График модуль из х. Графики функций с модулем

Построение графиков функций, содержащих знак модуля.

Надеюсь, вы внимательно изучили пункт 23 и понимаете, чем отличается функция вида от функции . Теперь разберем еще пару примеров, которые должны вам помочь при построении графиков.

Пример 1. Построить график функции

Имеем функцию вида , где .

1. Построим сначала график подмодульной функции, т. е. функции . Для этого выделим целую часть у этой дроби. Напоминаю, что это можно сделать двумя способами: разделив числитель на знаменатель «в столбик» или расписав числитель так, чтобы в нем появилось выражение, кратное знаменателю. Выполним выделение целой части вторым способом.

Значит, подмодульная функция имеет вид . Значит, ее графиком является гипербола вида , смещенная на 1 единицу вправо и 3 единицы вверх.

Построим этот график.

2. Чтобы получить график искомой функции , необходимо часть построенного графика функции , лежащую выше оси Ох, оставить без изменений, а часть графика, лежащую ниже оси Ох, отобразить симметрично в верхнюю полуплоскость. Выполним эти преобразования.

График построен.

Абсциссу точки пересечения графика с осью Ох можно вычислить, решив уравнение

y = 0, т. е. . Получаем, что .

Теперь по графику можно определять все свойства функции, находить наименьшее и наибольшее значения функции на промежутке, решать задачи с параметром.

Например, можно ответить на такой вопрос. «При каких значениях параметра а уравнение имеет ровно одно решение?»

Проведем прямые y = a при различных значениях параметра а . (Тонкие красные прямые на следующем рисунке)

Видно, что если a<0 , то график построенной функции и прямая не имеют общих точек, а значит, уравнение не имеет ни одного решения.

Если 0< a<3 или a>3 , то прямая y = a и построенный график имеют две общие точки, т. е. уравнение имеет два решения.

Если же а = 0 или а = 3 , то уравнение имеет ровно одно решение, т. к. при этих значениях а прямая и график функции имеют ровно одну общую точку.

Пример 2. Построить график функции

Решение

Построим сначала график функции при неотрицательных значениях х. Если , то и тогда наша функция принимает вид , а искомая функция – это функция вида .

Графиком функции является ветвь параболы «направленная» влево, смещенная на 4 единицы вправо . (Т. к. мы можем представить ).

Построим график этой функции

и будем рассматривать только ту его часть, которая расположена правее оси Оy. Остальное сотрём.

Обратите внимание, что мы вычислили значение ординаты точки графика, лежащей на оси ординат. Для этого достаточно вычислить значение функции при х = 0. В нашем случае при х = 0 получили y = 2 .

Теперь построим график функции при х < 0 . Для этого построим линию, симметричную той, что мы уже построили, относительно оси Оу.

Таким образом, мы построили график искомой функции.

Пример 3. Построить график функции

Это задача уже совсем непростая. Видим, что тут присутствуют оба вида функций с модулем: и , и . Будем строить по порядку:

Сначала построим график функции без всех модулей: Затем добавим модуль у каждого аргумента. Получим функцию вида , т. е. . Для построения такого графика нужно применить симметрию относительно оси Оy. Добавим еще и внешний модуль. Получим, наконец, искомую функцию . Т. к. эта функция получена из предыдущей применением внешнего модуля, то мы имеем функцию вида , а значит, необходимо применить симметрию относительно Ох.

Теперь подробнее.

Это дробно-линейная функция, для построения графика нужно выделить целую часть, чем мы и займемся.

Значит, графиком этой функции является гипербола вида , смещенная на 2 вправо и 4 вниз.

Вычислим координаты точек пересечения с осями координат.

y = 0 при х = 0, значит, график пройдет через начало координат.

2. Теперь построим график функции .

Для этого в исходном графике сначала сотрём ту его часть, которая располагается левее оси Оy:

, а затем отобразим ее симметрично относительно оси Оy. Обратите внимание, асимптоты тоже симметрично отображаются!

Теперь построим окончательный график функции: . Для этого часть предыдущего графика, лежащую выше оси Ох, оставим без изменения, а то, что находится ниже оси Ох, симметрично отобразим в верхнюю полуплоскость. Опять-таки не забывайте, что асимптоты отображаются вместе с графиком!

График построен.

Пример 4. Применяя различные преобразования графиков, постройте график функции

Что-то совершенно накрученное и сложное! Куча модулей! А у квадрата икса модуля нет!!! Это невозможно построить!

Так или примерно так может рассуждать среднестатистический ученик 8 класса , незнакомый с техникой построения графиков.

Но не мы! Потому что мы знаем РАЗНЫЕ способы преобразования графиков функций и еще знаем разные свойства модуля.

Итак, начнем по порядку.

Первая проблема – отсутствие модуля у икса в квадрате. Не беда. Знаем, что . Хорошо. Значит, наша функция может быть записана в виде . Это уже лучше, потому что похоже на .

Дальше. У функции есть внешний модуль, поэтому, похоже, придется пользоваться правилами построения графика функции . Посмотрим тогда, что собой представляет подмодульное выражение. Это функция вида . Если бы не -2, то функция опять содержала бы внешний модуль и мы знаем, как построить график функции с помощью симметрий. Ага! Но ведь если мы его построим, то, сместив его на 2 единицы вниз, получим искомое!

Итак, что-то начинает вырисовываться. Попробуем составить алгоритм построения графика.

1.

5. И, наконец, . Всё то, что лежит ниже оси Ох, отобразим симметрично в верхнюю полуплоскость.

Ура! График готов!

Удачи вам в нелегком деле построения графиков!

Распространенными примерами с модулями является уравнение типа модуль в модуле. Двойной модуль можно записать в виде формулы
||a*x-b|-c|=k*x+m.
Если k=0 то такое уравнение с модулем легче решать графическим методом. Классическое раскрытия модулей в таких ситуациях громоздкое и не дает желаемого эффекта (экономии времени) на контрольных и тестах. Графический метод позволяет за короткое время выполнить построение модульных функций и найти количество корней уравнения.

Алгоритм построения двойного, тройного модуля достаточно прост и из приведенных ниже примеров понравится многим. Для закрепления методики внизу приведены примеры для самостоятельного вычисления.

Пример 1. Решить уравнение модуль в модуле ||x-3|-5|=3.
Решение: Решим уравнение с модулями классическим методом и графически. Найдем ноль внутреннего модуля
x-3=0 x=3.
В точке x=3 уравнения с модулем разделяется на 2 . Кроме того, ноль внутреннего модуля является точкой симметрии графика модулей и если правая сторона уравнения равна постоянной, то корни лежат на одинаковом расстоянии от этой точки. То есть можно решить одно уравнение из двух, а остальные корней вычислить из этого условия.
Раскроем внутренний модуль для x>3
|x-3-5|=3; |x-8|=3 .
Полученное уравнение при раскрытии модуля делится на 2
Под модульная функция >0
x-8=3; x=3+8=11;
и для значений < 0 получим
-(x-8)=3; x=8-3=5.
Оба корня уравнения удовлетворяют условию x>3, то есть являются решениями.
Учитывая записано выше правило симметрии решений уравнения с модулями, можно не искать корни уравнения для x< 3, которое имеет вид
|-(x-3)-5|=3; |-x-2|=3 ,
а вычислить их.
Значение симметрично относительно x=3 для x=11 равно
x=3-(11-3)=6-11=-5.
По той же формуле находим второе решение
x=3-(5-3)=6-5=1.
Заданное уравнение модуля в модуле имеет 4 решения
x=-5; x=1; x=5; x=11.
Теперь найдем решения уравнения с модулями графическим методом . С внутреннего модуля |x-3| следует что график стандартной модуль функции является смещен по оси Ох вправо на 3 .
Дальше - отнять 5 означает что график необходимо опустить на 5 клеток по оси Oy . Чтобы получить модуль полученной функции симметрично отражаем все что находится ниже оси Ox .
И напоследок выполняем построение прямой y=3 , параллельной оси Ox . Лучше всего для вычислений уравнений с модулями графически использовать тетрадь в клеточку, поскольку в ней удобно строить графики.
Окончательный вид графика модулей имеет вид

Точки пересечения модуль функции и прямой y=3 и является искомыми решениями x=-5;x=1; x=5;x=11 .

Преимущество графического метода над раскрытием модулей для простых уравнений очевидно. Однако графически неудобно искать корни когда правая сторона имеет вид k*x+m , то есть является прямой наклоненной к оси абсцисс под углом.
Здесь таких уравнений рассматривать не будем.

Пример 2. Сколько корней имеет уравнение ||2x-3|-2|=2?
Решение: Правая сторона равна постоянной, поэтому скорее найти решение можно графическим методом. Внутренний модуль обращается в нуль
|2x-3|=0 x=3/2=1,5
в точке x=1,5.
Значит в эту точку смещаем график функции y=|2x|. Для того, чтобы его построить подставьте несколько точек и проведите через них прямые. От полученной функции вычитаем 2 то есть график опускаем на двойку вниз и, чтобы получить модуль переносим отрицательные значения (y< 0) симметрично относительно оси Ox .

Видим, что заданное уравнение имеет три решения.

Пример 3. При каком значении параметра a уравнение с модулем |||x+1|-2|-5|=a имеет 5 решений?
Решение : Имеем уравнение с тремя вложенными модулями. Найдем ответ с графического анализа. Начнем, как всегда, из внутреннего модуля. Он обращается в нуль
|x+1|=0 x=-1
в точке x=-1 .
Строим график модуль функции в этой точке

Повторно выполним смещение графика модуль функции вниз на 5 и симметрично переносим отрицательные значения функции. В результате получим левую сторону уравнения с модулями
y=|||x+1|-2|-5| .

Параметр а соответствует значению параллельной прямой, которая должна пересечь график модуль функции в 5 точках. Сначала проводим такую прямую, далее ищем точку пересечения ее с осью Oy.
Это прямая y=3 , то есть искомый параметр равен a=3 .
Методом раскрытия модулей данную задачу можно было решать целый урок, если не больше. Здесь все свелось к нескольким графикам.
Ответ: a=3 .

Пример 4. Сколько решений имеет уравнение |||3x-3|-2|-7|=x+5 ?
Решение: Раскроем внутренний модуль уравнения
|3x-3|=0 <=> x=3/3=1.
Строим график функции y=|3x-3|. Для этого на одну клетки изменения x от найденной точки добавляем 3 клетки по y. Выполняйте построение корней уравнения в тетради в клеточку, а я расскажу как это можно сделать в среде Maple.

Restart;with(plots): Приравниваем к нулю все переменные и подключаем модуль для работы с графикой.

> plot(abs(3*x-3),x=-2..4):

Далее опускаем график на 2 клетки вниз и симметрично оси Ox переносим отрицательные значения (y <0) .
Получим график двух внутренних модулей Полученный график опускаем на двойку и симметрично отражаем. получим график
y=||3x-3|-2|.
В математическом пакете мейпл это равносильно записи еще одного модуля
> plot(abs(abs(3*x-3)-2),x=-2..4):

Повторно смещаем график вниз на семь единиц и симметрично переносим. Получим график функции
y=|||3x-3|-2|-7|


В Мэйпл это равносильно следующей ленте кода
> plot(abs(abs(abs(3*x-3)-2)-7),x=-5..7):
Строим прямую y=x+5 по двум точкам. Первая - пересечение прямой с осью абсцисс

Эрднигоряева Марина

Данная работа является результатом изучения темы на факультативе в 8 классе. Здесь показываются геометрические преобразования графиков и их применение к построению графиков с модулями. Вводится понятие модуля и его свойства. Показано как строить графики с модулями различными способами: с помощью преобразований и на основе понятия модуля.Тема проекта является одной из трудных в курсе математики, относится к вопросам, рассматриваемых на факультативах,изучается в классах с улгубленным изучением математики. Тем не меннн такие задания даются во второй части ГИА, в ЕГЭ. Данная работа поможет понять как строить графики с модулями не только линейных, но и других функций(квадратичных, обратно- пропорциональных и др.) Работа поможет при подготовке к ГИА и ЕГЭ.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Графики линейной функции с модулями Работа Эрднигоряевой Марины, ученицы 8 класса МКОУ «Камышовская ООШ» Руководитель Горяева Зоя Эрднигоряевна, учитель математики МКОУ « Камышовская ООШ» с. Камышово, 2013г.

Цель проекта: Ответить на вопрос как строить графики линейных функций с модулями. Задачи проекта: Изучить литературу по данному вопросу. Изучить геометрические преобразования графиков и их применение к построению графиков с модулями. Изучить понятие модуля и его свойства. Научиться строить графики с модулями различными способами.

Прямая пропорциональность Прямой пропорциональностью называется функция, которую можно задать формулой вида y=kx , где x –независимая переменная, k -не равное нулю число.

Построим график функции y = x x 0 2 y 0 2

Геометрическое преобразование графиков Правило №1 График функции y = f (x)+ k – линейная функция - получается параллельным переносом графика функции y = f (x) на + k единиц вверх по оси О y при k> 0 или на |- k| единиц вниз по оси О y при k

Построим графики y=x+3 y=x-2

Правило № 2 График функции y=kf(x) получается растягиванием графика функции y = f (x) вдоль оси О y в a раз при a>1 и сжатием вдоль оси О y в a раз при 0Слайд 9

Построим график y=x y= 2 x

Правило № 3 График функции y =- f (x) получается симметричным отображением графика y = f (x) относительно оси О x

Правило № 4 График функции y=f(- x) получается симметричным отображением графика функции y = f (x) относительно оси О y

Правило № 5 График функции y=f(x+c) получается параллельным переносом графика функции y=f(x) вдоль оси О x вправо, если c 0 .

Построим графики y=f(x) y=f(x+2)

Определение модуля Модуль неотрицательного числа а равен самому числу а; модуль отрицательного числа а равен противоположному ему положительному числу -а. Или, |а|=а, если а ≥0 |а|=-а, если а

Графики линейных функций с модулями строятся: с использованием геометрических преобразований с помощью раскрытия определения модуля.

Правило № 6 График функции y=|f(x)| получается следующим образом: часть графика y=f(x) , лежащая над осью О x , сохраняется; часть, лежащая под осью О x , отображается симметрично, относительно оси О x .

Построить график функции y=-2| x-3|+4 Строим y ₁=| x | Строим y₂= |x - 3 | → параллельный перенос на +3 единицы вдоль оси Ох (сдвиг вправо) Строим y ₃ =+2|x-3| → растягиваем вдоль оси О y в 2 раза = 2 y₂ Строим у ₄ =-2|x-3| → симметрия относительно оси абсцисс = - y₃ Строим y₅ =-2|x-3|+4 → параллельный перенос на +4 единицы вдоль оси О y (сдвиг вверх) = y ₄ +4

График функции y =-2|x-3|+4

График функции у= 3|х|+2 y₁=|x| y₂=3|x|= 3 y₁ → растяжение в 3 раза y₃=3|x| +2= y₄+2 → сдвиг вверх на 2 единицы

Правило № 7 График функции y=f(| x |) получается из графика функции y=f(x) следующим образом: При x > 0 график функции сохраняется, и эта же часть графика симметрично отображается относительно оси О y

Построить график функции y = || x-1 | -2 |

У₁= |х| у₂=|х-1| у₃= у₂-2 у₄= |у₃| У=||х-1|-2|

Алгоритм построения графика функции y=│f(│x│)│ построить график функции y=f(│x│) . далее оставить без изменений все части построенного графика, которые лежат выше оси x . части, расположенные ниже оси x , отобразить симметрично относительно этой оси.

У=|2|х|-3| Построение: а) у= 2х-3 для х >0, б) у=-2х-3 для х Слайд 26

Правило № 8 График зависимости | y|=f(x) получается из графика функции y=f(x) если все точки, для которых f(x) > 0 сохраняются и они же симметрично переносятся относительно оси абсцисс.

Построить множество точек на плоскости, декартовы координаты которых х и у удовлетворяют уравнению |у|=||х-1|-1|.

| y|=||x-1| -1| строим два графика 1) у=||х-1|-1| и 2) у =-|| х-1|-1| y₁=|x| y₂=| x-1 | → сдвиг по оси Ох вправо на 1 единицу y₃ = | x -1 |- 1= → сдвиг на 1 единицу вниз y ₄ = || x-1|- 1| → симметрия точек графика для которых y₃ 0 относительно О x

График уравнения |y|=||x-1|-1| получаем следующим образом: 1)строим график функции y=f(x) и о с тавляем без изменений ту его часть, где y≥0 2) с помощью симметрии относительно оси Оx построим другую часть графика, соответствующую y

Построить график функции y =|x | − | 2 − x | . Решение. Здесь знак модуля входит в два различных слагаемых и его нужно снимать. 1) Найдём корни подмодульных выражений: х=0, 2-х=0, х=2 2) Установим знаки на интервалах:

График функции

Вывод Тема проекта является одной из трудных в курсе математики, относится к вопросам, рассматриваемых на факультативах, изучается в классах по углубленному изучению курса математики. Тем не менее такие задания даются во второй части ГИА. Данная работа поможет понять как строить графики с модулями не только линейных функций, но и других функций(квадратичных, обратно пропорциональных и др.). Работа поможет при подготовке к ГИА и ЕГЭ и позволит получить высокие баллы по математике.

Литература Виленкин Н.Я. , Жохов В.И.. Математика”. Учебник 6 класс Москва. Издательство “ Мнемозина”, 2010г Виленкин Н.Я., Виленкин Л.Н., Сурвилло Г.С. и др. Алгебра. 8 класс: учебн. Пособие для учащихся и классов с углубленным изучением математики. – Москва. Просвещение, 2009 г Гайдуков И.И. “Абсолютная величина”. Москва. Просвещение, 1968. Гурский И.П. “Функции и построение графиков”. Москва. Просвещение, 1968. Ящина Н.В. Приёмы построения графиков, содержащих модули. Ж/л «Математика в школе»,№3,1994г Детская энциклопедия. Москва. «Педагогика», 1990. Дынкин Е.Б., Молчанова С.А. Математические задачи. М., «Наука», 1993. Петраков И.С. Математические кружки в 8-10 классах. М., «Просвещение», 1987 . Галицкий М.Л. и др. Сборник задач по алгебре для 8-9 классов: Учебное пособие для учащихся и классов с углубленным изучением математики. – 12-е изд. – М.: Просвещение, 2006. – 301 с. Макрычев Ю.Н., Миндюк Н.Г. Алгебра: Дополнительные главы к школьному учебнику 9 кл.: Учебное пособие для учащихся школы и классов с углубленным изучением математики / Под редакцией Г.В.Дорофеева. – М.: Просвещение, 1997. – 224 с. Садыкина Н. Построение графиков и зависимостей, содержащих знак модуля /Математика. - №33. – 2004. – с.19-21 .. Кострикина Н.П “ Задачи повышенной трудности в курсе алгебры для 7-9 классов ”... Москва.: Просвещение, 2008г.

Графики прямой, параболы, гиперболы, с модулем

Пошаговое построение графиков.

«Навешивание» модулей на прямые, параболы, гиперболы.

Графики - самая наглядная тема по алгебре. Рисуя графики, можно творить, а если еще и сможешь задать уравнения своего творчества, то и учитель достойно это оценит.

Для понимания друг друга введу немного «обзываний» системы координат:


Для начала построим график прямой y = 2x − 1.

Не сомневаюсь, что ты помнишь. Я напомню себе, что через 2 точки можно провести одну прямую. Поэтому берем любые две точки А = (0; −1) и B = (1; 1) и проводим единственную прямую.

А если теперь добавить модуль? y = |2x − 1|.

Модуль - это всегда положительное значение , получается, что «y» должен быть всегда положительным.

Значит, если модуль «надет» на весь график, то, что было в нижней части «−y», отразится в верхнюю (как будто сворачиваете лист по оси х и то, что было снизу, отпечатываете сверху).


Красота! А как же будет выглядеить график, если надеть модуль только на «х»: y = 2|x| − 1?

Одна строчка рассуждений и рисуем:

Модуль на «x», тогда в этом случае x = −x, то есть все, что было в правой части, отражаем в левую. А то, что было в плоскости «−x», убираем.

Суть построения точно такая же, только здесь отражаем относительно оси «y» .

Смертельный номер: y = |2|x| − 1|.

Для начала построим y = |2x − 1|, отразив относительно оси «x». В положительной части он будет такой же, как y =|2|x| − 1|.


А после этого отражаем относительно оси «y», то, что мы получили справа:


Если ты человек амбициозный, то прямых тебе будет мало! Но то, что описано выше, работает на всех остальных графиках.

Разберем по винтикам параболу y = x² + x − 2. Точки пересечения с осью «x» получим с помощью дискриминанта: x₁ = 1 и x ₂ = -2.

Можно найти вершину у параболы и взять пару точек для точного построения.

А как будет выглядеть график: y = |x²| + x − 2? Слышу: «Такого мы еще не проходили», а если подумаем? Модуль на x², он же и так всегда положителен, от модуля тут толку, как от стоп-сигнала зайцу − никакого.

При y = x² + |x| − 2 все так же стираем всю левую часть, и отражаем справа налево:

Следующий смертельный номер: |y| = x² + x − 2, подумай хорошенько, а еще лучше попробуй нарисовать сам.

При положительных значениях «y» от модуля нет смысла − уравнения y = x² + x − 2, а при «−y» ничего не меняется, будет так же y = x² + x − 2!

Рисуем параболу в верхней части системы координат (где у > 0), а затем отражаем вниз.

А настоящие профи могут разобраться, почему же данные графики выглядят так:

Легкий и средний уровень позади, и настала пора выжать концетрацию на максимум , потому что дальше тебя ждут гиперболы, которые частенько встречаются во второй части ЕГЭ и ОГЭ.

y = 1/x - простая гипербола, которую проще всего построить по точкам, 6-8 точек должно быть достаточно:

А что будет, если мы добавим в знаменателе «+1»? График сдвинется влево на единицу:

А что будет, если мы добавим в знаменателе « −1»? График сдвинется вправо на единицу.

А если добавить отдельно «+1» y = (1/x) + 1? Конечно, график поднимется вверх на единицу!

Глупый вопрос: а если добавить отдельно «−1» y = (1/x) − 1? Вниз на единицу!

Теперь начнем «накручивать» модули: y = |1/x + 1| - отражаем все из нижней части в верхнюю.

Возьмем другой модуль, мой амбициозный друг, раз ты дошел до этогог места: y = |1/(x + 1)|. Как и выше, когда модуль надет на всю функцию, мы отражаем снизу вверх.

Можно придумывать массу вариантов, но общий принцип остается для любого графика. Принципы повторим в выводах в конце статьи.

Модули не так уж страшны, если еще вспомнить, что их можно раскрыть по определнию:

И построить график, разбив его на кусочно-заданные функции.

Например для прямой:


Для параболы с одним модулем будет два кусочно заданных графика:


C двумя модулями кусочно заданных графиков будет четыре:

Таким способом, медленно и кропотливо можно построить любой график!


Выводы:

  1. Модуль - это не просто две палочки, а жизнерадостное, всегда положительное значение!
  2. Модулю без разницы находится он в прямой, параболе или еще где-то. Отражения происходят одни и те же.
  3. Любой нестандартный модуль можно разбить на кусочно-заданные функции, условия только вводятся на каждый модуль .
  4. Существует большое количество модулей, но парочку вариантов стоит запомнить, чтобы не строить по точкам:
  • Если модуль «надет» на все выражение (например, y = |x² + x − 2|), то нижняя часть отражается наверх.
  • Если модуль «надет» только на х (например, y = x² + |x| − 2), то правая часть графика отражается на левую часть. А «старая» левая часть стирается.
  • Если модуль «надет» и на х, и на все выражение (например, y = |x² + |x| − 2|), то сначала отражаем график снизу вверх, после этого стираем полностью левую часть и отражаем справа налево.
  • Если модуль «надет» на y (например, |y| = x² + x − 2), то мы оставляем верхнюю часть графика, нижнюю стираем. А после отражаем сверху вниз.