График функции с 2 модулями. Графики функций с модулем

Введение……………………………………………………………. 3

I. График квадратичной функции, содержащей переменную
под знаком абсолютной величины
1.1. Основные определения и свойства………………………… 4
1.2. Построение графика квадратичной функции, содержащей
переменную под знаком модуля…………………………… 5
II. Построение графика квадратичной функции, содержащей
переменную под знаком модуля, в программе
Microsoft Excel…………………………………………………. 12
Заключение…………………………………………………. …. 15
Список использованной литературы…………………...…….. 16

Введение

Мне приходилось делить своё время между политикой и уравнениями. Однако уравнения, по-моему, гораздо важнее, потому что политика существует только для данного момента, а уравнения будут существовать вечно.

А. Эйнштейн.

Когда в «стандартные» уравнения прямых, парабол, гипербол включают знак модуля, их графики становятся необычными и даже красивыми. Чтобы научиться строить такие графики, надо владеть приемами построения базовых фигур, а также твердо знать и понимать определение модуля числа. В школьном курсе математики графики с модулем рассматриваются недостаточно углубленно, именно поэтому мне захотелось расширить свои знания по данной теме, провести собственные исследования.
Цель работы – рассмотреть построение графика квадратичной функции, содержащей переменную под знаком модуля.
Объект исследования: график квадратичной функции.
Предмет исследования: изменения графика квадратичной функции в зависимости от расположения знака абсолютной величины.
Задачи:
1) Изучить литературу о свойствах абсолютной величины и квадратичной функции.
2) Исследовать изменения графика квадратичной функции в зависимости от расположения знака абсолютной величины.
3) Научиться стоить графики уравнений, используя различные программы для построения графиков, в том числе Microsoft Excel.
Методы исследования:
1) теоретический (логическая ступень познания);
2) эмпирический (исследование, эксперимент);
3) моделирование.
Практическая значимость моей работы заключается:
1) в использовании приобретенных знаний по данной теме, а также углубление их и применение к другим функциям и уравнениям;
2)в использовании навыков исследовательской работы в дальнейшей учебной деятельности.

I. График квадратичной функции, содержащей переменную под знаком абсолютной величины

1.1. Основные определения и свойства.

Функция – одно из важнейших математических понятий. Функцией называют такую зависимость переменной y от переменной x, при которой каждому значению переменной x соответствует единственное значение переменной у.
Способы задания функции:
1) аналитический способ (функция задается с помощью математической формулы);
2) табличный способ (функция задается с помощью таблицы);
3) описательный способ (функция задается словесным описанием);
4) графический способ (функция задается с помощью графика).
Графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значению аргумента, а ординаты – соответствующим значениям функции.
Функция, определяемая формулой у=ах2+вх+с, где х и у переменные, а параметры а, в и с – любые действительные числа, причём а 0, называется квадратичной.
График функции у=ах2+вх+с есть парабола; осью симметрии параболы у=ах2+вх+с является прямая, при а>0 «ветви» параболы направлены вверх, при а<0 – вниз.
Чтобы построить график квадратичной функции, нужно:
1) найти координаты вершины параболы и отметить её в координатной плоскости;
2) построить ещё несколько точек, принадлежащих параболе;
3) соединить отмеченные точки плавной линией.
Координаты вершины параболы определяются по формулам:
, .

Абсолютной величиной положительного числа называется само положительное число, абсолютной величиной отрицательного числа называется противоположное ему положительное число. Абсолютная величина нуля принимается равной нулю, т.е.

.
Свойства:
1) Абсолютная величина суммы чисел не больше суммы абсолютных величин её слагаемых, т.е.
|а+в| |а|+|в|
2) Абсолютная величина разности двух чисел не меньше разности абсолютных величин этих чисел, т.е.
|а-в| |а|-|в| или |а-в| |в|-|а|
3) Абсолютная величина произведения равна произведению абсолютных величин сомножителей, т.е.
|а в|=|а| |в|
4) Абсолютная величина частного равна частному от деления абсолютных величин делимого и делителя, т.е.

5) Абсолютная величина степени с целым положительным показателем равна той же степени абсолютной величины основания, т.е.
|аn|=|a|n.

1.2. Построение графика квадратичной функции, содержащей переменную под знаком модуля.

Математические сведения могут применяться умело и с пользой только в том случае, если они усвоены творчески, так, что учащийся видит сам, как можно было бы прийти к ним самостоятельно.
А.Н. Колмогоров.

Для построения графиков функций, содержащих знак модуля, как и при решении уравнений, сначала находят корни выражений, стоящих под знаком модуля. В результате ось Ох разбивается на промежутки. Убираем знаки модуля, беря каждое выражение в каждом промежутке с определённым знаком, которые находим методом интервалов.
В каждом промежутке получается функция без знака модуля. Строим график каждой функции в каждом промежутке.

В простейшем случае, когда только одно выражение стоит под знаком модуля и нет других слагаемых без знака модуля, можно построить график функции, опустив знак модуля, и затем часть графика, расположенную в области отрицательных значений y, отобразить относительно оси Ох.

Покажем на примерах некоторые приемы построения графиков функций с модулями.

Пример 1.
Сначала построим параболу у= х2– 6х +5. Чтобы получить из неё график функции у = |х2 - 6х + 5|, нужно каждую точку параболы с отрицательной ординатой заменить точкой с той же абсциссой, но с противоположной (положительной) ординатой. Иными словами, часть параболы, расположенную ниже оси Ох, нужно заменить линией, ей симметричной относительно оси Ох (Рис.1).

Пример 2.
Рассмотрим график функции у = |х|2– 6х +5.
Т. к. |х| возводится в квадрат, то независимо от знака числа х после возведения в квадрат он будет положительным. Отсюда следует, то график функции у =|х|2 - 6х +5 будет идентичен графику функции у = х2 - 6х +5, т.е. графику функции, не содержащей знака абсолютной величины (Рис.2).

Рис.2
Пример 3.
Рассмотрим график функции у = х2 – 6|х| +5.
Воспользовавшись определением модуля числа, заменим формулу
у = х2 – 6|х| +5
Теперь мы имеем дело с хорошо знакомым нам кусочным заданием зависимости. Строить график будем так:
1) построим параболу у = х2 - 6х +5 и обведём ту её часть, которая соответствует неотрицательным значениям х, т.е. часть, расположенную правее оси Оу.
2) в той же координатной плоскости построим параболу у = х2 +6х +5 и обведём ту её часть, которая соответствует отрицательным значениям х, т.е. часть, расположенную левее оси Оу. Обведённые части парабол вместе образуют график функции у = х2 - 6|х| +5 (Рис.3).

Пример 4.
Рассмотрим график функции у = |х|2 - 6|х|+5.
Т.к. график уравнения у = |х|2 – 6х +5 такой же, как и график функции без знака модуля (рассмотрено в примере 2) то следует, что график функции у = |х|2 – 6|х| +5 идентичен графику функции у = х2 – 6|х| +5, рассмотренному в примере 3 (Рис.3).

Пример 5.
Для этого построим график функции у = х2 - 6х. Чтобы получить из неё график функции у = |х2 - 6х|, нужно каждую точку параболы с отрицательной ординатой заменить точкой с той же абсциссой, но с противоположной (положительной) ординатой. Иными словами, часть параболы, расположенную ниже оси х, нужно заменить линией ей симметричной относительно оси х. Т.к. нам нужно построить график функции у = |х2 - 6х| +5, то график рассмотренной нами функции у = |х2 - 6х| нужно просто поднять по оси у на 5 единиц вверх (Рис.4).


Пример 6.

Построим график функции у = х2 - |6х+5|. Для этого воспользуемся хорошо нам известной кусочной функцией. Найдём нули функции

у = 6х +5
6х + 5 = 0 при.
Рассмотрим два случая:
1)Если, то уравнение примет вид у = х2 – 6х -5. Построим эту параболу и обведём ту её часть, где.
2)Если, то уравнение принимает вид у = х2+ 6х +5. Постоим эту параболу и обведём ту её часть, которая расположена левее точки с координатами (Рис.5).

Пример 7 .
Для этого мы построим график функции у =х2- 6|х| +5. Построение этого графика мы проводили в примере 3. Т. к. наша функция полностью находится под знаком модуля, то для того, чтобы построить график функции у = |х2 – 6|х| +5|, нужно каждую точку графика функции у = х2 – 6|х|+5 с отрицательной ординатой заменить точкой с той же абсциссой, но с противоположной (положительной) ординатой, т.е. часть параболы, расположенную ниже оси Ох, нужно заменить линией ей симметричной относительно оси Ох (Рис.6).


Рис.6
Пример 8.
Рассмотрим построение графиков вида = f (x).
Учитывая, что в формуле = f (x), f (x) , и на основании определения модуля =
Перепишем формулу = f (x) в виде у= f (x), где f (x) .
Исходя из этого, сформулируем правило-алгоритм.
Для построения графиков вида = f (x) достаточно построить график функции у = f (x) для тех х из области определения, при которых f (x) , и отразить полученную часть графика симметрично относительно оси абсцисс.
Таким образом, график зависимости = f (x) состоит из графиков двух функций: у = f (x) и у = - f (x).
Построим график функции.

Дальнейшее вставление рисунков и формул технически невозможно
Рис.7

Пример 9.
Рассмотрим построение графиков вида
Осуществляя уже известные преобразования графиков, выполним построение сначала графика y = │f (x)│, а затем уже и множества точек, координаты которых удовлетворяют условию
Алгоритм построения:
1) Строим график функции.
2) Часть графика симметрично отображаем относительно оси Ох.
3) Полученный график симметрично отображаем относительно оси Ох (Рис.8).
Рис.8

Выводы:
1.График функции y = │f (x)│ можно получить из графика y = f (x), оставив на месте ту его часть, где f (x) , и симметрично отразив относительно оси Ох другую его часть, где f (x) < 0. Это следует из равенства │ f (x)│=
2.График функции y = f (│x│) совпадает с графиком функции y = f (x) на множестве неотрицательных значений аргумента и симметричен ему относительно оси Оу на множестве отрицательных значений аргумента.
3. График функции = f (x) можно получить, построив график функции у = f (x) для тех х из области определения, при которых f (x) , и отразив полученную часть графика симметрично относительно оси абсцисс.
4. График функции можно получить, построив график функции
у = f (x) и симметрично отобразив относительно оси Ох часть графика. Полученный график симметрично отображаем относительно оси Ох.

II. Построение графика квадратичной функции, содержащей переменную под знаком модуля, в программе Microsoft Excel.

Пример 1.
Построим график функции у = |х2 – 6х +5|.


Пример 2.
Построим график функции у = х2 – 6|х| +5.

Пример 3.
Построим график функции у = |х2 – 6х| +5.


Пример 4.

Построим график функции у = х2 - |6х+5|.

Пример 5.
Построим график функции у = |х2 – 6|х| +5|.

Пример 6.
Построим график функции.

Пример 7.
Построим график функции.

Заключение

Знание только тогда знание, когда оно приобретено усилиями своей мысли, а не памятью.
Л. Н. Толстой.

Считаем, что в данной исследовательской работе цель достигнута, так как были решены все поставленные задачи.
Нами рассмотрено построение графика квадратичной функции, содержащей переменную под знаком модуля, и исследованы изменения графика квадратичной функции в зависимости от расположения знака абсолютной величины. Были освоены приёмы построения графиков функций вида: y = f (│x│), y = │f (x)│, y = │f (│x │)│,
Для написания данной исследовательской работы
1) была изучена литература о свойствах абсолютной величины и квадратичной функции;
2) исследованы и проанализированы изменения при построении графика квадратичной функции, в которой знак модуля содержат различные переменные;
3) построены графики уравнений с использованием программ для построения графиков Graph Master v 1.1, Microsoft Excel и другие;
При написании работы мы пользовались учебной литературой, Интернет-ресурсами, работали в таких программах, как Microsoft Word, Paint, Редактор формул, Microsoft Excel.
Тема исследований оказалась очень многогранной, требующей совершенно новых умений и навыков как на этапе исследований, так и при написании и оформлении работы.
Данный практический опыт работы с программами для построения графиков, для записи математических формул, а также полученные навыки исследовательской деятельности будут использованы нами в дальнейшей учебной деятельности, в том числе при изучении других функций и уравнений с модулем, при построении графиков этих функций.

Список использованной литературы

1.Математика. Алгебра. Функции. Анализ данных. 9 кл.: М.: Учеб. для общеобразоват. учреждений / Г. В. Дорофеев, С. Б. Суворова, Е. А. Бунимович, Л. В. Кузнецова, С. С. Минаева; Под ред. Г. В. Дорофеева. – 5-е изд., стереотип. – М.: Дрофа, 2004. – 352 с.: ил.
2. Курс высшей математики для техникумов. И. Ф. Суворов, Москва - 1967.
3. Математика. Алгебра и элементарные функции. М. И. Абрамович, М. Т. Стародубцев.
4. А.Г. Мордкович Книга для учителя. Беседы с учителями. Москва – «Оникс 21 век», «Мир и образование», 2005 г.
5.Элективный курс. Знакомьтесь: модуль! Алгебра. 8-9 классы./ Сост. Баукова Т.Т.-Волгоград: ИТД «Корифей».- 96 с.

Интернет – ресурсы

http://festival.1september.ru/articles/504401/
http://www.uztest.ru/abstracts/?idabstract=18
http://dic.academic.ru/dic.nsf/enc3p/45426
http://www.zaitseva-irina.ru/html/f1128423553.html
http://www.sorobr1.ru/index.php?option=com_content&task=view&id=8&Itemid=41
http://mschool.kubsu.ru/cdo/shabitur/kniga/sprav/function/kvfunc/kvfunct.htm
http://tvsh2004.narod.ru/alg02.html
http://info.territory.ru/univer/qvadro_func.htm
http://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%B8%D1%87%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F

Эрднигоряева Марина

Данная работа является результатом изучения темы на факультативе в 8 классе. Здесь показываются геометрические преобразования графиков и их применение к построению графиков с модулями. Вводится понятие модуля и его свойства. Показано как строить графики с модулями различными способами: с помощью преобразований и на основе понятия модуля.Тема проекта является одной из трудных в курсе математики, относится к вопросам, рассматриваемых на факультативах,изучается в классах с улгубленным изучением математики. Тем не меннн такие задания даются во второй части ГИА, в ЕГЭ. Данная работа поможет понять как строить графики с модулями не только линейных, но и других функций(квадратичных, обратно- пропорциональных и др.) Работа поможет при подготовке к ГИА и ЕГЭ.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Графики линейной функции с модулями Работа Эрднигоряевой Марины, ученицы 8 класса МКОУ «Камышовская ООШ» Руководитель Горяева Зоя Эрднигоряевна, учитель математики МКОУ « Камышовская ООШ» с. Камышово, 2013г.

Цель проекта: Ответить на вопрос как строить графики линейных функций с модулями. Задачи проекта: Изучить литературу по данному вопросу. Изучить геометрические преобразования графиков и их применение к построению графиков с модулями. Изучить понятие модуля и его свойства. Научиться строить графики с модулями различными способами.

Прямая пропорциональность Прямой пропорциональностью называется функция, которую можно задать формулой вида y=kx , где x –независимая переменная, k -не равное нулю число.

Построим график функции y = x x 0 2 y 0 2

Геометрическое преобразование графиков Правило №1 График функции y = f (x)+ k – линейная функция - получается параллельным переносом графика функции y = f (x) на + k единиц вверх по оси О y при k> 0 или на |- k| единиц вниз по оси О y при k

Построим графики y=x+3 y=x-2

Правило № 2 График функции y=kf(x) получается растягиванием графика функции y = f (x) вдоль оси О y в a раз при a>1 и сжатием вдоль оси О y в a раз при 0Слайд 9

Построим график y=x y= 2 x

Правило № 3 График функции y =- f (x) получается симметричным отображением графика y = f (x) относительно оси О x

Правило № 4 График функции y=f(- x) получается симметричным отображением графика функции y = f (x) относительно оси О y

Правило № 5 График функции y=f(x+c) получается параллельным переносом графика функции y=f(x) вдоль оси О x вправо, если c 0 .

Построим графики y=f(x) y=f(x+2)

Определение модуля Модуль неотрицательного числа а равен самому числу а; модуль отрицательного числа а равен противоположному ему положительному числу -а. Или, |а|=а, если а ≥0 |а|=-а, если а

Графики линейных функций с модулями строятся: с использованием геометрических преобразований с помощью раскрытия определения модуля.

Правило № 6 График функции y=|f(x)| получается следующим образом: часть графика y=f(x) , лежащая над осью О x , сохраняется; часть, лежащая под осью О x , отображается симметрично, относительно оси О x .

Построить график функции y=-2| x-3|+4 Строим y ₁=| x | Строим y₂= |x - 3 | → параллельный перенос на +3 единицы вдоль оси Ох (сдвиг вправо) Строим y ₃ =+2|x-3| → растягиваем вдоль оси О y в 2 раза = 2 y₂ Строим у ₄ =-2|x-3| → симметрия относительно оси абсцисс = - y₃ Строим y₅ =-2|x-3|+4 → параллельный перенос на +4 единицы вдоль оси О y (сдвиг вверх) = y ₄ +4

График функции y =-2|x-3|+4

График функции у= 3|х|+2 y₁=|x| y₂=3|x|= 3 y₁ → растяжение в 3 раза y₃=3|x| +2= y₄+2 → сдвиг вверх на 2 единицы

Правило № 7 График функции y=f(| x |) получается из графика функции y=f(x) следующим образом: При x > 0 график функции сохраняется, и эта же часть графика симметрично отображается относительно оси О y

Построить график функции y = || x-1 | -2 |

У₁= |х| у₂=|х-1| у₃= у₂-2 у₄= |у₃| У=||х-1|-2|

Алгоритм построения графика функции y=│f(│x│)│ построить график функции y=f(│x│) . далее оставить без изменений все части построенного графика, которые лежат выше оси x . части, расположенные ниже оси x , отобразить симметрично относительно этой оси.

У=|2|х|-3| Построение: а) у= 2х-3 для х >0, б) у=-2х-3 для х Слайд 26

Правило № 8 График зависимости | y|=f(x) получается из графика функции y=f(x) если все точки, для которых f(x) > 0 сохраняются и они же симметрично переносятся относительно оси абсцисс.

Построить множество точек на плоскости, декартовы координаты которых х и у удовлетворяют уравнению |у|=||х-1|-1|.

| y|=||x-1| -1| строим два графика 1) у=||х-1|-1| и 2) у =-|| х-1|-1| y₁=|x| y₂=| x-1 | → сдвиг по оси Ох вправо на 1 единицу y₃ = | x -1 |- 1= → сдвиг на 1 единицу вниз y ₄ = || x-1|- 1| → симметрия точек графика для которых y₃ 0 относительно О x

График уравнения |y|=||x-1|-1| получаем следующим образом: 1)строим график функции y=f(x) и о с тавляем без изменений ту его часть, где y≥0 2) с помощью симметрии относительно оси Оx построим другую часть графика, соответствующую y

Построить график функции y =|x | − | 2 − x | . Решение. Здесь знак модуля входит в два различных слагаемых и его нужно снимать. 1) Найдём корни подмодульных выражений: х=0, 2-х=0, х=2 2) Установим знаки на интервалах:

График функции

Вывод Тема проекта является одной из трудных в курсе математики, относится к вопросам, рассматриваемых на факультативах, изучается в классах по углубленному изучению курса математики. Тем не менее такие задания даются во второй части ГИА. Данная работа поможет понять как строить графики с модулями не только линейных функций, но и других функций(квадратичных, обратно пропорциональных и др.). Работа поможет при подготовке к ГИА и ЕГЭ и позволит получить высокие баллы по математике.

Литература Виленкин Н.Я. , Жохов В.И.. Математика”. Учебник 6 класс Москва. Издательство “ Мнемозина”, 2010г Виленкин Н.Я., Виленкин Л.Н., Сурвилло Г.С. и др. Алгебра. 8 класс: учебн. Пособие для учащихся и классов с углубленным изучением математики. – Москва. Просвещение, 2009 г Гайдуков И.И. “Абсолютная величина”. Москва. Просвещение, 1968. Гурский И.П. “Функции и построение графиков”. Москва. Просвещение, 1968. Ящина Н.В. Приёмы построения графиков, содержащих модули. Ж/л «Математика в школе»,№3,1994г Детская энциклопедия. Москва. «Педагогика», 1990. Дынкин Е.Б., Молчанова С.А. Математические задачи. М., «Наука», 1993. Петраков И.С. Математические кружки в 8-10 классах. М., «Просвещение», 1987 . Галицкий М.Л. и др. Сборник задач по алгебре для 8-9 классов: Учебное пособие для учащихся и классов с углубленным изучением математики. – 12-е изд. – М.: Просвещение, 2006. – 301 с. Макрычев Ю.Н., Миндюк Н.Г. Алгебра: Дополнительные главы к школьному учебнику 9 кл.: Учебное пособие для учащихся школы и классов с углубленным изучением математики / Под редакцией Г.В.Дорофеева. – М.: Просвещение, 1997. – 224 с. Садыкина Н. Построение графиков и зависимостей, содержащих знак модуля /Математика. - №33. – 2004. – с.19-21 .. Кострикина Н.П “ Задачи повышенной трудности в курсе алгебры для 7-9 классов ”... Москва.: Просвещение, 2008г.

Графики прямой, параболы, гиперболы, с модулем

Пошаговое построение графиков.

«Навешивание» модулей на прямые, параболы, гиперболы.

Графики - самая наглядная тема по алгебре. Рисуя графики, можно творить, а если еще и сможешь задать уравнения своего творчества, то и учитель достойно это оценит.

Для понимания друг друга введу немного «обзываний» системы координат:


Для начала построим график прямой y = 2x − 1.

Не сомневаюсь, что ты помнишь. Я напомню себе, что через 2 точки можно провести одну прямую. Поэтому берем любые две точки А = (0; −1) и B = (1; 1) и проводим единственную прямую.

А если теперь добавить модуль? y = |2x − 1|.

Модуль - это всегда положительное значение , получается, что «y» должен быть всегда положительным.

Значит, если модуль «надет» на весь график, то, что было в нижней части «−y», отразится в верхнюю (как будто сворачиваете лист по оси х и то, что было снизу, отпечатываете сверху).


Красота! А как же будет выглядеить график, если надеть модуль только на «х»: y = 2|x| − 1?

Одна строчка рассуждений и рисуем:

Модуль на «x», тогда в этом случае x = −x, то есть все, что было в правой части, отражаем в левую. А то, что было в плоскости «−x», убираем.

Суть построения точно такая же, только здесь отражаем относительно оси «y» .

Смертельный номер: y = |2|x| − 1|.

Для начала построим y = |2x − 1|, отразив относительно оси «x». В положительной части он будет такой же, как y =|2|x| − 1|.


А после этого отражаем относительно оси «y», то, что мы получили справа:


Если ты человек амбициозный, то прямых тебе будет мало! Но то, что описано выше, работает на всех остальных графиках.

Разберем по винтикам параболу y = x² + x − 2. Точки пересечения с осью «x» получим с помощью дискриминанта: x₁ = 1 и x ₂ = -2.

Можно найти вершину у параболы и взять пару точек для точного построения.

А как будет выглядеть график: y = |x²| + x − 2? Слышу: «Такого мы еще не проходили», а если подумаем? Модуль на x², он же и так всегда положителен, от модуля тут толку, как от стоп-сигнала зайцу − никакого.

При y = x² + |x| − 2 все так же стираем всю левую часть, и отражаем справа налево:

Следующий смертельный номер: |y| = x² + x − 2, подумай хорошенько, а еще лучше попробуй нарисовать сам.

При положительных значениях «y» от модуля нет смысла − уравнения y = x² + x − 2, а при «−y» ничего не меняется, будет так же y = x² + x − 2!

Рисуем параболу в верхней части системы координат (где у > 0), а затем отражаем вниз.

А настоящие профи могут разобраться, почему же данные графики выглядят так:

Легкий и средний уровень позади, и настала пора выжать концетрацию на максимум , потому что дальше тебя ждут гиперболы, которые частенько встречаются во второй части ЕГЭ и ОГЭ.

y = 1/x - простая гипербола, которую проще всего построить по точкам, 6-8 точек должно быть достаточно:

А что будет, если мы добавим в знаменателе «+1»? График сдвинется влево на единицу:

А что будет, если мы добавим в знаменателе « −1»? График сдвинется вправо на единицу.

А если добавить отдельно «+1» y = (1/x) + 1? Конечно, график поднимется вверх на единицу!

Глупый вопрос: а если добавить отдельно «−1» y = (1/x) − 1? Вниз на единицу!

Теперь начнем «накручивать» модули: y = |1/x + 1| - отражаем все из нижней части в верхнюю.

Возьмем другой модуль, мой амбициозный друг, раз ты дошел до этогог места: y = |1/(x + 1)|. Как и выше, когда модуль надет на всю функцию, мы отражаем снизу вверх.

Можно придумывать массу вариантов, но общий принцип остается для любого графика. Принципы повторим в выводах в конце статьи.

Модули не так уж страшны, если еще вспомнить, что их можно раскрыть по определнию:

И построить график, разбив его на кусочно-заданные функции.

Например для прямой:


Для параболы с одним модулем будет два кусочно заданных графика:


C двумя модулями кусочно заданных графиков будет четыре:

Таким способом, медленно и кропотливо можно построить любой график!


Выводы:

  1. Модуль - это не просто две палочки, а жизнерадостное, всегда положительное значение!
  2. Модулю без разницы находится он в прямой, параболе или еще где-то. Отражения происходят одни и те же.
  3. Любой нестандартный модуль можно разбить на кусочно-заданные функции, условия только вводятся на каждый модуль .
  4. Существует большое количество модулей, но парочку вариантов стоит запомнить, чтобы не строить по точкам:
  • Если модуль «надет» на все выражение (например, y = |x² + x − 2|), то нижняя часть отражается наверх.
  • Если модуль «надет» только на х (например, y = x² + |x| − 2), то правая часть графика отражается на левую часть. А «старая» левая часть стирается.
  • Если модуль «надет» и на х, и на все выражение (например, y = |x² + |x| − 2|), то сначала отражаем график снизу вверх, после этого стираем полностью левую часть и отражаем справа налево.
  • Если модуль «надет» на y (например, |y| = x² + x − 2), то мы оставляем верхнюю часть графика, нижнюю стираем. А после отражаем сверху вниз.

Распространенными примерами с модулями является уравнение типа модуль в модуле. Двойной модуль можно записать в виде формулы
||a*x-b|-c|=k*x+m.
Если k=0 то такое уравнение с модулем легче решать графическим методом. Классическое раскрытия модулей в таких ситуациях громоздкое и не дает желаемого эффекта (экономии времени) на контрольных и тестах. Графический метод позволяет за короткое время выполнить построение модульных функций и найти количество корней уравнения.

Алгоритм построения двойного, тройного модуля достаточно прост и из приведенных ниже примеров понравится многим. Для закрепления методики внизу приведены примеры для самостоятельного вычисления.

Пример 1. Решить уравнение модуль в модуле ||x-3|-5|=3.
Решение: Решим уравнение с модулями классическим методом и графически. Найдем ноль внутреннего модуля
x-3=0 x=3.
В точке x=3 уравнения с модулем разделяется на 2 . Кроме того, ноль внутреннего модуля является точкой симметрии графика модулей и если правая сторона уравнения равна постоянной, то корни лежат на одинаковом расстоянии от этой точки. То есть можно решить одно уравнение из двух, а остальные корней вычислить из этого условия.
Раскроем внутренний модуль для x>3
|x-3-5|=3; |x-8|=3 .
Полученное уравнение при раскрытии модуля делится на 2
Под модульная функция >0
x-8=3; x=3+8=11;
и для значений < 0 получим
-(x-8)=3; x=8-3=5.
Оба корня уравнения удовлетворяют условию x>3, то есть являются решениями.
Учитывая записано выше правило симметрии решений уравнения с модулями, можно не искать корни уравнения для x< 3, которое имеет вид
|-(x-3)-5|=3; |-x-2|=3 ,
а вычислить их.
Значение симметрично относительно x=3 для x=11 равно
x=3-(11-3)=6-11=-5.
По той же формуле находим второе решение
x=3-(5-3)=6-5=1.
Заданное уравнение модуля в модуле имеет 4 решения
x=-5; x=1; x=5; x=11.
Теперь найдем решения уравнения с модулями графическим методом . С внутреннего модуля |x-3| следует что график стандартной модуль функции является смещен по оси Ох вправо на 3 .
Дальше - отнять 5 означает что график необходимо опустить на 5 клеток по оси Oy . Чтобы получить модуль полученной функции симметрично отражаем все что находится ниже оси Ox .
И напоследок выполняем построение прямой y=3 , параллельной оси Ox . Лучше всего для вычислений уравнений с модулями графически использовать тетрадь в клеточку, поскольку в ней удобно строить графики.
Окончательный вид графика модулей имеет вид

Точки пересечения модуль функции и прямой y=3 и является искомыми решениями x=-5;x=1; x=5;x=11 .

Преимущество графического метода над раскрытием модулей для простых уравнений очевидно. Однако графически неудобно искать корни когда правая сторона имеет вид k*x+m , то есть является прямой наклоненной к оси абсцисс под углом.
Здесь таких уравнений рассматривать не будем.

Пример 2. Сколько корней имеет уравнение ||2x-3|-2|=2?
Решение: Правая сторона равна постоянной, поэтому скорее найти решение можно графическим методом. Внутренний модуль обращается в нуль
|2x-3|=0 x=3/2=1,5
в точке x=1,5.
Значит в эту точку смещаем график функции y=|2x|. Для того, чтобы его построить подставьте несколько точек и проведите через них прямые. От полученной функции вычитаем 2 то есть график опускаем на двойку вниз и, чтобы получить модуль переносим отрицательные значения (y< 0) симметрично относительно оси Ox .

Видим, что заданное уравнение имеет три решения.

Пример 3. При каком значении параметра a уравнение с модулем |||x+1|-2|-5|=a имеет 5 решений?
Решение : Имеем уравнение с тремя вложенными модулями. Найдем ответ с графического анализа. Начнем, как всегда, из внутреннего модуля. Он обращается в нуль
|x+1|=0 x=-1
в точке x=-1 .
Строим график модуль функции в этой точке

Повторно выполним смещение графика модуль функции вниз на 5 и симметрично переносим отрицательные значения функции. В результате получим левую сторону уравнения с модулями
y=|||x+1|-2|-5| .

Параметр а соответствует значению параллельной прямой, которая должна пересечь график модуль функции в 5 точках. Сначала проводим такую прямую, далее ищем точку пересечения ее с осью Oy.
Это прямая y=3 , то есть искомый параметр равен a=3 .
Методом раскрытия модулей данную задачу можно было решать целый урок, если не больше. Здесь все свелось к нескольким графикам.
Ответ: a=3 .

Пример 4. Сколько решений имеет уравнение |||3x-3|-2|-7|=x+5 ?
Решение: Раскроем внутренний модуль уравнения
|3x-3|=0 <=> x=3/3=1.
Строим график функции y=|3x-3|. Для этого на одну клетки изменения x от найденной точки добавляем 3 клетки по y. Выполняйте построение корней уравнения в тетради в клеточку, а я расскажу как это можно сделать в среде Maple.

Restart;with(plots): Приравниваем к нулю все переменные и подключаем модуль для работы с графикой.

> plot(abs(3*x-3),x=-2..4):

Далее опускаем график на 2 клетки вниз и симметрично оси Ox переносим отрицательные значения (y <0) .
Получим график двух внутренних модулей Полученный график опускаем на двойку и симметрично отражаем. получим график
y=||3x-3|-2|.
В математическом пакете мейпл это равносильно записи еще одного модуля
> plot(abs(abs(3*x-3)-2),x=-2..4):

Повторно смещаем график вниз на семь единиц и симметрично переносим. Получим график функции
y=|||3x-3|-2|-7|


В Мэйпл это равносильно следующей ленте кода
> plot(abs(abs(abs(3*x-3)-2)-7),x=-5..7):
Строим прямую y=x+5 по двум точкам. Первая - пересечение прямой с осью абсцисс