = 1,333, если показания отличаются от этого значения, нужно определить поправку Δn = n изм - 1,333, которую затем следует учитывать при дальнейшей работе с рефрактометром. Поправки внесите в таблицу 1.

Таблица 1.

n 0

n изм

Δ n

Н 2 О

Задание 2. Определение показателя преломления жидкости.

    Определите показатели преломления растворов известных концентраций с учетом найденной поправки.

Таблица 2.

С, об. %

n изм

n ист

    Постройте график зависимости показателя преломления растворов поваренной соли от концентрации по полученным результатам. Сделайте вывод о ходе зависимости n от С; сделайте выводы о точности измерений на рефрактометре.

    Возьмите раствор соли неизвестной концентрации С x , определите его показатель преломления и по графику найдите концентрацию раствора.

    Уберите рабочее место, осторожно протрите призмы рефрактометров влажной чистой тряпочкой.

Контрольные вопросы

    Отражение и преломление света.

    Абсолютный и относительный показатели преломления среды.

    Принцип работы рефрактометра. Метод скользящего луча.

    Схематический ход лучей в призме. Для чего необходимы призмы компенсатора?

Распространение, отражение и преломление света

Природа света – электромагнитная. Одним из доказательств этого является совпадение величин скоростей электромагнитных волн и света в вакууме.

В однородной среде свет распространяется прямолинейно. Это утверждение называется законом прямолинейного распространения света. Опытным доказательством этого закона служат резкие тени, даваемые точечными источниками света.

Геометрическую линию, указывающую направление распространения света, называют световым лучом. В изотропной среде световые лучи направлены перпендикулярно волновому фронту.

Геометрическое место точек среды, колеблющихся в одинаковой фазе, называют волновой поверхностью, а множество точек, до которых дошло колебание к данному моменту времени, – фронтом волны. В зависимости от вида фронта волны различают плоские и сферические волны.

Для объяснения процесса распространения света используют общий принцип волновой теории о перемещении фронта волны в пространстве, предложенный голландским физиком Х.Гюйгенсом. Согласно принципу Гюйгенса каждая точка среды, до которой доходит световое возбуждение, является центром сферических вторичных волн, распространяющихся также со скоростью света. Поверхность, огибающая фронты этих вторичных волн, дает положение фронта действительно распространяющейся волны в этот момент времени.

Необходимо различать световые пучки и световые лучи. Световой пучок – это часть световой волны, переносящей световую энергию в заданном направлении. При замене светового пучка описывающим его световым лучом последний нужно брать совпадающим с осью достаточно узкого, но имеющего при этом конечную ширину (размеры поперечного сечения значительно больше длины волны), светового пучка.

Различают расходящиеся, сходящиеся и квазипараллельные световые пучки. Часто употребляют термины пучок световых лучей или просто световые лучи, понимая под этим совокупность световых лучей, описывающих реальный световой пучок.

Скорость света в вакууме c = 3 108 м/с является универсальной константой и не зависит от частоты. Впервые экспериментально скорость света была определена астрономическим методом датским ученым О.Рёмером. Более точно скорость света измерил А.Майкельсон.

В веществе скорость света меньше, чем в вакууме. Отношение скорости света в вакууме к его скорости в данной среде называют абсолютным показателем преломления среды:

где с – скорость света в вакууме, v – скорость света в данной среде. Абсолютные показатели преломления всех веществ больше единицы.

При распространении света в среде он поглощается и рассеивается, а на границе раздела сред – отражается и преломляется.

Закон отражения света: луч падающий, луч отраженный и перпендикуляр к границе раздела двух сред, восставленный в точке падения луча, лежат в одной плоскости; угол отражения g равен углу падения a (рис. 1). Этот закон совпадает с законом отражения для волн любой природы и может быть получен как следствие принципа Гюйгенса.

Закон преломления света: падающий луч, преломленный луч и перпендикуляр к границе раздела двух сред, восставленный в точке падения луча, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления для данной частоты света есть величина постоянная, называемая относительным показателем преломления второй среды относительно первой:

Экспериментально установленный закон преломления света объясняется на основании принципа Гюйгенса. Согласно волновым представлениям преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую, а физический смысл относительного показателя преломления – это отношение скорости распространения волн в первой среде v1 к скорости их распространения во второй среде

Для сред с абсолютными показателями преломления n1 и n2 относительный показатель преломления второй среды относительно первой равен отношению абсолютного показателя преломления второй среды к абсолютному показателю преломления первой среды:

Та среда, которая обладает большим показателем преломления, называется оптически более плотной, скорость распространения света в ней меньше. Если свет переходит из оптически более плотной среды в оптически менее плотную, то при некотором угле падения a0 угол преломления должен стать равным p/2. Интенсивность преломленного луча в этом случае становится равной нулю. Свет, падающий на границу раздела двух сред, полностью отражается от нее.

Угол падения a0, при котором наступает полное внутреннее отражение света, называется предельным углом полного внутреннего отражения. При всех углах падения, равных и больших a0, происходит полное отражение света.

Величина предельного угла находится из соотношения Если n2 = 1 (вакуум), то

2 Показа́тель преломле́ния вещества - величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и в данной среде. Также о показателе преломления говорят для любых других волн, например, звуковых

Показатель преломления зависит от свойств вещества и длины волны излучения, для некоторых веществ показатель преломления достаточно сильно меняется при изменении частоты электромагнитных волн от низких частот до оптических и далее, а также может ещё более резко меняться в определённых областях частотной шкалы. По умолчанию обычно имеется в виду оптический диапазон или диапазон, определяемый контекстом.

Существуют оптически анизотропные вещества, в которых показатель преломления зависит от направления и поляризации света. Такие вещества достаточно распространены, в частности, это все кристаллы с достаточно низкой симметрией кристаллической решётки, а также вещества, подвергнутые механической деформации.

Показатель преломления можно выразить как корень из произведения магнитной и диэлектрических проницаемостей среды

(надо при этом учитывать, что значения магнитной проницаемости и показателя абсолютной диэлектрической проницаемости для интересующего диапазона частот - например, оптического, могут очень сильно отличаться от статического значения этих величин).

Для измерения коэффициента преломления используют ручные и автоматические рефрактометры. При использовании рефрактометра для определения концентрации сахара в водном растворе прибор называют сахариметр.

Отношение синуса угла падения () луча к синусу угла преломления () при переходе луча из среды Aв средуBназывается относительным показателем преломления для этой пары сред.

Величина nесть относительный показатель преломления среды В по отношению к среде А, аn" = 1/nесть относительный показатель преломления среды А по отношению к среде В.

Эта величина, при прочих равных условиях, обычно меньше единицы при переходе луча из среды более плотной в среду менее плотную, и больше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело). Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая (не путать с оптической плотностью как мерой непрозрачности среды).

Луч, падающий из безвоздушного пространства на поверхность какой-нибудь среды В, преломляется сильнее, чем при падении на неё из другой среды А; показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным показателем преломления или просто показателем преломления данной среды, это и есть показатель преломления, определение которого дано в начале статьи. Показатель преломления любого газа, в том числе воздуха, при обычных условиях много меньше, чем показатели преломления жидкостей или твердых тел, поэтому приближенно (и со сравнительно неплохой точностью) об абсолютном показателе преломления можно судить по показателю преломления относительно воздуха.

Рис. 3. Принцип действия интерференционного рефрактометра. Луч света разделяют так, чтобы две его части прошли через кюветы длиной l, заполненные веществами с различными показателями преломления. На выходе из кювет лучи приобретают определённую разность хода и, будучи сведены вместе, дают на экране картину интерференционных максимумов и минимумов сkпорядками (схематически показана справа). Разность показателей преломленияDn=n2 –n1 =kl/2, гдеl- длина волны света.

Рефрактометрами называются приборы, служащие для измерения показателя преломления веществ. Принцип действия рефрактометра основан на явлении полного отражения. Если на границу раздела двух сред с показателями преломления и, из среды более оптически плотной падает рассеянный пучок света, то начиная с некоторого угла падения, лучи не входят во вторую среду, а полностью отражаются от границы раздела в первой среде. Этот угол называется предельным углом полного отражения. На рис.1 показано поведение лучей при падении в некоторую току этой поверхности. Луч идет под предельным углом. Из закона преломления можно определить: , (поскольку).

Величина предельного угла зависит от относительного показателя преломления двух сред. Если лучи, отраженные от поверхности, направить на собирающую линзу то в фокальной плоскости линзы можно видеть границу света и полутени, причем, положение этой границы зависит от величины предельного угла, а следовательно, и от показателя преломления. Изменение показателя преломления одной из сред влечет за собой изменение положения границы раздела. Граница раздела света и тени может служить индикатором при определении показателя преломления, что и используется в рефрактометрах. Этот метод определения показателя преломления называется методом полного отражения

Помимо метода полного отражения в рефрактометрах используется метод скользящего луча. В этом методе рассеянный пучок света попадает на границу из среды менее оптически плотной под всевозможными углами (рис. 2). Лучу скользящему по поверхности (), соответствует -- предельный угол преломления (луч на рис.2). Если на пути лучей (), преломленных на поверхности, поставить линзу, то в фокальной плоскости линзы мы также увидим резкую границу света и тени.

Рис. 2

Так как условия, определяющие величину предельного угла, в обоих методах одинаковы, то и положение границы раздела совпадает. Оба метода равноценны, но метод полного отражения позволяет измерять показателя преломления непрозрачных веществ

Ход лучей в треугольной призме

На рисунке 9 изображено сечение стеклянной призмы плоскостью,перпендикулярной ее боковым ребрам. Луч в призме отклоняется к основанию, преломляясь на гранях ОА и 0В. Угол jмежду этими гранями называют преломляющим углом призмы. Уголqотклонения луча зависит от преломляющего угла призмыj, показателя преломления п материала призмы и угла паденияa. Он может быть вычислен с помощью закона преломления (1.4).

В рефрактометре используется источник 3 белого света. Вследствие дисперсии при прохождении светом призм 1 и 2 граница света и тени оказывается окрашенной. Во избежание этого перед объективом зрительной трубы помещают компенсатор 4. Он состоит из двух одинаковых призм, каждая из которых склеена из трех призм, обладающих различным показателем преломления. Призмы подбирают так, чтобы монохроматический луч с длиной волны = 589,3 мкм. (длина волны желтой линии натрия) не испытывал после прохождения компенсатора отклонения. Лучи с другими длинами волн отклоняются призмами в различных направлениях. Перемещая призмы компенсатора с помощью специальной рукоятки, добиваются того, чтобы граница света и темноты стала возможно более чёткой.

Лучи света, пройдя компенсатор, попадают в объектив 6 зрительной трубы. Изображение границы раздела свет – тень рассматривается в окуляр 7 зрительной трубы. Одновременно в окуляр рассматривается шкала 8. Так как предельный угол преломления и предельный угол полного отражения зависят от показателя преломления жидкости, то на шкале рефрактометра сразу нанесены значения этого показателя преломления.

Оптическая система рефрактометра содержит также поворотную призму 5. Она позволяет расположить ось зрительной трубы перпендикулярно призмам 1 и 2, что делает наблюдение более удобным.

Цифровой ресурс может использоваться для обучения в рамках программы основной и средней школы (базового уровня).

Модель представляет собой анимированную иллюстрацию по теме «Закон преломления света». Рассматривается система вода–воздух. Прорисовывается ход падающего, отраженного и преломленного лучей.

Краткая теория

Закон преломления света находит объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости их распространения во второй среде υ 2:

Работа с моделью

Кнопка Старт /Стоп позволяет начать или поставить на паузу эксперимент, кнопка Сброс – начать новый эксперимент.

Данная модель может быть применена в качестве иллюстрации на уроках изучения нового материала по теме «Закон преломления света». На примере этой модели можно рассмотреть с учащимися ход луча при переходе из оптически менее плотной среды в оптически более плотную.

Пример планирования урока с использованием модели

Тема «Преломление света»

Цель урока: рассмотреть явление преломления света, ход луча при переходе из одной среды в другую.

№ п/п Этапы урока Время, мин Приемы и методы
1 Организационный момент 2
2 Проверка домашнего задания по теме «Построение изображения в плоском зеркале» 10 Самостоятельная работа
3 Объяснение нового материала по теме «Преломление света» 20 Объяснение нового материала с использованием модели «Закон преломления света»
4 Решение качественных задач по теме «Закон преломления света» 10 Решение задач на доске
5 Объяснение домашнего задания 3

Таблица 1.

Примеры вопросов и заданий

  • Свет переходит из вакуума в стекло, при этом угол падения равен α, угол преломления β. Чему равна скорость света в стекле, если скорость света в вакууме равна c ?
  • Показатели преломления воды, стекла и алмаза относительно воздуха равны 1,33, 1,5, 2,42 соответственно. В каком из этих веществ предельный угол полного отражения имеет минимальное значение?
  • Водолаз рассматривает снизу вверх из воды лампу, подвешенную на высоте 1 м над поверхностью воды. Чему равна кажущаяся высота лампы под водой?

Урок 25/III-1 Распространение света в различных средах. Преломление света на границе раздела двух сред.

    Изучение нового материала.

До сих пор мы рассматривали распространение света в одной среде, как обычно – в воздухе. Свет может распространяться в различных средах: переходить из одной среды в другую; в точках падения лучи не только отражаются от поверхности, но и частично проходят через нее. Такие переходы вызывают немало красивых и интересных явлений.

Изменение направления распространение света, проходящего через границу двух сред, называют преломлением света.

Частьсветового луча, падающего на границу раздела двух прозрачных сред, отражается, а часть переходит в другую среду. При этом направление светового луча, который перешел в другую среду, изменяется. Поэтому явление называется преломлением, а луч – преломленным.

1 – падающий луч

2 – отраженный луч

3 – преломленный луч α β

ОО 1 – граница раздела двух сред

MN - перпендикуляр О О 1

Угол, образованный лучом и перпендикуляром к границе раздела двух сред, опущенным в точку падения луча, называется углом преломления γ (гамма).

Свет в вакууме распространяется со скоростью 300000 км/с. В любой среде скорость света всегда меньше, чем в вакууме. Поэтому при переходе света из одной среды в другую, его скорость уменьшается и это является причиной преломления света. Чем меньше скорость распространения света в данной среде, тем большей оптической плотностью обладает данная среда. Так, например, воздух имеет больше оптическую плотность, чем вакуум, потому что в воздухе скорость света несколько меньше, чем в вакууме. Оптическая плотность воды больше, чем оптическая плотность воздуха, так как скорость света в воздухе больше, чем в воде.

Чем больше отличаются оптические плотности двух сред, тем больше преломляется свет на границе их раздела. Чем больше изменяется скорость света на границе раздела двух сред, тем сильнее оно преломляется.

Для каждого прозрачного вещества существует такая важная физическая характеристика, как показатель преломления света n. Он показывает, во сколько раз скорость света в данном веществе, меньше, чем в вакууме.

Показатель преломления света

Вещество

Вещество

Вещество

Каменная соль

Скипидар

Кедровое масло

Спирт этиловый

Глицерин

Плексиглас

Стекло (легкое)

Сероуглерод

Соотношение значений угла падения и угла преломления зависит от оптической плотности каждой из среды. Если луч света переходит из среды с меньшей оптической плотностью в среду с большей оптической плотностью, то угол преломления будет меньшим, чем угол падения. Если луч света переходит из среды с большей оптической плотностью, то угол преломления будет меньшим, чем угол падения. Если луч света переходит из среды с большей оптической плотностью в среду с меньшей оптической плотностью, то угол преломления больше, чем угол падения.

То есть, если n 1 γ; если n 1 >n 2 , то α<γ.

Закон преломления света :

    Луч падающий, луч преломленный и перпендикуляр к границе раздела двух сред в точке падения луча, лежат в одной плоскости.

    Соотношения угла падения и угла преломления определяются формулой.

где - синус угла падения,- синус кута преломления.

Значение синусов і тангенсов для углов 0 – 900

Градусы

Градусы

Градусы

Закон преломления света впервые сформулировал голландский астроном и математик В. Снелиус около 1626 г, профессор Лейденского университета (1613 г).

Для XVI столетия оптика была ультрасовременной наукой.Из стеклянного шара, наполненного водой, которым пользовались как линзой, возникло увеличительное стекло. А из него изобрели подзорную трубу и микроскоп. В то время Нидерландам нужны были подзорные трубы для рассматривания берега и своевременно убежать от врагов. Именно оптика обеспечила успех и надежность навигации. Поэтому в Нидерландах очень много ученых интересовались именно оптикой. Голландец Скель Ван Ройен (Снелиус) наблюдад, как тонкий луч света отражался в зеркале. Он измерял угол падения и угол отражения и установил: угол отражения равен углу падения. Ему же принадлежат законы отражения света. Он вывел закон преломления света.

Рассмотрим закон преломления света .

В ней - относительный показатель преломления второй среды относительно первой, в случае, когда второе имеет большую оптическую плотность. Если свет преломляется и проходит с среду с меньшей оптической плотностью, тогда α < γ, тогда

Если первой средой является вакуум, то n 1 =1 то .

Данный показатель называют абсолютным показателем преломления второй среды:

где - скорость света в вакууме, скорость света в данной среде.

Следствием преломления света в атмосфере Земли есть тот факт, что мы видим Солнце и звезды немного выше их реального положения. Преломлением света можно объяснить возникновение миражей, радуги… явление преломления света есть основой принципа работы численных оптических устройств: микроскопа, телескопа, фотоаппарата.