C 21 иррациональные уравнения. Элективный курс «Методы решений иррациональных уравнений

Методы решения иррациональных уравнений.

Предварительная подготовка к уроку: учащиеся должны уметь решать иррациональные уравнения различными способами.

За три недели до данного занятия учащиеся получают домашнее задание №1: решить различные иррациональные уравнения. (Учащиеся самостоятельно находят по 6 различных иррациональных уравнений и решают их в парах.)

За одну неделю до данного занятия учащиеся получают домашнее задание №2, которое выполняют индивидуально.

1. Решить уравнение различными способами.

2. Оценить достоинства и недостатки каждого способа.

3. Оформить запись выводов в виде таблицы.

п/п

Способ

Достоинства

Недостатки

Цели урока:

Образовательная: обобщение знаний учащихся по данной теме, демонстрация различных методов решения иррациональных уравнений, умения учащихся подходить к решению уравнений с исследовательских позиций.

Воспитательная: воспитание самостоятельности, умения выслушивать других и общаться в группах, повышение интереса к предмету.

Развивающая: развитие логического мышления, алгоритмической культуры, навыков самообразования, самоорганизации, работы в парах при выполнении домашнего задания, умений анализировать, сравнивать, обобщать, делать выводы.

Оборудование: компьютер, проектор, экран, таблица «Правила решения иррациональных уравнений», плакат с цитатой М.В. Ломоносова «Математику уже затем учить следует, что она ум в порядок приводит», карточки.

Правила решения иррациональных уравнений.

Тип урока: урок-семинар (работа в группах по 5-6 человек, в каждой группе обязательно есть сильные ученики).

Ход урока

I . Организационный момент

(Сообщение темы и целей урока)

II . Презентация исследовательской работы «Методы решения иррациональных уравнений»

(Работу представляет учащийся, который ее проводил.)

III . Анализ методов решения домашнего задания

(По одному учащемуся от каждой группы записывают на доске предложенные ими способы решения. Каждая группа анализирует один из способов решения, оценивает достоинства и недостатки, делает выводы. Учащиеся групп дополняют, если это необходимо. Оценивается анализ и выводы группы. Ответы должны быть четкими и полными.)

Первый способ: возведение обеих частей уравнения в одну и ту же степень с последующей проверкой.

Решение.

Снова возведем обе части уравнения в квадрат:

Отсюда

Проверка:

1. Если х= 42, то , значит, число 42 не является корнем уравнения.

2. Если х= 2, то , значит, число 2 является корнем уравнения.

Ответ: 2.

п/п

Способ

Достоинства

Недостатки

Возведение обеих частей уравнения в одну и ту же степень

1. Понятно.

2. Доступно.

1. Словесная запись.

2. Сложная проверка.

Вывод. При решении иррациональных уравнений методом возведения обеих частей уравнения в одну и ту же степень необходимо вести словесную запись, что делает решение понятным и доступным. Однако обязательная проверка иногда бывает сложной и занимает много времени. Этот метод можно использовать для решения несложных иррациональных уравнений, содержащих 1-2 радикала.

Второй способ: равносильные преобразования.

Решение: Возведем обе части уравнения в квадрат:

Ответ: 2.

п/п

Способ

Достоинства

Недостатки

Равносильных преобразований

1. Отсутствие словесного описания.

2. Нет проверки.

3. Четкая логическая запись.

4. Последовательность равносильных переходов.

1. Громоздкая запись.

2. Можно ошибиться при комбинации знаков системы и совокупности.

Вывод. При решении иррациональных уравнений методом равносильных переходов нужно четко знать, когда ставить знак системы, а когда - совокупности. Громоздкость записи, различные комбинации знаков системы и совокупности нередко приводят к ошибкам. Однако последовательность равносильных переходов, четкая логическая запись без словесного описания, не требующая проверки, являются бесспорными достоинствами данного способа.

Третий способ: функционально-графический.

Решение.

Рассмотрим функции и .

1. Функция степенная; является возрастающей, т.к. показатель степени - положительное (не целое) число.

D( f ).

Составим таблицу значений x и f ( x ).

1,5

3,5

f(x)

2. Функция степенная; является убывающей.

Найдем область определения функции D ( g ).

Составим таблицу значений x и g ( x ).

g(x)

Построим данные графики функций в одной системе координат.

Графики функций пересекаются в точке с абсциссой Т.к. функция f ( x ) возрастает, а функция g ( x ) убывает, то решение уравнения будет только одно.

Ответ: 2.

п/п

Способ

Достоинства

Недостатки

Функционально-графический

1. Наглядность.

2. Не нужно делать сложных алгебраических преобразований и следить за ОДЗ.

3. Позволяет найти количество решений.

1. словесная запись.

2. Не всегда можно найти точный ответ, а если ответ точный, то нужна проверка.

Вывод. Функционально-графический метод является наглядным, позволяет найти количество решений, но применять его лучше тогда, когда легко можно построить графики рассматриваемых функций и получить точный ответ. Если ответ приближенный, то лучше воспользоваться другим методом.

Четвертый способ: введение новой переменной.

Решение. Введем новые переменные, обозначив Получим первое уравнение системы

Составим второе уравнение системы.

Для переменной :

Для переменной

Поэтому

Получим систему двух рациональных уравнений, относительно и

Вернувшись к переменной , получим

Введение новой переменной

Упрощение - получение системы уравнений, не содержащих радикалы

1. Необходимость отслеживать ОДЗ новых переменных

2. Необходимость возврата к исходной переменной

Вывод. Этот метод лучше применять для иррациональных уравнений, содержащих радикалы различных степеней, или одинаковые многочлены под знаком корня и за знаком корня, или взаимообратные выражения под знаком корня.

- Итак, ребята, для каждого иррационального уравнения необходимо выбирать наиболее удобный способ решения: понятный. Доступный, логически и грамотно оформленный. Поднимите руку, кто из вас при решении этого уравнения отдал бы предпочтение:

1) методу возведения обеих частей уравнения в одну и ту же степень с проверкой;

2) методу равносильных преобразований;

3) функционально-графическому методу;

4) методу введения новой переменной.

IV . Практическая часть

(Работа в группах. Каждая группа учащихся получает карточку с уравнением и решает ее в тетрадях. В это время по одному представителю от группы решают пример на доске. Учащиеся каждой группы решают тот же пример, что и член их группы, и следят за правильностью выполнения задания на доске. Если отвечающий у доски допускает ошибки, то тот, кто их замечает, поднимает руку и помогает исправить. В ходе занятия каждый учащийся помимо примера, решаемого его группой, должен записать в тетрадь и другие, предложенные группам, и решить их дома.)

Группа 1.

Группа 2.

Группа 3.

V . Самостоятельная работа

(В группах сначала идет обсуждение, а затем учащиеся приступают к выполнению задания. Правильное решение, подготовленное преподавателем, выводится на экран.)

VI . Подведение итогов урока

Теперь вы знаете, что решение иррациональных уравнений требует от вас хороших теоретических знаний, умения применять их на практике, внимания, трудолюбия, сообразительности.

Домашнее задание

Решить уравнения, предложенные группам в ходе занятия.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Муниципальное общеобразовательное учреждение

«Куединская средняя общеобразовательная школа №2»

Способы решения иррациональных уравнений

Выполнила: Егорова Ольга,

Руководитель:

Учитель

математики,

высшей квалификационной

Введение ....……………………………………………………………………………………… 3

Раздел 1. Методы решения иррациональных уравнений …………………………………6

1.1 Решение иррациональных уравнений части С……….….….……………………21

Раздел 2.Индивидуальные задания …………………………………………….....………...24

Ответы ………………………………………………………………………………………….25

Список Литературы …….…………………………………………………………………….26

Введение

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать. Одним из этих видов являются иррациональные уравнения.

Иррациональные уравнения

Уравнение, содержащее неизвестное (либо рациональное алгебраическое выражение от неизвестного) под знаком радикала, называют иррациональным уравнением . В элементарной математике решения иррациональных уравнений отыскивается в множестве действительных чисел.

Всякое иррациональное уравнение с помощью элементарных алгебраических операций (умножение, деление, возведение в целую степень обеих частей уравнения) может быть сведено к рациональному алгебраическому уравнению. При этом следует иметь в виду, что полученное рациональное алгебраическое уравнение может оказаться неэквивалентным исходному иррациональному уравнению, а именно может содержать "лишние" корни, которые не будут корнями исходного иррационального уравнения. Поэтому, найдя корни полученного рационального алгебраического уравнения, необходимо проверить, а будут ли все корни рационального уравнения корнями иррационального уравнения.

В общем случае трудно указать какой-либо универсальный метод решения любого иррационального уравнения, так как желательно, чтобы в результате преобразований исходного иррационального уравнения получилось не просто какое-то рациональное алгебраическое уравнение, среди корней которого будут и корни данного иррационального уравнения, а рациональное алгебраическое уравнение образованное из многочленов как можно меньшей степени. Желание получить то рациональное алгебраическое уравнение, образованное из многочленов как можно меньшей степени, вполне естественно, так как нахождение всех корней рационального алгебраического уравнения само по себе может оказаться довольно трудной задачей, решить которую полностью мы можем лишь в весьма ограниченном числе случаев.

Виды иррациональных уравнений

Решение иррациональных уравнений четной степени всегда вызывает больше проблем, чем решение иррациональных уравнений нечетной степени. При решении иррациональных уравнений нечетной степени изменение ОДЗ не происходит. Поэтому ниже будут рассматриваться иррациональные уравнения, степень которых является четной. Существует два вида иррациональных уравнений:

2..

Рассмотрим первый из них.

ОДЗ уравнения: f(x) ≥ 0. В ОДЗ левая часть уравнения всегда неотрицательна – поэтому решение может существовать только тогда, когда g(x) ≥ 0. В этом случае обе части уравнения неотрицательны, и возведение в степень 2 n дает равносильное уравнение. Мы получаем, что

Обратим внимание на то, что при этомОДЗ выполняется автоматически, и его можно не писать, а условие g(x) ≥ 0 необходимо проверять.

Примечание: Это очень важное условие равносильности. Во-первых, оно освобождает учащегося от необходимости исследовать, а после нахождения решений проверять условие f(x) ≥ 0 – неотрицательности подкоренного выражения. Во-вторых, акцентирует внимание на проверке условия g(x) ≥ 0 – неотрицательности правой части. Ведь после возведения в квадрат решается уравнение т. е. решаются сразу два уравнения (но на разных промежутках числовой оси!):

1. - там, где g(x) ≥ 0 и

2. - там, где g(x) ≤ 0.

Между тем многие, по школьной привычке находить ОДЗ, поступают при решении таких уравнений ровно наоборот:

а) проверяют, после нахождения решений, условие f(x) ≥ 0 (которое автоматически выполнено), делают при этом арифметические ошибки и получают неверный результат;

б) игнорируют условие g(x) ≥ 0 - и опять ответ может оказаться неверным.

Примечание: Условие равносильности особенно полезно при решении тригонометрических уравнений, в которых нахождение ОДЗ связано с решение тригонометрических неравенств, что гораздо сложнее, чем решение тригонометрических уравнений. Проверку в тригонометрических уравнениях даже условия g(x) ≥ 0 не всегда просто сделать.

Рассмотрим второй вид иррациональных уравнений.

. Пусть задано уравнение . Его ОДЗ:

В ОДЗ обе части неотрицательны, и возведение в квадрат дает равносильное уравнение f(x) = g(x). Поэтому в ОДЗ или

При таком способе решения достаточно проверить неотрицательность одной из функций – можно выбрать более простую.

Раздел 1. Методы решения иррациональных уравнений

1 метод. Освобождение от радикалов путем последовательного возведения обеих частей уравнения в соответствующую натуральную степень

Наиболее часто применяемым методом решения иррациональных уравнений является метод освобождения от радикалов путем последовательного возведения обеих частей уравнения в соответствующую натуральную степень. При этом следует иметь в виду, что при возведении обеих частей уравнения в нечетную степень полученное уравнение, эквивалентное исходному, а при возведении обеих частей уравнения в четную степень полученное уравнение будет, вообще говоря, неэквивалентным исходному уравнению. В этом легко убедиться, возведя обе части уравнения в любую четную степень. В результате этой операции получается уравнение , множество решений которого представляет собой объединение множеств решений: https://pandia.ru/text/78/021/images/image013_50.gif" width="95" height="21 src=">. Однако, несмотря на этот недостаток, именно процедура возведения обеих частей уравнения в некоторую (часто четную) степень является самой распространенной процедурой сведения иррационального уравнения к рациональному уравнению.

Решить уравнение:

Где - некоторые многочлены. В силу определения операции извлечения корня в множестве действительных чисел допустимые значения неизвестного https://pandia.ru/text/78/021/images/image017_32.gif" width="123 height=21" height="21">..gif" width="243" height="28 src=">.

Так как обе части 1 уравнения возводились в квадрат, может оказаться, что не все корни 2 уравнения будет являться решениями исходного уравнения, необходима проверка корней.

Решить уравнение:

https://pandia.ru/text/78/021/images/image021_21.gif" width="137" height="25">

Возводя обе части уравнения в куб, получим

Учитывая, что https://pandia.ru/text/78/021/images/image024_19.gif" width="195" height="27">(Последнее уравнение может иметь корни, которые, вообще говоря, не являются корнями уравнения ).

Возводим обе части этого уравнения в куб: . Перепишем уравнение в виде х3 – х2 = 0 ↔ х1 = 0, х2 = 1. проверкой устанавливаем, что х1 = 0 – посторонний корень уравнения (-2 ≠ 1), а х2 = 1 удовлетворяет исходному уравнению.

Ответ: х = 1.

2 метод. Замена смежной системой условий

При решении иррациональных уравнений, содержащих радикалы четного порядка, в ответах могут появится посторонние корни, выявить которые не всегда просто. Чтобы легче было выявить и отбросить посторонние корни, в ходе решений иррациональных уравнений его сразу же заменяют смежной системой условий. Дополнительные неравенства в системе фактически учитывают ОДЗ решаемого уравнения. Можно находить ОДЗ отдельно и учитывать его позднее, однако предпочтительнее применять именно смешанные системы условий: меньше опасность что-то забыть, не учесть в процессе решения уравнения. Поэтому в некоторых случаях рациональнее использовать способ перехода к смешанным системам.

Решить уравнение:

Ответ: https://pandia.ru/text/78/021/images/image029_13.gif" width="109 height=27" height="27">

Данное уравнение равносильно системе

Ответ: уравнение решений не имеет.

3 метод. Использование свойств корня n-ой степени

При решении иррациональных уравнений используются свойства корня n-ой степени. Арифметическим корнем n- й степени из числа а называют неотрицательное число, n- я степень числа которого равна а . Если n – четное(2n ), то а ≥ 0, в противном случае корень не существует. Если n – нечетное(2 n+1 ), то а – любое и = - ..gif" width="45" height="19"> Тогда:

2.

3.

4.

5.

Применяя любую из этих формул, формально (без учета указанных ограничений), следует иметь ввиду, что ОДЗ левой и правой частей каждой из них могут быть различными. Например, выражение определено при f ≥ 0 и g ≥ 0 , а выражение - как при f ≥ 0 и g ≥ 0 , так и при f ≤ 0 и g ≤ 0.

Для каждой из формул 1-5 (без учета указанных ограничений) ОДЗ правой ее части может быть шире ОДЗ левой. Отсюда следует, что преобразования уравнения с формальным использованием формул 1-5 «слева - направо» (как они написаны) приводят к уравнению, являющемуся следствием исходного. В этом случае могут появится посторонние корни исходного уравнения, поэтому обязательным этапом в решении исходного уравнения является проверка.

Преобразования уравнений с формальным использованием формул 1-5 «справа – налево» недопустимы, так как возможно суждение ОДЗ исходного уравнения, а следовательно, и потеря корней.

https://pandia.ru/text/78/021/images/image041_8.gif" width="247" height="61 src=">,

являющееся следствием исходного. Решение этого уравнения сводится к решению совокупности уравнений .

Из первого уравнения этой совокупности находим https://pandia.ru/text/78/021/images/image044_7.gif" width="89" height="27"> откуда находим . Таким образом корнями данного уравнения могут быть только числа (-1) и (-2). Проверка показывает, что оба найденных корня удовлетворяют данному уравнению.

Ответ: -1,-2.

Решите уравнение: .

Решение: на основании тождеств первое слагаемое заменить на . Заметить, что как сумма двух неотрицательных чисел левой части. «Снять» модуль и после приведения подобных членов решить уравнение. Так как , то получаем уравнение . Так как и , то и https://pandia.ru/text/78/021/images/image055_6.gif" width="89" height="27 src=">.gif" width="39" height="19 src=">.gif" width="145" height="21 src=">

Ответ: х = 4,25.

4 метод. Введения новых переменных

Другим примером решения иррациональных уравнений является способ введения новых переменных, относительно которых получается либо более простое иррациональное уравнение, либо рациональное уравнение.

Решение иррациональных уравнений путем замены уравнения его следствием (с последующей проверкой корней) можно проводить следующим образом:

1. Найти ОДЗ исходного уравнения.

2. Перейти от уравнения к его следствию.

3. Найти корни полученного уравнения.

4. Проверить, являются ли найденные корни корнями исходного уравнения.

Проверка состоит в следующем:

А) проверяется принадлежность каждого найденного корня ОДЗ исходного уравнения. Те корни, которые не принадлежат ОДЗ, являются посторонними для исходного уравнения.

Б) для каждого корня, входящего в ОДЗ исходного уравнения, проверяется, имеют ли одинаковые знаки левая и правая части каждого из уравнений, возникающих в процессе решения исходного уравнения и возводимых в четную степень. Те корни, для которых части какого-либо возводимого в четную степень уравнения имеют разные знаки, являются посторонними для исходного уравнения.

В) только те корни, которые принадлежат ОДЗ исходного уравнения и для которых обе части каждого из уравнений, возникающих в процессе решения исходного уравнения и возводимых в четную степень, имеют одинаковые знаки, проверяются непосредственной подстановкой в исходное уравнение.

Такой метод решения с указанным способом проверки позволяет избежать громоздких вычислений в случае непосредственной подстановки каждого из найденных корней последнего уравнения в исходное.

Решить иррациональное уравнение:

.

Множество допустимых значений этого уравнения:

Положив , после подстановки получим уравнение

или эквивалентное ему уравнение

которое можно рассматривать как квадратное уравнение относительно. Решая это уравнение, получим

.

Следовательно, множество решений исходного иррационального уравнения представляет собой объединение множеств решений следующих двух уравнений:

, .

Возведя обе части каждого из этих уравнений в куб, получим два рациональных алгебраических уравнения:

, .

Решая эти уравнения, находим, что данное иррациональное уравнение имеет единственный корень х = 2 (проверка не требуется, так как все преобразования равносильны).

Ответ: х = 2.

Решить иррациональное уравнение:

Обозначим 2x2 + 5x – 2 = t. Тогда исходное уравнение примет вид . Возведя обе части полученного уравнения в квадрат и приведя подобные члены, получим уравнение , являющееся следствием предыдущего. Из него находим t = 16 .

Возвращаясь к неизвестному х, получим уравнение 2x2 + 5x – 2 = 16, являющееся следствием исходного. Проверкой убеждаемся, что его корни х1 = 2 и х2 = - 9/2 являются корнями исходного уравнения.

Ответ: х1 = 2, х2 = -9/2.

5 метод. Тождественное преобразование уравнения

При решении иррациональных уравнений не следует начинать решение уравнение с возведения обеих частей уравнений в натуральную степень, пытаясь свести решение иррационального уравнения к решению рационального алгебраического уравнения. Сначала необходимо посмотреть, нельзя ли сделать какое-нибудь тождественное преобразование уравнения, которое может существенно упростить его решение.

Решить уравнение:

Множество допустимых значений данного уравнения:https://pandia.ru/text/78/021/images/image074_1.gif" width="292" height="45"> Разделим данное уравнение на .

.

Получим:

При а =0 уравнение решений иметь не будет; при уравнение может быть записано в виде

при данное уравнение решений не имеет, так как при любом х , принадлежащем множеству допустимых значений уравнения, выражение, стоящее в левой части уравнения, положительно;

при уравнение имеет решение

Принимая во внимание, что множество допустимых решений уравнения определяется условием , получаем окончательно:

При решением этого иррационального уравнения будет https://pandia.ru/text/78/021/images/image084_2.gif" width="60" height="19"> решением уравнения будет . При всех остальных значениях х уравнение решений не имеет.

ПРИМЕР 10:

Решить иррациональное уравнение: https://pandia.ru/text/78/021/images/image086_2.gif" width="381" height="51">

Решение квадратного уравнения системы дает два корня: х1 = 1 и х2 = 4. первый из полученных корней не удовлетворяет неравенству системы, поэтому х = 4.

Примечания.

1) Проведение тождественных преобразований позволяет обходиться без проверки.

2) Неравенство х – 3 ≥0 относится к тождественным преобразованиям, а не к области определения уравнения.

3) В левой части уравнения стоит убывающая функция, а в правой части этого уравнения расположена возрастающая функция. Графики убывающей и возрастающей функций в пересечении их областей определения могут иметь не больше одной общей точки. Очевидно, что в нашем случае х = 4 является абсциссой точки пересечения графиков.

Ответ: х = 4.

6 метод. Использование области определения функций при решении уравнений

Этот метод наиболее результативен при решении уравнений, в состав которых входят функции https://pandia.ru/text/78/021/images/image088_2.gif" width="36" height="21 src="> и найти ее область определения (f) ..gif" width="53" height="21">.gif" width="88" height="21 src=">, то нужно проверить верно ли уравнение на концах промежутка, причем, если а < 0, а b > 0, то необходима проверка на промежутках (а;0) и . Наименьшее целое число в Е(у) равно 3.

Ответ : х = 3.

8 метод. Применение производной при решении иррациональных уравнений

Чаще всего при решении уравнений с помощью метода применения производной используется метод оценки.

ПРИМЕР 15:

Решите уравнение: (1)

Решение: Так как https://pandia.ru/text/78/021/images/image122_1.gif" width="371" height="29">, или (2). Рассмотрим функцию ..gif" width="400" height="23 src=">.gif" width="215" height="49"> при всех и, следовательно, возрастает. Поэтому уравнение равносильно уравнению , имеющему корень , являющимся корнем исходного уравнения.

Ответ:

ПРИМЕР 16:

Решить иррациональное уравнение:

Область определения функции есть отрезок . Найдем наибольшее и наименьшее значение значения этой функции на отрезке . Для этого найдем производную функции f(x) : https://pandia.ru/text/78/021/images/image136_1.gif" width="37 height=19" height="19">. Найдем значения функции f(x) на концах отрезка и в точке : Значит, Но и, следовательно, равенство возможно лишь при условииhttps://pandia.ru/text/78/021/images/image136_1.gif" width="37" height="19 src=">. Проверка показывает, что число 3 – корень данного уравнения.

Ответ: х = 3.

9 метод. Функциональный

На экзаменах иногда предлагают решить уравнения, которые можно записать в виде , где - это некоторая функция.

Например, некоторые уравнения: 1) 2) . Действительно, в первом случае , во втором случае . Поэтому решать иррациональные уравнения с помощью следующего утверждения: если функция строго возрастает на множестве Х и для любого , то уравнения и т. д. равносильны на множестве Х .

Решить иррациональное уравнение: https://pandia.ru/text/78/021/images/image145_1.gif" width="103" height="25"> строго возрастает на множестве R, и https://pandia.ru/text/78/021/images/image153_1.gif" width="45" height="24 src=">..gif" width="104" height="24 src="> которое имеет единственный корень Следовательно, и равносильное ему уравнение (1) также имеет единственный корень

Ответ: х = 3.

ПРИМЕР 18:

Решить иррациональное уравнение: (1)

В силу определения квадратного корня получаем, что если уравнение (1) имеет корни, то они принадлежат множеству https://pandia.ru/text/78/021/images/image159_0.gif" width="163" height="47">. (2)

Рассмотрим функцию https://pandia.ru/text/78/021/images/image147_1.gif" width="35" height="21"> строго возрастает на этом множестве для любого ..gif" width="100" height="41"> которое имеет единственный корень Следовательно, и равносильное ему на множестве Х уравнение (1) имеет единственный корень

Ответ: https://pandia.ru/text/78/021/images/image165_0.gif" width="145" height="27 src=">

Решение: Данное уравнение равносильно смешанной системе

Иррациональными называются уравнения, содержащие неизвестную величину под знаком корня. Таковы, например, уравнения

Во многих случаях, применяя однократно или многократно возведение в степень обеих частей уравнения, удается свести иррациональное уравнение к алгебраическому уравнению той или иной степени (являющемуся следствием исходного уравнения). Так как при возведении уравнения в степень могут появиться посторонние решения, то, решив алгебраическое уравнение, к которому мы привели данное иррациональное уравнение, следует найденные корни проверить подстановкой в исходное уравнение и сохранить лишь те, которые ему удовлетворяют, а остальные - посторонние - отбросить.

При решении иррациональных уравнений мы ограничиваемся только их действительными корнями; все корни четной степени в записи уравнений понимаются в арифметическом смысле.

Рассмотрим некоторые типичные примеры иррациональных уравнений.

А. У равнения, содержащие неизвестную под знаком квадратного корня. Если данное уравнение содержит только один квадратный корень, под знаком которого имеется неизвестная то следует этот корень уединить, т. е. поместить в одной части уравнения, а все другие члены перенести в другую часть. После возведения в квадрат обеих частей уравнения мы уже освободимся от иррациональности и получим алгебраическое уравнение для

Пример 1. Решить уравнение .

Решение. Уединяем корень в левой части уравнения;

Возводим полученное равенство в квадрат:

Находим корни этого уравнения:

Проверка показывает, что лишь удовлетворяет исходному уравнению.

Если в уравнение входит два и более корня, содержащих х, то возведение в квадрат приходится повторять несколько раз.

Пример 2. Решить следующие уравнения:

Решение, а) Возводим обе части уравнения в квадрат:

Уединяем корень:

Полученное уравнение снова возводим в квадрат:

После преобразований получаем для следующее квадратное уравнение:

решаем его:

Подстановкой в исходное уравнение убеждаемся в том, что есть его корень, а является для него посторонним корнем.

б) Пример можно решить тем же методом, каким был решен пример а). Однако, воспользовавшись тем, что правая часть данного уравнения не содержит неизвестной величины, поступим иначе. Умножим уравнение на выражение, сопряженное с его левой частью; получим

Справа стоит произведение суммы на разность, т. е. разность квадратов. Отсюда

В левой части данного уравнения стояла сумма квадратных корней; в левой части полученного теперь уравнения стоит разность тех же корней. Запишем данное и полученное уравнения:

Взяв сумму этих уравнений, получаем

Возведем в квадрат последнее уравнение и после упрощений получим

Отсюда находим . Проверкой убеждаемся в том, что корнем данного уравнения служит только число . Пример 3. Решить уравнение

Здесь уже под знаком радикала мы имеем квадратные трехчлены.

Решение. Умножаем уравнение на выражение, сопряженное с его левой частью:

Вычтем последнее уравнение из данного:

Возводим это уравнение в квадрат:

Из последнего уравнения находим . Проверкой убеждаемся, что корнем данного уравнения служит только число х = 1.

Б. У равнения, содержащие корни третьей степени. Системы иррациональных уравнений. Ограничимся отдельными примерами таких уравнений и систем.

Пример 4. Решить уравнение

Решение. Покажем два способа решения уравнения (70.1). Первый способ. Возведем обе части данного уравнения в куб (см. формулу (20.8)):

(здесь мы заменили сумму кубических корней числом 4, пользуясь уравнением ).

Итак, имеем

т. е., после упрощений,

откуда Оба корня удовлетворяют исходному уравнению.

Второй способ. Положим

Уравнение (70.1) запишется в виде . Кроме того, видно что . От уравнения (70.1) мы перешли к системе

Разделив первое уравнение системы почленно на второе, найдем