Коррозия металла: почему ржавеет кузов и как с этим бороться. Коррозия: ее опасности и способы предотвратить

Коррозия происходит под действием химически агрессивных сред - это вода, органические и неорганические кислоты. В результате на поверхностях деталей образуются оксиды металлов. Коррозия не только портит внешний вид поверхностей, но и снижает механические свойства металлов.

Причиной возникновения коррозии является термодинамическая неустойчивость металлов. Все металлы и сплавы, из которых изготовлен автомобиль, в условиях эксплуатации стремятся перейти в более устойчивое окисленное (ионное) состояние. Самопроизвольный переход металла в такое устойчивое состояние и составляет суть коррозии.

Многие проблемы, имеющие прямое отношение к коррозионной стойкости создаваемых изделий, могут быть решены на стадии их проектирования и изготовления. Например, если будет обеспеченно отсутствие в изделии узких зазоров, щелей или карманов, а там, где этого избежать нельзя, устроены дренажные отверстия, то тем самым будет ликвидирована щелевая коррозия. Следует исключить весьма опасную в коррозионном отношении возможность контакта различных металлов и сплавов, способных образовывать активные гальванические пары и стимулировать коррозию одного из них.

Потери от коррозии стали сравнимыми с вложениями в развитие крупных отраслей промышленности. В США например, в настоящее время эти потери значительно превышают 120 млрд долларов в год. Немалую часть составляют потери косвенные, связанные с вынужденным простоем оборудования, снижением мощности действующего оборудования, ухудшением условий труда. Известны случаи, когда коррозия средств транспорта являлась причиной серьезных аварий, сопровождающихся человеческими жертвами.

Для автомобильного транспорта характерно использование агрессивных средств, высоких температур и давлений, больших скоростей потоков, а также условий, когда изделия эксплуатируются при одновременном воздействии агрессивной среды и больших механических нагрузок, т.е. факторов, способствующих коррозии.

Вследствие коррозии теряется большое количество металла, на восполнение которого в автомобилестроении расходуется до 50% ежегодно производимого металла.

Коррозия многообразна в своем проявлении. Поверхность металла не всегда подвергается равномерному разрушению – так называемой общей коррозии. Чаще процесс сосредоточен на отдельных участках, разрушение носит локальный характер.

Использование металлов в напряженном состоянии, переход на высокопрочные стали и сплавы, характеризующиеся высокими внутренними напряжениями, привели к тому, что одним из опаснейших видов коррозии стало коррозионное растрескивание. Ему сильно подвержены нержавеющие стали, сплавы на основе меди, алюминия, магния. Склонность к коррозионному растрескиванию определяется и составом коррозионной среды. Присутствие отдельных компонентов служит необходимым условием для возникновения коррозионного растрескивания. Для нержавеющих сталей это хлориды и щелочи, и для сплавов на основе меди – аммиак.

Особенно уязвимыми для коррозии являются сварные швы. По характерному виду поражения коррозию этого типа называют ножевой.

Частный вид коррозионного растрескивания – коррозионная усталость, при которой появление трещин и ее развитие вызываются одновременным воздействием агрессивной среды и циклических механических нагрузок.

Сплавы на основе железа, высокопрочные сплавы проявляют склонность к межкристаллической коррозии, при которой разрушение идет по границам зерен и при этом теряется механическая прочность.

Весьма опасной коррозией является питтинговая с поражением отдельных очень небольших участков поверхности вплоть до сквозной перфорации изделий. При определенных условиях ей подвержены железо, никель, алюминий, магний, цирконий, медь, олово, цинк и особенно нержавеющие стали.

Для сплавов на основе железа распространенным и опасным видом локальной коррозии является щелевая коррозия под всевозможными прокладками, наростами, в щелях и узких зазорах. Весьма склонны к этому виду коррозии участки металла, контактирующие с неметаллическими материалами (древесина, пластик, стекло, бетон, асбест, ткани).

Для сплавов на основе меди опасно селективное вытравливание из них определенных компонентов (например – обесцинковывание латуни).

По механизму протекания коррозионные процессы делятся на химические, электрохимические и биохимические.

Химической коррозией называют такой тип коррозии, когда металл вступает в прямое химическое взаимодействие с компонентами окружающей среды. Химическая коррозия протекает в газовых средах при высоких температурах, когда образование пленки влаги на поверхности металла невозможно, а также в растворах, не проводящих тока.

Примером химической коррозии является газовая коррозия выпускного тракта автомобильного двигателя отработавшими газами. В топливной системе двигателя может происходить химическая коррозия металлов за счет их взаимодействия с такими примесями топлив, как сероводород, элементарная сера и меркаптаны. В результате окисления масла при работе двигателя могут образовываться продукты, вызывающие химическую коррозию металла вкладышей подшипников.

При высокотемпературной или газовой коррозии состав продуктов коррозии зависит от состава газовой среды, но чаще всего это оксиды металлов. В качестве агрессивных компонентов газовой среды выступают соединения серы, хлора, азота, а чаще всего кислород и его соединения.

Скорость коррозии обычной стали увеличивается в присутствии углекислого газа, паров воды, двуокиси серы и особенно их смесей. Продукты сжигания жидких топлив снижают защитные свойства пленок образующихся продуктов коррозии. Значительное влияние на скорость коррозии углеродистых и низколегированных сталей оказывает соотношение СО и СО 2 в выхлопных газах. С увеличением содержания СО скорость коррозии снижается и при 14-18% может прекратиться. Образующиеся продукты, как правило, создают на поверхности коррозирующего металла пленку, которая тормозит доставку агрессивных компонентов непосредственно к металлу, что снижает скорость коррозии. Защитные свойства образующихся пленок в первую очередь зависят от ее сплошности, толщины (более защитны - тонкие), сцепления с металлом, прочности, эластичности и т.п. С повышением температуры защитные свойства пленок в большинстве случаев ухудшаются. Увеличение давления и скорости движения газовой среды увеличивает скорость коррозии. Процесс коррозии может сопровождаться эрозионным изнашиванием.

Однако в общем процессе коррозионного разрушения автомобиля основное значение имеет электрохимическая коррозия, главным образом, в связи со значительно большей ее скоростью по сравнению с химической. Электрохимическая коррозия возможна только, когда на поверхности металла имеется электролит, т.е. водный раствор солей, кислот, щелочей, обладающих способностью проводить электрический ток. Электрохимическая коррозия протекает в обычных атмосферных условиях, в растворах и расплавах, проводящих ток.

Многочисленными исследованиями установлено, что на поверхности любого металла, находящегося в атмосфере, образуется тонкая пленка воды. Толщина такой пленки может быть различной в зависимости от температуры и влажности воздуха, а также других атмосферных условий. Газы, находящиеся в воздухе, растворяются в пленке воды и создают электролит на металлической поверхности. Так возникают условия для электрохимической коррозии. Таким образом, условия для этого вида коррозии на незащищенных металлических поверхностях существуют практически всегда.

В подавляющем большинстве случаев коррозия является электрохимической. В этом случае на поверхности металла образуются многочисленные микрогальванопары, работа которых и приводит к разрушению металла. На отдельных участках поверхности (примеси, добавки) локализуются катодные участки, на которых идет восстановление окислителей, находящихся в растворе. Чаще всего это растворенный кислород.

На остальной поверхности и особенно на выступах и искажениях кристаллической решетки локализуются анодные участки, на которых идет растворение металла. Таким образом, весь процесс электрохимической коррозии моделируется работой короткозамкнутого гальванического элемента.

Наряду с образованием многочисленных коррозионных микропар на поверхности одного металла, возможно образование макропар между сопряженными деталями из разных металлов. Металл с более отрицательным потенциалом в такой макропаре будет анодом, и скорость его коррозии при этом возрастает.

С увеличением температуры и электропроводности раствора скорость электрохимической коррозии возрастает. Внутренние напряжения и механические нагрузки, особенно знакопеременные, приводят к появлению коррозионной усталости, сопровождающейся снижением механической прочности и тем более, чем выше электропроводность раствора.

Есть еще биохимическая коррозия, которая происходит под действием микроорганизмов.

Суммарно процесс коррозии железа в большинстве случаев описывается следующим уравнением реакции:

и сводится к образованию гидрида закиси железа или гидратированной закиси железа .

На внешней поверхности образуется пленка, благодаря доступу кислорода происходит дальнейшее окисление

с образованием гидрата окиси железа или водной окиси железа .

Между образующимися гидратированными и часто образуется закись – окись железа . Пленки ржавчины обычно и состоят из этих трех слоев. При контакте железа с медью истинная глубина коррозионного разрушения железа повышается за счет локализации анодного процесса вблизи контакта.

Нержавеющие стали могут находиться в паре с медью, алюминием. Медь в большинстве водных растворов растворяется анодно с образованием двухвалентного иона

(3.6)

Медь в контакте инициирует коррозию железа, алюминия, являясь по отношению к ним катодом.

Алюминий при обычных условиях окисляется с образованием Al 2 O 3 , который резко тормозит дальнейшую коррозию алюминия.

Медь и железо значительно стимулируют растворение алюминия на ограниченных участках.

Сплошная коррозия менее опасна, чем местная, которая приводит к разрушению металлических частей кузова, утрате ими прочности.

По условиям, в которых происходит коррозия автомобилей, различаются следующие виды коррозии:

  • газовая (в камерах сгорания на фасках тарелок выпускных клапанов, выпускной трубе, в глушителе и т.п.);
  • в неэлектролитах (в топливной и масляной системах);
  • атмосферная (в естественных условиях хранения, транспортировки и эксплуатации автомобиля);
  • в электролитах (в местах задержки влаги в карманах кузова);
  • структурная (в местах кузова автомобиля, подвергнутых газоплазменной или электрической сварке, в результате которых возникает неоднородность состава металлов);
  • щелевая (в узких щелях и зазорах под действием разности рН-среды или различного содержания кислорода в электролите);
  • под напряжением (на поверхности деталей, агрегатов и конструкций, находящихся под напряжением);
  • при трении (в узлах трения при наличии коррозионной среды, сопровождается коррозионно-механическим износом);
  • биологическая (протекает при участии продуктов, выделяемых микроорганизмами).

Коррозия кузова автомобиля при несвоевременной защите металла, рассматриваемая как совместный результат химической и электрохимической коррозии, проходит в следующей последовательности:

  • подслойная коррозия развивается под лакокрасочным покрытием;
  • шелушение и вспучивание в поврежденных коррозией местах;
  • сквозная коррозия кузова, особенно на стыках;
  • растрескивание сварных швов в местах соединений деталей пола, порогов, крыльев и попадание, как следствие, влаги, пыли и грязи в салон кузова;
  • появление трещин в усилителях, лонжеронах и поперечинах с потерей жесткости кузова;
  • деформация дверных проемов из-за потери жесткости стоек и порогов кузова;
  • нарушение взаимного расположения агрегатов шасси автомобиля, приводящее к нарушению управляемости и равномерности торможения колес;
  • повреждение металлических трубопроводов тормозного привода вследствие потери жесткости в основании кузова из-за коррозии мест крепления;
  • механические повреждения пола кузова в местах крепления амортизаторов, рессор и других узлов автомобиля в результате коррозии мест их крепления, особенно при резком торможении и движении по пересеченной местности.

Действие коррозионных факторов, таких как влажность, концентрация солевых растворов и серных соединений, образующихся из отработавших газов, особенно сильно проявляется в местах, труднодоступных для осмотра и очистки, в небольших зазорах, а также в отбортовках и загибах кромок, где периодически попадающая в них влага может сохраняться длительное время.

С повышением температуры скорость коррозии возрастает (в особенности при наличии в атмосфере агрессивных примесей и содержания влаги).

Разрушительные процессы на кузове также часто интенсифицируются неблагоприятными условиями хранения автомобиля. Наблюдается усиление коррозионного износа в результате применения на дорогах песочно-солевых смесей для борьбы с гололедицей, а также из-за резких перепадов температуры в салоне и снаружи автомобиля.

Коррозионные разрушения на кузове встречаются к тому же в результате контакта стальных деталей с деталями, изготовленными из некоторых других материалов (дюралюминия, каучуков, содержащих сернистые соединения, пластмасс на основе фенольных смол и т.д.), а также в результате контакта металла с деталями, изготовленными из материала, содержащего заметное количество органических кислот (в частности муравьиную).

Теперь о причинах коррозии, обусловленных воздействием нефтепродуктов на детали автомобиля. Это связано, в первую очередь, с наличием в них воды и агрессивных химических соединений. Вода проникает в топливо, масла и смазки во время их производства, хранения и применения. Агрессивные химические соединения возникают, как правило, во время продолжительного хранения нефтепродуктов, в результате происходящих в них процессов старения, а также при эксплуатации двигателя.

Таким образом, среди причин, способствующих интенсивному развитию коррозии автомобилей, есть основные: неправильное конструктивное решение кузова, его деталей и узлов; технологические недостатки при изготовлении кузова; несоблюдение правил предпродажного хранения и транспортировки автомобиля; неправильный уход за кузовом во время эксплуатации.

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ИЛИ ПРОЦЕССЫ ИЗМЕНЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ АВТОМОБИЛЕЙ В ЭКСПЛУАТАЦИИ


Думаете, что ржавчина - это проблема владельцев 15-летних "Жигулей"? Увы, рыжими пятнами покрываются и гарантийные авто, даже если кузов оцинкован. Разбираемся, как правильно ухаживать за металлом и можно ли защитить его от коррозии раз и навсегда.

Что такое кузов? Конструкция из тонкого листового металла, причем разных сплавов и со множеством сварных соединений. И еще не нужно забывать о том, что кузов используется как «минус» для бортовой сети, то есть постоянно проводит ток. Да он просто обязан ржаветь! Попробуем разобраться, что же происходит с кузовом машины и как с этим бороться.

Что такое ржавчина?

Коррозия железа или стали - процесс окисления металла кислородом в присутствии воды. На выходе получается гидратированный оксид железа - рыхлый порошок, который мы все называем ржавчиной.

Разрушения автомобильного кузова относят к классическим примерам электрохимической коррозии. Но вода и воздух - это лишь часть проблемы. Помимо обычных химических процессов важную роль в нем играют гальванические пары, возникающие между электрохимически неоднородными парами поверхностей.

Уже вижу, как на лицах читателей-гуманитариев возникает скучающее выражение. Не пугайтесь термина «гальваническая пара» - мы не на лекции по химии и сложных формул приводить не будем. Эта самая пара в частном случае - всего лишь соединение двух металлов.

Металлы, они почти как люди. Не любят, когда к ним прижимается кто-то чужой. Представьте себя в автобусе. К вам прижался помятый мужчина, вчера отмечавший с друзьями какой-нибудь День монтажника-высотника. Вот это в химии называется недопустимой гальванической парой. Алюминий и медь, никель и серебро, магний и сталь… Это «заклятые враги», которые в тесном электрическом соединении очень быстро «сожрут» друг друга.

Вообще-то, ни один металл долго не выдерживает близкого контакта с чужаком. Сами подумайте: даже если к вам прижалась фигуристая блондинка (или стройная шатенка, по вкусу), то первое время будет приятно… Но не будешь же так стоять всю жизнь. Особенно под дождем. Причем тут дождь? Сейчас все станет понятно.

В автомобиле очень много мест, где образуются гальванические пары. Не недопустимые, а «обычные». Точки сварки, кузовные панели из разного металла, различные крепежные элементы и агрегаты, даже разные точки одной пластины с разной механической обработкой поверхности. Между ними всеми постоянно есть разность потенциалов, а значит, в присутствии электролита будет и коррозия.

Стоп, а что такое электролит? Пытливый автомобилист вспомнит, что это некая едкая жидкость, которую заливают в аккумуляторы. И будет прав лишь отчасти. Электролит - это вообще любая субстанция, проводящая ток. В аккумулятор заливают слабый раствор кислоты, но не обязательно поливать машину кислотой, чтобы ускорить коррозию. С функциями электролита прекрасно справляется обычная вода. В чистом (дистиллированном) виде она электролитом не является, но в природе чистой воды не встречается…

Таким образом, в каждой образовавшейся гальванической паре под воздействием воды начинается разрушение металла на стороне анода - положительно заряженной стороны. Как победить этот процесс? Запретить металлам корродировать друг от друга мы не можем, но зато можем исключить из этой системы электролит. Без него «допустимые» гальванические пары могут существовать долго. Дольше, чем служит автомобиль.


Как с ржавчиной борются производители?

Самый простой способ защиты - покрыть поверхность металла пленкой, через которую электролит не проникнет. А если еще и металл будет хорошим, с низким содержанием примесей, способствующим коррозии (например серы), то результат получится вполне достойным.

Но не воспринимайте слова буквально. Пленка - это необязательно полиэтилен. Самый распространенный вид защитной пленки - краска и грунт. Также ее можно создать из фосфатов металла, обработав поверхность фосфатирующим раствором. Входящие в его состав фосфоросодержащие кислоты окислят верхний слой металла, создав очень прочную и тонкую пленку.

Прикрыв фосфатную пленку слоями грунта и краски можно защитить кузов машины на долгие годы, именно по такому «рецепту» готовили кузова на протяжении десятков лет, и, как видите, довольно успешно - многие машины производства пятидесятых-шестидесятых годов смогли сохраниться до наших времен.

Но далеко не все, ведь со временем краска склонна к растрескиванию. Сначала не выдерживают внешние слои, потом трещины добираются до металла и фосфатной пленки. А при авариях и последующем ремонте покрытия часто наносят, не соблюдая абсолютной чистоты поверхности, оставляя на ней маленькие точки коррозии, которые всегда содержат в себе немного влаги. И под пленкой краски начинает появляться новый очаг разрушения.


Можно улучшать качество покрытия, применять все более эластичные краски, слой которых может быть чуть надежнее. Можно покрыть пластиковой пленкой. Но есть лучшая технология. Покрытие стали тонким слоем металла, имеющего более стойкую оксидную пленку, использовалось давно. Так называемая белая жесть - листовая сталь, покрытая тонким слоем олова, знакома всем, кто хоть раз в жизни видел консервную банку.

Олово для покрытия кузовов машин уже давно не применяют, хотя байки про луженые кузова ходят. Это отголосок технологии выправления брака при штамповке горячими припоями, когда часть поверхности вручную покрывали толстым слоем олова, и иногда самые сложные и важные части кузова машины и правда оказывались неплохо защищены.

Современные покрытия для предотвращения коррозии наносятся в заводских условиях до штамповки кузовных панелей, и в качестве «спасателей» используется цинк или алюминий. Оба этих металла, помимо наличия прочной оксидной пленки, обладают еще одним ценным качеством - меньшей электроотрицательностью. В уже упомянутой гальванической паре, которая образуется после разрушения внешней пленки краски, они, а не сталь будут играть роль анода, и, пока на панели остается немного алюминия или цинка, разрушаться будут именно они. Этим их свойством можно воспользоваться иначе, просто добавив немного порошка таких металлов в грунт, которым покрывают металл, что даст кузовной панели дополнительный шанс на долгую жизнь.


В некоторых отраслях промышленности, когда стоит задача защитить металл, применяют и другие технологии. Серьезные металлоконструкции могут быть оборудованы и специальными пластинами-протекторами из алюминия и цинка, которые можно менять со временем, и даже системами электрохимической защиты. С помощью источника напряжения такая система переносит анод на какие-то части конструкции, не являющиеся несущими. На автомобилях подобные вещи не встречаются.

Многослойный бутерброд, состоящий из слоя фосфатов на поверхности стали или цинка, слоя цинка или алюминия, антикоррозийного грунта с цинком и нескольких слоев краски и лака, даже в очень агрессивной внешней среде вроде обычного городского воздуха с влагой, грязью и солью позволяет сохранить кузовные панели на десяток-другой лет.

В местах, где слой краски легко повреждается (например на днище) используют толстые слои герметиков и мастики, которые дополнительно защищают поверхность краски. Мы привыкли называть это «антикором». Дополнительно во внутренние полости закачивают составы на основе парафина и масел, их задача вытеснять влагу с поверхностей, тем самым еще улучшая защиту.

Ни один из способов по одиночке не дает стопроцентной защиты, но все вместе они позволяют производителям давать восьми-десятилетнюю гарантию на отсутствие сквозной коррозии кузова. Однако нужно помнить, что коррозия подобна смерти. Ее приход можно замедлить или отложить, но нельзя исключить совсем. В общем, что мы говорим ржавчине? Правильно: «Не сегодня». Или, перефразируя современного классика, «не в этом году».

  • Держите кузов машины чистым. Грязь вбирает влагу, которая таким образом сохраняется на поверхности и долго выполняет свою разрушительную функцию, потихоньку проникая через микротрещины к железу.
  • Своевременно восстанавливайте повреждения ЛКП, даже если кузов оцинкованный. Ведь то, что «голый» металл не ржавеет, является следствием постоянного «расхода» металлов-защитников, а их на поверхности отнюдь не килограммы.
  • Пользуйтесь услугами квалифицированных кузовных сервисов, ведь правильное восстановление поверхности требует очень аккуратной и чистой работы, с полным пониманием происходящих процессов. А предложения просто закрасить всё слоем краски потолще обязательно приведут вас в кузовной цех еще раз, причем с куда более серьезными повреждениями металла.
  • <a href=»http://polldaddy.com/poll/8389175/»>Приходилось ли бороться с ржавчиной на кузове?</a>


    Химические и физико-химические реакции, возникающие в момент взаимодействия окружающей среды с металлами и сплавами, в большинстве случаев приводят к их самопроизвольному разрушению. Процесс саморазрушения имеет собственный термин - «коррозия». Результатом коррозии является существенное ухудшение свойств металла, вследствие чего изделия из него быстро выходят из строя. Каждый металл обладает свойствами, позволяющими ему сопротивляться разрушению. Коррозийная стойкость или, как ее еще называют, химическое сопротивление материала, является одним из главных критериев, по которым осуществляется отбор металлов и сплавов для изготовления тех или иных изделий.

    В зависимости от интенсивности и длительности коррозийного процесса металл может быть подвергнут как частичному, так и полному разрушению. Взаимодействие коррозийной среды и металла приводят к образованию на поверхности металла таких явлений, как окалина, оксидная пленка и ржавчина. Данные явления отличаются друг от друга не только внешним видом, но еще и степенью адгезии с поверхностью металлов. Так, например, в процессе окисления такого металла, как алюминий, его поверхность покрывает пленка оксидов, отличающаяся высокой прочностью. Благодаря этой пленке разрушительные процессы купируются и не проникают вовнутрь. Если говорить о ржавчине, то результатом ее воздействия является образование рыхлого слоя. Процесс коррозии в данном случае очень быстро проникает во внутреннюю структуру металла, что способствует его скорейшему разрушению.

    Показатели, по которым осуществляется классификация коррозийных процессов:

    • вид коррозийной среды;
    • условия и механизм протекания;
    • характер коррозийных разрушений;
    • вид дополнительных воздействий на металл.

    По механизму коррозийного процесса различают как химическую, так и электрохимическую коррозию металлов и сплавов.

    Химическая коррозия - это взаимодействие металлов с коррозийной средой, в процессе которого наблюдается единовременное осуществление окисления металла и восстановление окислительного компонента среды. Взаимодействующие между собой продукты не разделены пространственно.

    Электрохимическая коррозия - это взаимодействие металлов с коррозийно-активной средой, представляющей собой раствор электролита. Процесс ионизации атомов металла, а также процесс восстановления окислительного компонента данной коррозийной среды протекают в разных актах. Электродный потенциал раствора электролита оказывает существенное влияние на скорость этих процессов.

    В зависимости от типа агрессивной среды существует несколько видов коррозии.

    Атмосферная коррозия представляет собой саморазрушение металлов в воздушной атмосфере, либо в газовой атмосфере, отличающейся повышенной влажностью.

    Газовая коррозия - это коррозия металлов, происходящая в газовой среде, содержание влаги в которой минимально. Отсутствие влаги в газовой среде не единственное условие, способствующее саморазрушению металла. Также коррозия возможна и при высоких температурах. Наиболее часто встречается данный вид коррозии в нефтехимической и химической промышленности.

    Радиационная коррозия представляет собой саморазрушение металла под воздействием на него радиоактивного излучения разной степени интенсивности.

    Подземная коррозия - это коррозия, происходящая в почвах и различных грунтах.

    Контактная коррозия представляет вид коррозии, образованию которого способствует контакт нескольких металлов, отличающихся друг от друга стационарными потенциалами в конкретном электролите.

    Биокоррозия - это коррозия металлов, происходящая под воздействием различных микроорганизмов и их жизнедеятельности.

    Коррозия током (внешним и блуждающим) - еще один вид коррозии металлов. Если на металл воздействует ток от внешнего источника, то это коррозия внешним током. Если же воздействие осуществляется посредством блуждающего тока, то это коррозия блуждающего тока.

    Коррозийная кавитация представляет собой процесс саморазрушения металлов, возникновению которого способствует как ударное, так и коррозионное воздействие внешней среды.

    Коррозия под напряжением представляет собой коррозию металла, причиной появления которой является взаимодействие коррозийно-активной среды и напряжений механического типа. Данный вид коррозии представляет существенную опасность для конструкций из металла, которые подвергаются сильнейшим механическим нагрузкам.

    Фреттинг-коррозия — вид коррозии металлов, к которой приводит совокупность вибрации и воздействие коррозийной среды. Чтобы минимизировать вероятность возникновения коррозии при трении и вибрации, необходимо внимательно подходить к выбору конструкционного материала. Также необходимо применять специальные покрытия и по возможности снизить коэффициент трения.

    По характеру разрушений коррозия разделяется на сплошную и избирательную.

    Сплошная коррозия полностью покрывает поверхность металла. Если скорость разрушений на всей поверхности одинакова, то это равномерная коррозия. Если разрушение металла на различных его участках происходит с разной скоростью, то коррозия называется неравномерной.

    Избирательная коррозия подразумевает разрушение одного из компонентов сплава или же одной структурной составляющей.

    Местная коррозия , проявляющаяся в виде отдельно разбросанных по поверхности металла пятен, представляет собой углубления разной толщины. Разрушения могут представлять собой раковины или точки.

    Подповерхностная коррозия образуется непосредственно на поверхности металла, после чего активно проникает вглубь. Данный вид коррозии сопровождается расслоением изделий из металла.

    Межкристаллитная коррозия проявляется в разрушении металла по границам зерен. По внешнему виду металла ее достаточно сложно определить. Однако очень быстро меняются показатели прочности и пластичности металла. Изделия из него становятся хрупкими. Наиболее опасен этот вид коррозии для хромистых и хромоникелевых видов стали, а также для алюминиевых и никелевых сплавов.

    Щелевая коррозия образуется на тех участках металлов и сплавов, которые находятся в резьбовых креплениях, различных зазорах и под всевозможными прокладками.

    Известно, что большинство металлов содержится в рудах не в чистом виде, а в различных химических соединениях. Поэтому, чтобы извлечь металлы из этих соединений, приходится задействовать непростые и энергозатратные металлургические операции.

    И все же немалую часть результатов этих процессов отнимает у нас коррозия – главный враг металла.

    Что такое коррозия

    Коррозия – это распад и уничтожение металлов под воздействием окружающей среды. Когда происходит коррозия – металлы снова возвращаются в положение химических соединений, похожих на те, в которых они находятся в рудах.

    Коррозия приносит огромные убытки, ее разрушительное действие мы видим во всем, что нас окружает, из-за коррозии выходят из строя машины, механизмы, различное оборудование. Предохранение от коррозии и ее предупреждение – довольно трудоемкие и затратные мероприятия.

    Коррозия различается по видам, но обычно она начинается на поверхности металла и затем проходит внутрь. Различные металлы реагируют на коррозию по-разному: одни поддаются ее разрушительному действию быстрее, другие медленнее, но не существует металла, обладающего полной защитой от коррозии. Такие благородные металлы, как платина, золото и другие, также подвержены разрушению при некоторых условиях. Например, они растворяются при погружении в раствор соляной и серной кислоты, известный как «царская водка».

    Виды коррозии.

    1. Химическая коррозия. В том случае, когда на металл оказывают воздействие газы – это и есть химическая коррозия. Например: следы ее заметны на серебряных предметах, которые со временем покрываются темным налетом. Это происходит вследствие, вступления в химическую реакцию с серебром, соединений серы, которые находятся в воздухе, и сульфид серебра, образующийся при этой реакции, откладывается на верхнем слое серебряных предметов.

    Еще один пример такого вида коррозии – окалина, возникающая на железе, когда оно нагрето в воздухе. Это воздействие мы можем видеть во время ковки или прокатки. При этих процессах, возникают тонкие пленки или окислы, которыми покрываются металлы. Эти тонкие, но прочные пленки взаимодействуют с металлом, на котором они образуются, и предохраняют его от воздействия коррозии. При этом на некоторых других металлах корка возникает не такая прочная, и коррозия проходит внутрь металла. В наше время существует много способов увеличения действия защиты окисного слоя, они связаны внешней обработкой материалов.

    2. Электрохимическая коррозия. Это — наиболее распространенный и вредоносный вид коррозии. Такая коррозия опасна и непредсказуема. Она может возникнуть в одном куске металла, который состоит из различных соединений. При этом на поверхности материала возникают различные гальванические структуры, а вода от дождя, росы, пара является электролитом.

    Для возникновения коррозии благоприятны изменения температуры, так как они способствуют образованию влаги. Из-за резкой смены ночных и дневных температур опасность возникновения коррозии особенно велика в странах с субтропическим климатом. Еще одним фактором возникновения коррозии является сильное загрязнение окружающей среды пылью и газами, особенно в местах скопления промышленных объектов. В случае, когда коррозия проходит постепенно, ее еще можно контролировать, но она крайне опасна при локализации в частях деталей или материалов и здесь можно говорить о сквозной коррозии, возникающей в растворах, включающих в себя различные хлориды.

    Возникает коррозия также под влиянием различных механических нагрузок, разрушая металл под действием напряжения. В этом случае на поверхности изделий образуются трещины, уходящие далее в тело материала. Этому виду коррозии подвержены многие металлы и сплавы, находящиеся в различных средах.

    Защита от коррозии.

    Для предотвращения коррозии или уменьшения ее действия необходимы огромные усилия и финансовые вложения. Одним из способов защиты является покрытие металлических изделий лакокрасочными материалами. Очевидно – лаки и краски защищают металл от воздействия окружающей среды и других металлов, но это средство не долговечно, так как краска постепенно уничтожается, что требует нового покрытия. Но пока это – один из самых распространенных способов защиты огнезащита металлических конструкций от коррозии. Существуют еще несколько методов защиты. Например, погружение изделия в расплав металла, когда на поверхности изделия образуется защитная пленка. Этот метод включает в себя плакирование, металлизацию и некоторые другие.

    Гальванический способ защиты металлов также имеет широкое распространение. С помощью этого процесса многие предметы, изделия и механизмы эффективно защищаются от воздействия коррозии. Некоторые детали автомобиля, серебряная посуда и многое другое обрабатывается гальваническим способом.

    Коррозия металлических материалов наносит значительный урон промышленности, требует огромных затрат на ее предупреждение и устранение. Но различные методы борьбы с коррозией, изложенные выше, помогают защитить и по возможности предупредить последствия этого разрушительного явления.

    Основной материал для изучения темы:

    § 13, стр. 81.

    Габриелян, О. С.

    Химия. 9 класс: Дрофа, 2013.

    Дополнительный материал по теме «Коррозия металлов»

    Корро́зия , ржавление, ржа - это самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это разрушение любого материала, будь то металл или керамика, дерево илиполимер. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде. Пример - кислородная коррозия железа в воде:

    Гидроксид железа Fe(OH) 3 и является тем, что называют ржавчиной.

    В повседневной жизни для сплавов железа (сталей) чаще используют термин «ржавление». Менее известны случаи коррозииполимеров. Применительно к ним существует понятие «старение», аналогичное термину «коррозия» для металлов. Например, старение резины из-за взаимодействия с кислородом воздуха или разрушение некоторых пластиков под воздействием атмосферных осадков, а также биологическая коррозия. Скорость коррозии, как и всякой химической реакции, очень сильно зависит от температуры. Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.

    Классификация видов коррозии

    Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых они протекают. Поэтому пока нет единой и всеобъемлющей классификации встречающихся случаев коррозии.

    По типу агрессивных сред, в которых протекает процесс разрушения, коррозия может быть следующих видов:

      газовая коррозия;

      атмосферная коррозия;

      коррозия в неэлектролитах;

      коррозия в электролитах;

      подземная коррозия;

      биокоррозия;

      коррозия под воздействием блуждающих токов.

    По условиям протекания коррозионного процесса различаются следующие виды:

      контактная коррозия;

      щелевая коррозия;

      коррозия при неполном погружении;

      коррозия при полном погружении;

      коррозия при переменном погружении;

      коррозия при трении;

      межкристаллитная коррозия;

      коррозия под напряжением.

    По характеру разрушения:

      сплошная коррозия, охватывающая всю поверхность:

      • равномерная;

        неравномерная;

        избирательная;

      локальная (местная) коррозия, охватывающая отдельные участки:

      • язвенная;

        точечная;

        сквозная;

        межкристаллитная (расслаивающая в деформированных заготовках и ножевая в сварных соединениях).

    Главная классификация производится по механизму протекания процесса. Различают два вида:

      химическую коррозию;

      электрохимическую коррозию.

    Коррозия неметаллических материалов

    По мере ужесточения условий эксплуатации (повышение температуры, механических напряжений, агрессивности среды и др.) и неметаллические материалы подвержены действию среды. В связи с чем термин «коррозия» стал применяться и по отношению к этим материалам, например «коррозия бетонов и железобетонов», «коррозия пластмасс и резин». При этом имеется в виду их разрушение и потеря эксплуатационных свойств в результате химического или физико-химического взаимодействия с окружающей средой. Но следует учитывать, что механизмы и кинетика процессов для неметаллов и металлов будут разными.

    Коррозия металлов

    Ржавчина, самый распространённый вид коррозии.

    Коррозия металла.

    Коррозия металлов - разрушение металлов вследствие химического или электрохимического взаимодействия их с коррозионной средой. Для процесса коррозии следует применять термин «коррозионный процесс», а для результата процесса - «коррозионное разрушение». Образование гальванических пар с пользой применяют для создания батарей и аккумуляторов. С другой стороны, образование такой пары приводит к неблагоприятному процессу, жертвой которого становится целый ряд металлов, - коррозии. Под коррозией понимают происходящее на поверхности электрохимическое или химическое разрушение металлического материала. Наиболее часто при коррозии металл окисляется с образованием ионов металла, которые при дальнейших превращениях дают различные продукты коррозии. Коррозия может быть вызвана как химическим, так и электрохимическим процессом. Соответственно, различают химическую и электрохимическую коррозию металлов.

    Типы коррозии

    Различают 4 основных вида коррозии: электрохимическая коррозия, водородная, кислородная коррозия и химическая.

    Электрохимическая коррозия

    Разрушение металла под воздействием возникающих в коррозионной среде гальванических элементов называют электрохимической коррозией. Не следует путать с электрохимической коррозией коррозию однородного материала, например, ржавление железа или т. п. При электрохимической коррозии (наиболее частая форма коррозии) всегда требуется наличие электролита (Конденсат, дождевая вода и т. д.), с которым соприкасаются электроды - либо различные элементы структуры материала, либо два различных соприкасающихся материала с различающимися окислительно-восстановительными потенциалами. Если в воде растворены ионы солей, кислот, или т. п., электропроводность её повышается, и скорость процесса увеличивается.

    Коррозионный элемент

    При соприкосновении двух металлов с различными окислительно-восстановительными потенциалами и погружении их в раствор электролита, например, дождевой воды с растворенным углекислым газом CO 2 , образуется гальванический элемент, так называемый коррозионный элемент. Он представляет собой не что иное, как замкнутую гальваническую ячейку. В ней происходит медленное растворение металлического материала с более низким окислительно-восстановительным потенциалом; второй электрод в паре, как правило, не корродирует. Этот вид коррозии особо присущ металлам с высокими отрицательными потенциалами. Так, совсем небольшого количества примеси на поверхности металла с большим редокспотенциалом уже достаточно для возникновения коррозионного элемента. Особо подвержены риску места соприкосновения металлов с различными потенциалами, например, сварочные швы или заклёпки.

    Если растворяющийся электрод коррозионно-стоек, процесс коррозии замедляется. На этом основана, например, защита железных изделий от коррозии путём оцинковки - цинк имеет более отрицательный потенциал, чем железо, поэтому в такой паре железо восстанавливается, а цинк должен корродировать. Однако в связи с образованием на поверхности цинка оксидной плёнки процесс коррозии сильно замедляется.

    Примером крупномасштабной электрохимической коррозии может служить происшествие, случившееся в декабре 1967 года с норвежским рудовозом «Анатина» (англ. Anatina ), следовавшим из Кипра в Осаку. Налетевший в Тихом океане тайфун привёл к попаданию в трюмы солёной воды и образованию большойгальванической пары: медного концентрата со стальным корпусом судна, который вскоре размягчился, и судно подало сигнал бедствия. Экипаж был спасён подоспевшим немецким судном, а сама «Анатина» еле-еле добралась до порта.

    Водородная и кислородная коррозия

    Если происходит восстановление ионов H 3 O + или молекул воды H 2 O, говорят о водородной коррозии или коррозии с водородной деполяризацией. Восстановление ионов происходит по следующей схеме:

    2H 3 O + + 2e − → 2H 2 O + H 2

    2H 2 O + 2e − → 2OH − + H 2

    Если водород не выделяется, что часто происходит в нейтральной или сильно щелочной среде, происходит восстановление кислорода и здесь говорят о кислородной коррозии или коррозии с кислородной деполяризацией:

    O 2 + 2H 2 O + 4e − → 4OH −

    Коррозионный элемент может образовываться не только при соприкосновении двух различных металлов. Коррозионный элемент образуется и в случае одного металла, если, например, структура поверхности неоднородна.

    Химическая коррозия

    Электрокоррозия полотенцесушителя

    Химическая коррозия - взаимодействие поверхности металла с коррозионно-активной средой, не сопровождающееся возникновением электрохимических процессов на границе фаз. В этом случае взаимодействия окисления металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Например, образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом:

    При электрохимической коррозии ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала металла (например, ржавление стали в морской воде).

    Виды коррозии

      Газовая коррозия

      Атмосферная коррозия

      Коррозия при неполном погружении

      Коррозия по ватерлинии

      Коррозия при полном погружении

      Коррозия при переменном погружении

      Подземная коррозия

      Биокоррозия

      Коррозия внешним током

      Коррозия блуждающим током

      Контактная коррозия

      Коррозия при трении

      Фреттинг-коррозия

      Сплошная коррозия

      Равномерная коррозия

      Неравномерная коррозия

      Местная коррозия

      Подповерхностная коррозия

      Точечная коррозия

      Коррозия пятнами

      Сквозная коррозия

      Послойная коррозия

      Нитевидная коррозия

      Структурная коррозия

      Межкристаллитная коррозия

      Избирательная коррозия

      Графитизация чугуна

      Обесцинкование

      Щелевая коррозия

      Ножевая коррозия

      Коррозионная язва

      Коррозионное растрескивание

      Коррозия под напряжением

      Коррозионная усталость

      Предел коррозионной усталости

      Коррозионная хрупкость

    Борьба с коррозией

    Коррозия приводит ежегодно к миллиардным убыткам, и решение этой проблемы является важной задачей. Основной ущерб, причиняемый коррозией, заключается не в потере металла как такового, а в огромной стоимости изделий, разрушаемых коррозией. Вот почему ежегодные потери от неё в промышленно развитых странах столь велики. Истинные убытки от неё нельзя определить, оценив только прямые потери, к которым относятся стоимость разрушившейся конструкции, стоимость замены оборудования, затраты на мероприятия по защите от коррозии. Ещё больший ущерб составляют косвенные потери. Это простои оборудования при замене прокорродировавших деталей и узлов, утечка продуктов, нарушение технологических процессов.

    Идеальная защита от коррозии на 80 % обеспечивается правильной подготовкой поверхности, и только на 20 % качеством используемых лакокрасочных материа­лов и способом их нанесения . Наиболее производительным и эффективным методом подготовки поверхности перед дальнейшей защитой субстрата являетсяабразивоструйная очистка.

    Обычно выделяют три направления методов защиты от коррозии:

      Конструкционный

      Активный

      Пассивный

    Для предотвращения коррозии в качестве конструкционных материалов применяют нержавеющие стали, кортеновские стали, цветные металлы. При проектировании конструкции стараются максимально изолировать от попадания коррозионной среды, применяя клеи, герметики, резиновые прокладки.

    Активные методы борьбы с коррозией направлены на изменение структуры двойного электрического слоя. Применяется наложение постоянного электрического поля с помощью источника постоянного тока, напряжение выбирается с целью повышения электродного потенциала защищаемого металла. Другой метод - использование жертвенного анода, более активного материала, который будет разрушаться, предохраняя защищаемое изделие.

    В качестве защиты от коррозии может применяться нанесение какого-либо покрытия, которое препятствует образованию коррозионного элемента (пассивный метод).

    Кислородная коррозия оцинкованного железа

    Кислородная коррозия железа, покрытого оловом

    Красочное покрытие, полимерное покрытие и эмалирование должны, прежде всего, предотвратить доступ кислорода и влаги. Часто также применяется покрытие, например, стали другими металлами, такими как цинк, олово, хром, никель. Цинковое покрытие защищает сталь даже когда покрытие частично разрушено. Цинк имеет более отрицательный потенциал и корродирует первым. Ионы Zn 2+ токсичны. При изготовлении консервных банок применяют жесть, покрытую слоем олова. В отличие от оцинкованной жести, при разрушении слоя олова корродировать, притом усиленно, начинает железо, так как олово имеет более положительный потенциал. Другая возможность защитить металл от коррозии - применение защитного электрода с большим отрицательным потенциалом, например, из цинка или магния. Для этого специально создаётся коррозионный элемент. Защищаемый металл выступает в роли катода, и этот вид защиты называют катодной защитой. Растворяемый электрод, называют, соответственно, анодом протекторной защиты. Этот метод применяют для защиты от коррозии морских судов, мостов, котельных установок, расположенных под землей труб. Для защиты корпуса судна на наружную сторону корпуса крепят цинковые пластинки.

    Если сравнить потенциалы цинка и магния с железом, они имеют более отрицательные потенциалы. Но тем не менее корродируют они медленнее вследствие образования на поверхности защитной оксидной плёнки, которая защищает металл от дальнейшей коррозии. Образование такой плёнки называют пассивацией металла. У алюминия её усиливают анодным окислением (анодирование). При добавлении небольшого количества хрома в сталь на поверхности металла образуется оксидная плёнка. Содержание хрома в нержавеющей стали - более 12 процентов.

    Газотермическое напыление

    Для борьбы с коррозией используют также методы газотермического напыления. С помощью газотермического напыления на поверхности металла создается слой из другого металла/сплава, обладающий более высокой стойкостью к коррозии (изолирующий) или наоборот менее стойкий (протекторный). Такой слой позволяет остановить коррозию защищаемого металла. Суть метода такова: газовой струей на поверхность изделия на огромной скорости наносят частицы металлической смеси, например цинк, в результате чего образуется защитный слой толщиной от десятков до сотен микрон. Газотермическое напыление также применяется для продления жизни изношенных узлов оборудования: от восстановления рулевой рейки в автосервисе до нефтедобывающих компаний

    Термодиффузионное цинковое покрытие

    Для эксплуатации металлоизделий в агрессивных средах, необходима более стойкая антикоррозионная защита поверхности металлоизделий. Термодиффузионное цинковое покрытие является анодным по отношению к чёрным металлам и электрохимически защищает сталь от коррозии. Оно обладает прочным сцеплением (адгезией) с основным металлом за счет взаимной диффузии железа и цинка в поверхностных интерметаллидных фазах, поэтому не происходит отслаивания и скалывания покрытий при ударах, механических нагрузках и деформациях обработанных изделий.

    Диффузионное цинкование, осуществляемое из паровой или газовой фазы при высоких температурах (375-850 °C), или с использованием разрежения (вакуума) - при температуре от 250 °C, применяется для покрытия крепёжных изделий, труб, деталей арматуры и др. конструкций. Значительно повышает стойкость стальных, чугунных изделий в средах, содержащих сероводород (в том числе против сероводородного коррозионного растрескивания), промышленной атмосфере, морской воде и др. Толщина диффузионного слоя зависит от температуры, времени, способа цинкования и может составлять 0,01-1,5 мм. Современный процесс диффузионного цинкования позволяет образовывать покрытие на резьбовых поверхностях крепёжных изделий, без затруднения их последующего свинчивания. Микротвёрдость слоя покрытия Hμ = 4000 - 5000 МПа. Диффузионное цинковое покрытие также значительно повышает жаростойкость стальных и чугунных изделий, при температуре до 700 °C. Возможно получение легированных диффузионных цинковых покрытий, применяемое для повышения их служебных характеристик.

    Кадмирование

    Покрытие стальных деталей кадмием производится методами, аналогичными цинкованию, но даёт более сильную защиту, особенно в морской воде. Применяется значительно реже из-за значительной токсичности кадмия и его дороговизны.

    Хромирование

    Коррозия ухудшает работутрубопроводов.

    Экономические потери от коррозии металлов огромны. В США по последним данным NACE [ ущерб от коррозии и затраты на борьбу с ней составили 3,1 % от ВВП (276 млрд долларов). В Германии этот ущерб составил 2,8 % от ВВП. По оценкам специалистов различных стран эти потери в промышленно развитых странах составляют от 2 до 4 % валового национального продукта. При этом потери металла, включающие массу вышедших из строя металлических конструкций, изделий, оборудования, составляют от 10 до 20 % годового производства стали.

    Обрушение Серебряного моста.

    Ржавчина является одной из наиболее распространённых причин аварий мостов. Так как ржавчина имеет гораздо больший объём, чем исходная масса железа, её наращивание может привести к неравномерному прилеганию друг к другу конструкционных деталей. Это стало причиной разрушения моста через реку Мианус в 1983 году, когда подшипники подъёмного механизма проржавели внутри. Три водителя погибли при падении в реку. Исследования показали, что сток дороги был перекрыт и не был почищен, а сточные воды проникли в опоры моста. 15 декабря 1967 года Серебряный мост, соединяющий Поинт Плезант, штат Западная Виржиния, и Канауга, штат Огайо, неожиданно рухнул в реку Огайо. В момент обрушения 37 автомобилей двигались по мосту, и 31 из них упали вместе с мостом. Сорок шесть человек погибли, и девять серьёзно пострадали. Помимо человеческих жертв и травм, был разрушен основной транспортный путь между Западной Виржинией и Огайо. Причиной обрушения стала коррозия

    Мост Кинзу в Пенсильвании был разрушен в 2003 году от торнадо прежде всего потому, что центральные основные болты проржавели, существенно снизив его устойчивость.

    Домашняя работа

    Сплавы

    Внимание!!!

    Для получения оценки «3» достаточно выполнить только первую часть работы, для получения оценки «4», необходимо выполнить без ошибок всю часть работы на «3» и также без ошибок всю часть работы на оценку «4». Для получения оценки «5» необходимо выполнить всю работу без ошибок!!!

    Оценка «3»

    1. Какой из металлов как простое вещество более подвержен коррозии

    1) 1s 2 2s 2 2p 6 3s

    2) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1

    3) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2

    4) 1s 2 2s 2 2p 6 3s 2 3p 1

    2. Химическую коррозию вызывают

    1) вода и кислород

    2) оксиды углероды и серы

    3) растворы солей

    4) все перечисленные факторы.

    3. При контакте Ni и Fe в растворе кислоты

    1) железо будет растворяться

    2) железо будет восстанавливаться

    3) никель будет растворяться

    4) будет выделяться кислород

    Оценка «4»

    4. Способы защиты от коррозии, при котором в рабочую среду вводят вещества, уменьшающие агрессивность среды, называют

    5. Способ защиты от коррозии, при котором железный лист покрывают слоем олова

    6. Наиболее активно корродирует

    1) химически чистое железо

    2) железо, покрытое слоем олова

    3) техническое железо

    4) сплав железа с титаном

    Оценка «5»

    7. Легирующий элемент, сообщающий стали коррозионную стойкость

    8. Масса меди, выделившейся на пластинке помещенной в растворе хлорида меди (II) если в реакцию вступил цинк массой 13г

    8. Масса меди, выделившейся на железной пластинке помещенной в раствор сульфата меди (II), если в реакцию вступило железо массой 11,2 г.