В работе телескопа рефлектора используется. Телескопы рефлекторные: описание, устройство, история создания. Общее описание рефлектора Ньютона

Часто изобретение первого телескопа приписывают Гансу Липпершлею из Голландии, 1570-1619 годы, однако почти наверняка он не являлся первооткрывателем. Скорее всего, его заслуга в том, что он первый сделал новый прибор телескоп популярным и востребованным. А также именно он подал в 1608 году заявку на патент на пару линз, размещенный в трубке. Он назвал устройство подзорной трубой. Однако его патент был отклонен, поскольку его устройство показалось слишком простым.

Задолго до него Томас Диггес, астроном, в 1450 году попытался увеличить звезды с помощью выпуклой линзы и вогнутого зеркала. Однако у него не хватило терпения доработать устройство, и полу-изобретение вскоре было благополучно забыто. Сегодня Диггеса помнят за описание гелиоцентрической системы.

К концу 1609 года небольшие подзорные трубы, благодаря Липпершлею, стали распространены по всей Франции и Италии. В августе 1609 года Томас Харриот доработал и усовершенствовал изобретение, что позволило астрономам рассмотреть кратеры и горы на Луне.

Галилео Галилей и телескоп

Большой прорыв произошел, когда итальянский математик Галилео Галилей узнал о попытке голландца запатентовать линзовую трубу. Вдохновленный открытием, Галлей решил сделать такой прибор для себя. В августе 1609 года именно Галилео изготовил первый в мире полноценный телескоп. Сначала, это была всего лишь зрительная труба - ком-бинация очковых линз, сегодня бы ее назвали рефрактор. До Галилео, скорее всего, мало кто дога-дался использовать на пользу астро-номии эту развлекательную трубку. Благодаря прибору, сам Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.

Сегодняшнему человеку телескоп Галилео не покажется особенным, любой десятилетний ребенок может легко собрать гораздо лучший прибор с использованием современных линз. Но телескоп Галилео был единственным реальным работоспособным телескопом на тот день с 20-кратным увеличением, но с маленьким полем зрения, немного размытым изображением и другими недостатками. Именно Галилео открыл век ре-фрактора в астрономии — 17 век.

XVII век в истории наблюдений за звездами

Время и развитие науки позволяло создавать более мощные телескопы, которые давали видеть много больше. Астрономы начали использовать объективы с большим фокусным расстоянием. Сами телескопы превратились в большие неподъемные трубы по размеру и, конечно, были не удобны в использовании. Тогда для них изобрели штативы. Телескопы постепенно улучшали, дорабатывали. Однако его максимальный диаметр не превышал нескольких сантиметров — не удавалось изготавливать линзы большого размера.

К 1656 году Христиан Гюйенс сделал телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих. К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения.

Исаак Ньютон и изобретение рефлектора

Но даже обычный ветер мог служить препятствием для получения четкого и качественного изображения. Телескоп стал расти в длину. Первооткрыватели, пытаясь выжать максимум из этого прибора, опирались на открытый ими оптический закон — уменьшение хроматической абер-рации линзы происходит с увеличением ее фокусно-го расстояния. Чтобы убрать хроматические помехи, исследователи делали телескопы самой не-вероятной длины. Эти трубы, которые назвали тогда телескопами, достигали 70 метров в длину и доставляли множество неудобств в работе с ними и настройке их. Недостатки рефракторов заставили великие умы искать решения к улучшению телескопов. Ответ и новый способ был найден: собирание и фокусировке лучей стала производиться с помощью вогнутого зеркала. Рефрактор переродился в рефлектор, полностью освободившийся от хроматизма.

Заслуга эта целиком и полностью принадлежит Исааку Ньютону , именно он сумел дать новую жизнь телескопам с помощью зеркала. Его первый рефлектор имел диаметр всего четыре сантиметра. А первое зеркало для телескопа диаметром 30 мм он сделал из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким. Кстати, его первый телескоп до сих пор бережно хранится в астрономическом музее Лондона.

Но еще долгое время оптикам никак не удавалось делать полноценные зеркала для рефлекторов. Годом рождения нового типа телескопа принято считать 1720 год, когда англичане построили первый функциональный ре-флектор диаметром в 15 сантиметров. Это был прорыв. В Европе появился спрос на удобоносимые, почти компактные телескопы в два метра длиной. О 40-метровых трубах рефракторов стали забывать.

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны - дорогие в производстве, а также тускнеющие от времени. К 1758 году с изобретением двух новых сортов стекла: легкого - крон и тяжелого - флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд , который изготовил двухлинзовый объектив, впоследствии названный доллондовым.

Телескопы Гершеля и Росса


После изобретения ахроматических объективов победа рефрактора была абсолютная, оставалось лишь улучшать линзо-вые телескопы. О вогнутых зеркалах забыли. Возродить их к жизни удалось руками астрономов-любителей. Вильям Гершель, английский музыкант, в 1781 году открывший планету Уран. Его открытию не было равным в астрономии с глубокой древности. Причем Уран был открыт с помощью небольшого самодельного рефлектора. Успех побудил Гершеля начать изготовление рефлекторов большего разме-ра. Гершель собственноручно в мастерской сплавлял зеркала из меди и олова. Главный труд его жизни - большой телескоп с зеркалом диаметром 122 см. Это диа-метр его самого большого телескопа. Открытия не заставили себя ждать, благодаря этому телескопу, Гершель открыл шестой и седьмой спутники планеты Сатурн. Другой, ставший не менее известным, астроном-любитель английский землевладелец лорд Росс изобрел рефлектор с зер-калом с диаметром в 182 сантиметра. Благодаря телескопу, он открыл ряд неизвестных спиральных туманно-стей. Телескопы Гершеля и Росса обладали множеством недостатков. Объективы из зеркального металла оказались слишком тяжелыми, отражали лишь малую часть падающего на них света и тускнели. Требовался новый совершенный материал для зеркал. Этим материалом оказалось стекло. Французский физик Леон Фуко в 1856 году попробовал вставить в рефлектор зеркалом из посеребренного стекла. И опыт удался. Уже в 90-х годах астроном-любитель из Англии построил рефлектор для фотографиче-ских наблюдений со стеклянным зерка-лом в 152 сантиметра в диаметре. Очередной прорыв в телескопостроении был очевиден.

Этот прорыв не обошелся без участия русских ученых. Я.В. Брюс прославился разработкой специальных металлических зеркал для телескопов. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света.

Немецкий оптик Фраунгофер поставил на конвейер производство и качество линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна - хроматизма.

Расцвет рефракторной астрономии

Двухзеркальная система в телескопе предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен не смог из-за отсутствия технической возможности изобретения нужных зеркал, но сегодня его чертежи реализованы. Именно телескопы Ньютона и Кассегрена считаются первыми «современными» телескопами, изобретенными в конце 19 века. Кстати, космический телескоп Хаббл работает как раз по принципу телескопа Кассегрена. А фундаментальный принцип Ньютона с применением одного вогнутого зеркала использовался в Специальной астрофизической обсерватории в России с 1974 года. Расцвет рефракторной астрономии произошел в 19 веке, тогда диа-метр ахроматических объективов постепенно рос. Если в 1824 го-ду диаметр был еще 24 сантиметра, то в 1866 году его размер вырос вдвое, в 1885 году диаметр стал составлять 76 сантиметров (Пулковская обсерватория в России), в к 1897 году изобретен иеркский рефрактор. Можно посчитать, что за 75 лет линзовый объектив увеличивался со скоро-стью одного сантиметра в год.

К концу 19 века изобрели новый метод производства линз. Стеклянные поверхности начали обрабатывать серебряной пленкой, которую наносили на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра. Эти принципиально новые линзы отражали до 95% света, в отличие от старинных бронзовых линз, отражавших всего 60% света. Л. Фуко создал рефлекторы с параболическими зеркалами, меняя форму поверхности зеркал. В конце 19 века Кросслей, астроном-любитель, обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп. Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях. В то время как рост рефрактора замедлился, разработка зеркального телескопа набирала обороты. С 1908 по 1935 года различные обсерватории мира соорудили более полутора десятков ре-флекторов с объективом, превышающим иеркский. Самый большой телескоп установлен в обсерватории Моунт-Внльсон, его диаметр 256 сантиметров. И даже этот предел соврем скоро превзойден вдвое. В Калифорнии смонтирован американский рефлектор-гигант, на сегодня его возраст более двадцати лет.

Новейшая история телескопов

Более 40 лет назад в 1976 году ученые СССР построили 6-метровый телескоп БТА - Большой Телескоп Азимутальный. До конца 20 века БРА считался крупнейшим в мире телескопом Изобретатели БТА были новаторами в оригинальных технических решениях, таких как альт-азимутальная установка с компьютерным ведением. Сегодня это новшества применяются практически во всех телескопах-гигантах. В начале 21 века БТА оттеснили во второй десяток крупных телескопов мира. А постепенная деградация зеркала от времени - на сегодня его качество упало на 30% от первоначального - превращает его лишь в исторический памятник науке.

К новому поколению телескопов относятся два больших телескопа 10-метровых близнеца KECK I и KECK II для оптических инфракрасных наблюдений. Они были установлены в 1994 и 1996 году в США. Их собрали благодаря помощи фонда У. Кека, в честь которого они и названы. Он предоставил более 140 000 долларов на их строительство. Эти телескопы размером с восьмиэтажный дом и весом более 300 тонн каждый, но работают они с высочайшей точностью. Принцип работы - главное зеркало диаметром 10 метров, состоящее из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Установлены эти телескопы в одном из оптимальных на Земле мест для астрономических наблюдений - на Гаваях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 м. К 2002 году эти два телескопа, расположенных на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп.

А в июне 2019 года NASA планирует вывести на орбиту уникальный инфракрасный телескоп (JWST) с 6,5-метровым зеркалом.

История телескопа прошла долгий путь - от итальянских стекольщиков до современных гигантских телескопов-спутников. Современные крупные обсерватории давно компьютеризированы. Однако любительские телескопы и многие аппараты, типа Хаббл, все еще базируются на принципах работы, изобретенных Галилеем.

Ирина Калина, 15.04.2014
Обновление: Татьяна Сидорова, 02.11.2018
Перепечатка без активной ссылки запрещена!


Брайан Грин

Мы немного "покопались" в вопросе возникновения телескопа, а также рассмотрели поближе телескоп-рефрактор, в том числе и на примере пары моделей. Давайте сделаем шаг вперёд и поговорим о телескопах-рефлекторах.

Главное отличие рефлектора от телескопа-рефрактора - это то, что в рефлекторе за сбор света и увеличение картинки отвечает не линза, а зеркало.

Параболическое (в основном, однако иногда может быть и сферическим) зеркало расположено в нижней части трубы телескопа. Оно собирает свет и фокусирует полученное изображение на маленьком вспомогательном (вторичном) зеркале, которое уже "направляет" картинку в окуляр. При этом наблюдатель смотрит в телескоп сбоку, да ещё и со стороны, непосредственно направленной в небо. Кого-то такое устройство может смутить, и первое время человеку, привыкшему пользоваться в основном рефрактором, придётся немного помучиться с управлением.

Самый первый рефлектор изобрёл в 1667 году сэр Исаак Ньютон, которому, видимо, надоели хроматические аберрации, присущие всем рефракторам. Однако взамен привычного хроматического эффекта Ньютон получил иные особенности изображения, сопровождающие и ныне большинство рефлекторов.

А если конкретнее, то у рефлектора Ньютона (это имя и сейчас носят телескопы такого типа) есть свои аберрации. В основном любители астрономии жалуются на так называемую "кому". Этот эффект создаёт ощущение, что центр картинки и её края расфокусированы между собой - то есть звёзды по центру выглядят как положено, точками, а по краям как кометы: размазаны, "лохматы и хвостаты".

В принципе, если вы не занимаетесь астрофотографией, эта особенность рефлекторов вас не особо потревожит: ведь рассматриваемый объект, как правило, находится в центре картинки, видимой наблюдателю, а значит, не пострадает от эффекта комы. А если вы фотограф, мечтающий начать съёмку звёздного неба, то лучше заранее озаботиться поиском специальных корректоров, занимающихся исправлением именно этой аберрации.

Кома - это далеко не единственный минус рефлекторов. К таковым ещё относятся:

  • необходимость периодически регулировать положение зеркала - этот процесс называется "юстировка";
  • чувствительность устройства к температурным перепадам - нельзя вынести телескоп зимой из дома на улицу и сразу приступить к наблюдениям, иначе картинка вас здорово разочарует;
  • приличные габариты - это обстоятельство несколько сдерживает страсть к поездкам с телескопом в рюкзаке;
  • чувствительность к непогоде - сильный ветер может вызвать "тряску" изображения;
  • низкая защищённость от пыли и прочих загрязнений - фактически прямой доступ к центральному зеркалу позволяет грязи почти беспрепятственно попадать внутрь, а мыть зеркальную поверхность нужно очень осторожно, иначе есть вероятность её повредить;
  • риск нарваться на некачественную оптику в дешёвых рефлекторах.

Однако все эти минусы не могут полностью победить существенные плюсы:

  1. Цена. Это, конечно, самая положительная характеристика рефлектора. Он прост в конструкции, а зеркало нуждается в меньшей обработке, чем каждая из линз рефрактора, что, конечно же, не могло не сказаться на стоимости именно рефлектора - и притом в лучшую для покупателя сторону. Фактически за одну и ту же цену можно найти рефрактор и рефлектор, существенно различающиеся по показателю апертуры (выигрывает опять же рефлектор). Напомню: апертура - это диаметр главной линзы (у рефрактора) или же главного зеркала (у рефлектора). А как уже говорилось ранее, бОльшая апертура всегда лучше. Ведь именно от этой характеристики зависят и разрешение, и контрастность, и максимально различимая звёздная величина. А если ещё проще - чем больше апертура, тем качественнее будет картинка.
  2. Рефлектор можно установить на самый лёгкий тип монтировки, которую реально сделать даже самостоятельно: монтировка Добсона наиболее компактна с точки зрения габаритов, а кроме того, делается из дерева, ДСП или фанеры. Понятно, что в весовой категории эти материалы выигрывают у металла.
  3. Отличные показатели (как правило) по параметру светосилы - такой тип телескопов, особенно в сочетании с экваториальной монтировкой, весьма хорош в астрофотографии.
  4. Если оптика качественная, то изображение в центральной своей части будет практически лишено каких-либо аберраций - и таким показателем не может похвастать ни один рефрактор.
  5. Отлично подходит для наблюдений объектов далёкого космоса.

Однако давайте уже рассмотрим какую-нибудь подходящую модель.

Для примера возьмём телескоп Celestron PowerSeeker 127 EQ (7500 руб.).

Вполне бюджетная модель с отличной апертурой на 127 мм. Если брать 7500 руб. (ориентировочная стоимость) за верхнюю денежную "планку" для приобретения телескопа, то можно найти рефрактор с диаметром линзы максимум 70 мм. А как уже не раз говорилось, чем больше апертура, тем лучше.

В комплекте идут два сменных окуляра на 20 и 4 мм, а также трёхкратная линза Барлоу. В сумме, если смотреть в прилагающиеся к телескопу характеристики, эта оптика должна давать увеличение аж до 750 крат! Однако на практике легко можно сосчитать, до каких пределов кратности устройство будет выдавать вам чёткую картинку. Нужно всего лишь умножить значение апертуры (в мм) на 1,4 - получившаяся цифра будет именно той кратностью, после достижения которой телескоп вряд ли выдаст суперчёткую картинку. Впрочем, если умножить тот же показатель апертуры на 2, вы узнаете абсолютный качественный предел увеличения вашего устройства. Если говорить об этой модели Celestron , то 127 х 1,4 = 177,8 крат, 127 х 2 = 254 крат. Итого - 254 крат будет самым что ни на есть "потолком" в плане увеличения.

Предельная звёздная величина различаемых объектов +13 m.

Рефлектор с экваториальной монтировкой - очень хорошо для наблюдения небесных объектов, практически никак - для наземных. У модели от Celestron экваториальная монтировка идёт с механизмами тонких движений и координатными кругами, это всё поможет новичку справиться с нелёгким на первых порах делом наведения и наблюдения.

Вес телескопа - 7,7 кг, длина трубы - 508 мм. Гораздо компактнее рефрактора с такой же апертурой - тот длиной будет побольше метра, а показатель веса "нырнёт" за отметку 30 кг. Не лучший вариант для пешего похода, не так ли?

Типичный представитель рефлекторов, отлично подходит для наблюдений объектов глубокого космоса.

А теперь поговорим о зеркально-линзовых (катадиоптрических) телескопах. Иногда их ещё называют комбинированным типом.

Если в рефракторе объектив основан на использовании линзы, в рефлекторе - на зеркале, то катадиоптрики используют в своём устройстве и линзы, и зеркальную оптику. Такие объективы сложнее в изготовлении, потому их цена, естественно, будет выше, чем, допустим, стоимость рефлектора с той же апертурой. Вторая неприятная особенность такого типа заключается в том, что в связи со своей конструкцией зеркально-линзовое устройство не может обеспечить наблюдателя настолько же чёткой картинкой, как, к примеру, рефрактор.

Ещё из "минусов" - зеркально-линзовые телескопы с оптической схемой Шмидта - Кассегрена, к сожалению, не лишены коматической аберрации. А вот Максутов - Кассегрен могут похвастать картинкой без этих "помех".

Кроме прочего, катадиоптрики наиболее чувствительны к смене температурного режима - даже больше рефлекторов.

Однако положительные моменты зеркально-линзовых подчас играют решающую роль для многих любителей астрономии.

В первую очередь - это, конечно, размеры. К примеру, рефрактор с апертурой 90 мм будет в длину не менее 95 см (а скорее всего, около метра). А аналогичный по размеру апертуры Максутов - Кассегрен - 28 см длиной. Существенная разница, не так ли? Весят катадиоптрики, соответственно, тоже меньше прочих разновидностей.

Ну и не менее существенный момент - аберрации, точнее, почти полное их отсутствие. Если оптика качественная и при изготовлении телескопа производитель не допустил серьёзных "ляпов", то картинка будет лишена всех тех "неправильностей", что непременно хоть в какой-то степени сопровождают и рефракторы, и рефлекторы.

Для примера рассмотрим Celestron NexStar 90 SLT (16 300 руб.).

Как понятно уже из названия, апертура здесь равна 90 мм. Это один из представителей ряда Максутов - Кассегрен, то есть изображение, полученное с его помощью, будет практически лишено привычных аберраций.

В комплекте два сменных окуляра на 25 мм (50 крат) и 9 мм (139 крат), предельная звёздная величина обозреваемых объектов - 12,3 m.

Монтировка азимутальная с компьютерным наведением - подобная система в народе называется GoTo. В устройстве уже имеется база данных на 4000 объектов. Управление простое: выбираете объект из базы данных и телескоп автоматически "нацеливается" в нужную вам область неба. Выбор объекта делается при помощи пульта, у которого есть опция обновления через Интернет (естественно, при подключении к компьютеру). Возможности подобного управления не ограничены просто выбором какого-то объекта: GoTo позволяет наводить по координатам, получать краткую справку о каком-либо объекте; может по запросу выдавать координаты точки, на которую наведён в данный момент. Единственное, что может вызвать затруднения у новичков в астрономии, - перед началом использования телескоп нужно сориентировать на местности, то есть ввести место и время наблюдения, а также навести телескоп на пару-тройку известных пользователю звёзд. В принципе удобная система, зачастую экономящая время наблюдателя.

Штатив стальной для обеспечения максимальной устойчивости, крепление типа "ласточкин хвост" - прибор устанавливается быстрым и несложным движением. Вес телескопа - всего 5,4 кг.

Отличный вариант даже для новичков в астрономии. Возможности катадиоптрика, удобство GoTo плюс максимальная компактность - и вот уже под рукой инструмент настоящего астронома (конечно, если не отпугивает цена).

Найти идеальный универсальный телескоп невозможно. У любого типа есть свои сильные и слабые стороны. Однако, если вы точно знаете, что вас больше всего интересует на небе, можно подобрать такое устройство, которое по максимуму раскроет свои возможности.

Ребёнку в качестве первого телескопа (особенно в городских условиях) подойдёт рефрактор с апертурой 70-90 мм: он сможет детально рассмотреть и поверхность Луны, и планеты Солнечной системы, и Солнце. Единственная пометка: категорически нельзя рассматривать Солнце в телескоп без специальных фильтров - вы просто лишитесь зрения, ведь в данном случае телескоп действует как обыкновенная лупа. Вспомните, что происходит с бумажкой, если направить на неё солнечный луч через увеличительное стекло: она быстро загорится. А теперь представьте, что на месте бумажки - ваш глаз, и вам мигом расхочется экспериментировать с Солнцем.

Для качественных наблюдений далёких космических объектов (туманностей, шаровых звездных скоплений и прочего) вдали от городской засветки лучше всего подойдёт рефлектор с апертурой где-то на 114-150 мм. Конечно, чем больше этот показатель, тем лучше - там уже смотрите по деньгам.

Ну а если вы много путешествуете и при этом хотите постоянно иметь при себе телескоп, то лучшим выбором будет какая-нибудь модель Максутов - Кассегрен или другой прибор из ряда зеркально-линзовых: они компактны и их будет легче переносить.

В том случае, если вы сами ещё не решили, что именно хотите изучать, - берите рефрактор. На первое время, чтобы понять, интересно ли вам вообще такое занятие, его вполне достаточно. Лучше, если апертура будет где-то 70-90 мм: меньшие размеры вряд ли доставят настоящее удовольствие.

И не забывайте о габаритах: многие телескопы чрезвычайно неудобны в плане ручной переноски и не имеющим средства передвижения людям стоит подумать и об этом.


Главные части в телескопе - объектив и окуляр. Объектив направляют в сторону объекта, который хотят наблюдать, а в окуляр смотрят глазом.

Существует три основных типа оптических систем телескопов – рефрактор (с линзовым объективом), рефлектор (с зеркальным объективом) и зеркально-линзовый телескоп.

Телескоп-рефрактор имеет в качестве объектива линзу в передней части трубы. Чем больше диаметр линзы, тем ярче кажется небесный объект в поле зрения, тем более слабый объект можно заметить в этот телескоп. Как правило, объектив рефрактора представляет собой не одиночную линзу, а систему линз. Они изготовляются из разных сортов стекла и склеиваются между собой специальным клеем. Это делается для того, чтобы уменьшить искажения в изображении. Эти искажения называются аберрациями. Аберрациями обладает любая линза. Главные из них – сферическая аберрация и хроматическая аберрация.

Сферическая аберрация заключается в том, что края линзы сильнее отклоняют световые лучи, чем середина. Иными словами, лучи света, пройдя через линзу, не сходятся в одном месте. А нам очень важно, чтобы лучи сходились в одной точке. Ведь от этого зависит чёткость изображения. Но это еще полбеды. Ты знаешь, что белый свет является составным – в него входят лучи всех цветов радуги. В этом легко убедиться с помощью стеклянной призмы. Направим на неё узкий луч белого света. Мы увидим, что белый луч, во-первых, разложится на несколько цветных лучей, и, во-вторых преломится, т.е. изменит направление. Но самое важное то, что лучи разного цвета преломляются по-разному – красные отклоняются меньше, а синие – больше. Линза тоже своего рода призма. И она неодинаково фокусирует лучи разных цветов – синие собираются в точку ближе к линзе, красные – дальше от неё.


Изображение, даваемое линзой, всегда слегка окрашено по краям радужной каймой. Так проявляет себя хроматическая аберрация.

Чтобы уменьшить сферическую и хроматическую аберрации, средневековые астрономы придумали делать линзы с очень большим фокусным расстоянием. Фокусное расстояние – это расстояние от центра линзы до фокуса , т.е. точки, где происходит пересечение преломленных лучей света (на самом деле в фокусе получается крошечное изображение предмета). Задача объектива - собрать побольше света от небесного объекта и построить крошечное и чёткое изображение этого предмета в фокусе.


Польский астроном XVII века Ян Гевелий изготавливал телескопы длиной 50 метров. Зачем? Чтобы не так сильно сказывались аберрации, т.е. чтобы получить возможно более чёткое и неокрашенное изображение небесного объекта. Конечно, работать с таким рефрактором было очень неудобно. Поэтому Гевелий, хотя и был трудолюбивым астрономом, многого не смог открыть.

Впоследствии оптики придумали делать объектив не из одной, а из двух линз. Причём так подбирали сорта стекол и кривизну их поверхностей, что аберрации одной линзы гасили, компенсировали аберрации другой линзы.



Так появился сложный объектив. Рефракторы сразу уменьшились в размерах. Зачем делать длинный телескоп, если качественный объектив можно сделать более короткофокусным? Именно поэтому в детских телескопах такое плохое изображение – ведь там используется в качестве объектива всего одна линза. А нужно минимум две. Одна линза стоит дешевле, чем две, поэтому детские телескопы так дешевы. Но всё-таки, какие бы стёкла оптики ни подбирали для объективов, совсем избежать хроматической аберрации не удаётся. Поэтому в рефракторах всегда есть небольшой синий ореол вокруг изображения. Однако в целом, рефракторы среди телескопов других систем дают самое чёткое изображение.

Ты должен остановить свой выбор на рефракторе, если собираешься наблюдать подробности небесных объектов – горы и кратеры на Луне, полосы и Большое Красное Пятно на Юпитере, кольца Сатурна, двойные звёзды, шаровые звёздные скопления и т.п. Бледные, размытые объекты – туманности, галактики, кометы – нужно наблюдать в телескоп-рефлектор .

В рефлекторе свет собирается не линзой, а вогнутым зеркалом определённой кривизны. Зеркало изготовить проще, чем линзу, потому что приходится шлифовать только одну поверхность. К тому же, для линз нужно особое качественное стекло, а для зеркал подходит любое стекло. Поэтому рефлекторы в целом стоят дешевле рефракторов с таким же диаметром линзы. Многие любители астрономии сами строят неплохие рефлекторы. Главное преимущество рефлектора в том, что зеркало не даёт хроматической аберрации. Первый в истории рефлектор создал Исаак Ньютон в XVIII веке. Этот английский учёный первым заметил, что вогнутое зеркало одинаково отражает лучи всех цветов и может создавать неокрашенное изображение. Ньютон разработал оптическую систему телескопа, которую принято называть Ньютоновской. Рефлекторы системы Ньютона изготовляются сегодня промышленным способом во многих странах мира.

Самый большой рефлектор системы Ньютона в XVIII веке построил английский астроном Вильям Гершель. Диаметр вогнутого зеркала был 122 см, а длина трубы телескопа – 12 метров. Конечно, телескоп неуклюжий, но всё-таки это уже не 50-метровый рефрактор Гевелия. Со своим телескопом Гершель совершил много замечательных открытий. Одно из самых важных – открытие планеты Уран.

Посмотрим на ход лучей в системе рефрактора и рефлектора.



В рефракторе свет проходит через линзу и непосредственно попадает в окуляр и дальше в глаз наблюдателя. В рефлекторе свет отражается от вогнутого зеркала и направляется сначала на плоское зеркало, установленное в верхней части трубы, и только потом попадает в окуляр и глаз. В рефлекторе, таким образом, работает два зеркала – одно вогнутое (главное), другое плоское (диагональное). Задача главного зеркала такая же, как у линзового объектива - собирать свет и строить крошечное и чёткое изображение в фокусе.

Плоское (диагональное) зеркало держится на специальных растяжках (как правило, их 4 штуки) в передней части трубы. А теперь представь: свет попадает в трубу телескопа, часть света загораживает плоское зеркало и растяжки. В результате на главное вогнутое зеркало попадает меньше света, чем могло попасть. Это называется центральным экранированием. Центральное экранирование приводит к потере чёткости изображения.



Наконец, познакомимся с зеркально-линзовыми телескопами . Они сочетают в себе элементы и рефрактора и рефлектора. Там есть и вогнутое зеркало, и линза в передней части трубы. Как правило, задняя часть этой линзы посеребрена. Этот серебристый кружок играет роль дополнительного зеркала. Ход световых лучей в зеркально-линзовых телескопах сложнее. Свет проходит через переднюю линзу, затем попадает на вогнутое зеркало, отражается от него, идёт обратно к передней линзе, отражается от серебристого кружка, идёт обратно к вогнутому зеркалу и проходит сквозь отверстие в этом зеркале. И только после этого свет попадает в окуляр и глаз наблюдателя. Световой поток внутри трубы три раза меняет направление. Поэтому зеркально-линзовые телескопы так компактны. Если у тебя мало места на балконе, то свой выбор нужно остановить именно на таком телескопе.

Существует несколько оптических систем зеркально-линзовых телескопов. Например, телескоп системы Максутова, Шмидта, Кассегрена, Клевцова. Каждый из этих оптиков по-своему решает основные недостатки зеркально-линзового телескопа. Что же это за недостатки? Во-первых, много оптических поверхностей. Давай посчитаем: как минимум 6, и на каждой из них теряется часть света (к сведению, в рефракторе и рефлекторе их по 4). В нутри такого телескопа теряется много света. Если рефрактор способен пропускать 92% попадающего в него света от небесного объекта, то через зеркально-линзовый телескоп проходит только 55% света. Иными словами, объекты в такой телескоп выглядят более тусклыми по сравнению с рефрактором с таким же диаметром объектива. Поэтому зеркально-линзовые телескопы лучше использовать для ярких объектов – Луны и планет. Но, учитывая центральное экранирование из-за зеркала на передней линзе, приходится признать, что чёткость изображения также ниже, чем в рефракторе. Во-вторых, и линза, и вогнутое зеркало создают свои аберрации. Поэтому качественный зеркально-линзовый телескоп стоит довольно дорого.





Увеличение телескопа. Чтобы найти увеличение телескопа, нужно фокусное расстояние объектива разделить на фокусное расстояние окуляра. Например, объектив имеет фокусное расстояние 1 м (1 000 мм), при этом у нас в распоряжении три окуляра с фокусными расстояниями 5 см (50 мм), 2 см (20 мм) и 1 см (10 мм). Меняя эти окуляры, мы получим три увеличения:


Обрати внимание, если мы берём фокусное расстояние объектива в мм, то и фокусное расстояние окуляра тоже в мм.

Казалось бы, если брать всё более короткофокусные окуляры, то можно получать всё большие увеличения. Например, окуляр с фокусным расстоянием 1 мм дал бы с нашим объективом увеличение 1 000 крат. Однако изготовить такой окуляр с высокой точностью очень сложно, да и нет необходимости. При наземных наблюдениях использовать увеличение более 500 крат не удаётся из-за атмосферных помех. Даже если поставить увеличение в 500 крат, атмосферные течения так сильно портят изображение, что на нём нельзя рассмотреть ничего нового. Как правило, наблюдения проводят с увеличением максимум 200-300 крат.

Несмотря на применение больших увеличений, звёзды в телескоп всё равно выглядят точками . Причина - колоссальная удалённость звёзд от Земли. Однако, телескоп позволяет увидеть невидимые глазом звёзды, т.к. собирает больше света, чем человеческий глаз. Звёзды в телескоп выглядят ярче, у них лучше различаются оттенки, а также сильнее заметно мерцание, вызываемое земной атмосферой.

Максимальное и минимальное полезные увеличения телескопа. Одно из назначений телескопа в том, чтобы собрать побольше света от небесного объекта. Чем больше света пройдёт через объектив телескопа, тем ярче будет выглядеть объект в поле зрения. Это особенно важно при наблюдении туманных объектов - туманностей, галактик, комет. При этом нужно, чтобы весь собранный свет попал в глаз наблюдателя.


Максимальный диаметр зрачка человеческого глаза 6 мм. Если выходящий из окуляра световой пучок (т.н. выходной зрачок ) будет шире 6 мм, значит, часть света в глаз не попадёт. Следовательно, нужно использовать такой окуляр, который даёт выходной зрачок не шире 6 мм. При этом телескоп даст минимальное полезное увеличение. Его рассчитывают так: диаметр объектива (в мм) делят на 6 мм. Например, если диаметр объектива 120 мм, то минимальное полезное увеличение будет 20 крат. Ещё меньшее увеличение на этом телескопе использовать нерационально, так как выходной зрачок будет больше 6 мм.

Запомни закономерность: чем меньше увеличение телескопа, тем больше выходной зрачок (и наоборот).

Минимальное полезное увеличение телескопа ещё называют равнозрачковым , потому что выходной зрачок окуляра совпадает с максимальным диаметром зрачка человека - 6 мм.

Чтобы найти максимальное полезное увеличение телескопа, нужно диаметр объектива (в мм) умножить на 1,5. Если диаметр объектива 120 мм, то получим максимальное полезное увеличение 180 крат. Большее увеличение на этом телескопе получить можно, но это будет бесполезно, т.к. новых деталей выявить не удастся из-за появления дифракционных картин. При наблюдении двойных звёзд иногда используют увеличение, численно равное удвоенному диаметру объектива (в мм).

Таким образом, на телескопе с диаметром объектива 120 мм имеет смысл использовать увеличения от 20 до 180 крат.

Существует т.н. проницающее увеличение. Считают, что при его использовании достигается наилучшее проницание - становятся видны самые слабые звёзды, доступные для данного телескопа. Проницающее увеличение используют для наблюдения звёздных скоплений и спутников планет. Чтобы его найти, нужно диаметр объектива (в мм) разделить на 0,7.

В телескопах совместно с окуляром иногда применяют т.н. линзу Барлоу , представляющую собой рассеивающую линзу. Если линза Барлоу двухкратная (2х), то она как бы увеличивает фокусное расстояние объектива в 2 раза (3-кратная линза Барлоу - в 3 раза). Если, например, у объектива фокусное расстояние равно 1 000 мм, то с использованием 2-кратной линзы Барлоу и окуляра с фокусным рассоянием 10 мм мы получим увеличение 200 крат. Таким образом, линза Барлоу служит для повышения увеличения. Конечно, эта линза вносит в общую картину свои аберрации, поэтому при выявлении мелких деталей на Луне, Солнце, планетах от этой линзы лучше отказаться.

Подробнее смотри

Телескоп, оборудованный для фотографии небесных объектов, называется астрографом . В нём вместо окуляра используется приёмник излучения (раньше это была фотопластинка, фотоплёнка, сегодня - приборы с зарядовой связью). Светочувствительный элемент приёмника излучения располагается в фокусе объектива, так что крошечное изображение предмета запечатлевается. Сегодня астрограф непременно используется в сочетании с компьютером.

Телескопы-рефлекторы, их достоинства и недостатки

Настало время разобраться в том, что же такое рефлектор и чем он принципиально отличается от рефрактора.

Само слово рефлектор произошло от английского «reflect» - отражать. Из этого ясно, что в качестве основного элемента схемы выступает зеркало. Отцом рефлектора стал Исаак Ньютон, который собрал первый такой телескоп в 1688 году. До этого существовала лишь одна схема – созданный Галилеем рефрактор, который сильно грешил хроматической аберрацией (будучи неахроматическим, неспособным собрать в фокус лучи с разной длиной волны, значительно изменяя картинку).

Оптическая схема


До сих пор схема Ньютона остается самой популярной для каждого, кто захочет купить зеркальный телескоп. Суть ее крайне проста: свет попадает на параболическое (иногда — сферическое) главное зеркало, которое, в свою очередь, направляет его на диагональное зеркало (плоское). И уже этот элемент выводит свет на окуляр.

Википедия утверждает, что существует еще 7 различных рефлекторных схем, но изучать их имеет смысл разве что из праздного любопытства. По большей части в промышленных телескопах используется именно схема Ньютона. Если кто-то говорит «рефлектор», то он имеет в виду именно «рефлектор Ньютона», все прочие схемы будут обозначаться по фамилии создателя. Это объясняется тем, что все они значительно менее удобны. Где-то требуется больше зеркал, где-то смотреть приходится под углом. Ньютон – это простая и нестареющая классика.

Достоинства рефлектора

Его создавали для того, чтобы избавиться от хроматических аберраций, которые давали линзовые телескопы. Было бы странно полагать, что они у него остались. Полное отсутствие этого дефекта – главное достоинство рефлекторов. К тому же, они обладают высокой светосилой (до 1:4 в серийных моделях), которая рефракторам не может и присниться. Именно зеркальная схема сделала телескопы с большим диаметром доступными простому обывателю. Из-за большого фокусного расстояния рефрактору с большим диаметром понадобилась бы очень длинная (около 7 метров) труба. К ней, естественно, нужна огромная монтировка. Стоимость такого устройства исчислялась бы, наверное, в миллионах. То, что мы можем купить телескоп с большим диаметром за гораздо меньшие деньги – заслуга исключительно рефлекторов.

Недостатки зеркального телескопа

Формально к ним относятся световые потери из-за наличия второго зеркала (в рефракторе свет идет сразу вам в глаз, а в рефлекторе ему нужно «попутешествовать» между зеркалами), воздушные потоки внутри открытой трубы и прочее. На практике же вам будет портить жизнь лишь одна вещь – необходимость настройки зеркал (юстировки) после любой перевозки. Юстировка отнимает малую часть драгоценного времени наблюдений. При наличии опыта она занимает не более 5 минут.Впрочем, юстировки не нужно бояться – она совсем не сложна, научиться сможет любой.

Вердикт

Начиная с диаметра 110мм, имеет смысл купить рефлектор. Рефрактор, который вы сможете купить за эти деньги, будет иметь значительно меньший диаметр (в районе 90мм). Рефлекторы просты и удобны в настройке, их рекомендуется брать всем, за исключением тех, кому необходимы наземные объекты.

> Виды телескопов

Все оптические телескопы группируются по виду светособирающего элемента на зеркальные, линзовые и комбинированные. Каждый тип телескопов имеет свои достоинства и недостатки, поэтому, выбирая оптику, нужно принимать во внимание следующие факторы: условия и цели наблюдения, требования к весу и мобильности, цене, уровню аберрации. Охарактеризуем наиболее популярные виды телескопов.

Рефракторы (линзовые телескопы)

Рефракторы – это первые телескопы, изобретенные человеком. В таком телескопе за сбор света отвечает двояковыпуклая линза, которая выступает в роли объектива. Ее действие строится на основном свойстве выпуклых линз – преломлении световых лучей и их сборе в фокусе. Отсюда и название - рефракторы (от латинского refract - преломлять).

Был создан в 1609 году. В нем были использованы две линзы, с помощью которых собиралось максимальное количество звездного света. Первая линза, которая выступала в роли объектива, была выпуклой и служила для сбора и фокусировки света на определенном расстоянии. Вторая линза, играющая роль окуляра, была вогнутой и использовалась для превращения сходящего светового пучка в параллельный. С помощью системы Галилея можно получить прямое, неперевернутое изображение, качество которого сильно страдает от хроматической аберрации. Эффект хроматической аберрации можно увидеть в виде ложного прокрашивания деталей и границ объекта.

Рефрактор Кеплера – более совершенная система, которая была создана в 1611 году. Здесь в роли окуляра использовалась выпуклая линза, в которой передний фокус был совмещен с задним фокусом линзы-объектива. От этого итоговое изображение было перевернутым, что не принципиально для астрономических исследований. Главное преимущество новой системы – возможность установки измерительной сетки внутри трубы в точке фокуса.

Для данной схемы также была характерна хроматическая аберрация, впрочем эффект от нее можно было нивелировать, увеличив фокусное расстояние. Именно поэтому телескопы того времени имели огромное фокусное расстояние с трубой соответствующего размера, что вызывало серьезные трудности при проведении астрономических исследований.

В начале XVIII века появился , который популярен и в сегодняшние дни. Объектив данного прибора сделан из двух линз, изготовленных их различных сортов стекла. Одна линза – собирающая, вторая – рассеивающая. Такая структура позволяет серьезно уменьшить хроматическую и сферическую аберрации. А корпус телескопа остается весьма компактным. Сегодня созданы рефракторы апохроматы, в которых влияние хроматической аберрации сведено к возможному минимуму.

Достоинства рефракторов:

  • Простая конструкция, легкость в эксплуатации, надежность;
  • Быстрая термостабилизация;
  • Нетребовательность к профессиональному обслуживанию;
  • Идеален для исследования планет, Луны, двойных звезд;
  • Превосходная цветопередача в апохроматическом исполнении, хорошая – в ахроматическом;
  • Система без центрального экранирования от диагонального или вторичного зеркала. Отсюда высокая контрастность изображения;
  • Отсутствие воздушных потоков в трубе, защита оптики от грязи и пыли;
  • Цельная конструкция объектива, не требующая регулировок со стороны астронома.

Недостатки рефракторов:

  • Высокая цена;
  • Большой вес и габариты;
  • Небольшой практический диаметр апертуры;
  • Ограниченность в исследовании тусклых и небольших объектов в далеком космосе.

Название зеркальных телескопов – рефлекторов происходит от латинского слова reflectio – отражать. Данный прибор представляет собой телескоп с объективом, в роли которого выступает вогнутое зеркало. Его задача – собирать звездный свет в единой точке. Поместив в данной точке окуляр, можно увидеть изображение.

Один из первых рефлекторов (телескоп Грегори ) был придуман в 1663 году. Данный телескоп с параболическим зеркалом был полностью избавлен от хроматических и сферических аберраций. Свет, собранный зеркалом, отражался от небольшого овального зеркала, который был закреплен перед главным, в котором было небольшое отверстие для вывода светового пучка.

Ньютон был полностью разочарован в телескопах-рефракторах, поэтому одной из главных его разработок стал телескоп-рефлектор, созданный на основе металлического главного зеркала. Он одинаково отражал свет с различными длинами волн, а сферическая форма зеркала делала прибор более доступным даже для самостоятельного изготовления.

В 1672 году ученый-астроном Лорен Кассегрен предложил схему телескопа, который внешне напоминал знаменитый рефлектор Грегори. Но усовершенствованная модель имела несколько серьезных отличий, главное из которых – выпуклое гиперболическое вторичное зеркало, которое позволило сделать телескоп более компактным и свело к минимуму центральное экранирование. Впрочем, традиционный рефлектор Кассегрена оказался нетехнологичным для массового изготовления. Зеркала со сложными поверхностями и неисправленная аберрация комы – основные причины такой непопулярности. Однако модификации данного телескопа используются сегодня по всему миру. К примеру, телескоп Ричи-Кретьена и масса оптических приборов на основе системы Шмидта-Кассегрена и Максутова-Кассегрена .

Сегодня под названием «рефлектор» принято понимать ньютоновский телескоп. Основные его характеристики – это небольшая сферическая аберрация, отсутствие какого-либо хроматизма, а также неизопланатизм – проявление комы вблизи от оси, что связано с неравностью отдельных кольцевых зон апертуры. Из-за этого звезда в телескопе выглядит не как круг, а как некая проекция конуса. При этом, тупая округлая его часть повернута от центра в сторону, а острая – напротив, к центру. Для коррекции эффекта комы используются линзовые корректоры, которые следует фиксировать перед фотокамерой или окуляром.

«Ньютоны» зачастую выполняются на монтировке Добсона, которая отличается практичностью и компактными размерами. Это делает телескоп весьма портативным устройством, несмотря на размеры апертуры.

Достоинства рефлекторов:

    Доступная цена;

  • Мобильность и компактность;
  • Высокая эффективность при наблюдении тусклых объектов в глубоком космосе: туманностей, галактик, звездных скоплений;
  • Максимально яркие и четкие изображения с минимальным искажением.

    Хроматическая аберрация сведена к нулю.

Недостатки рефлекторов:

  • Растяжка вторичного зеркала, центральное экранирование. Отсюда – низкая контрастность изображения;
  • Термостабилизация большого стеклянного зеркала занимает много времени;
  • Открытая труба без защиты от тепла и пыли. Отсюда – низкое качество изображения;
  • Требуется регулярная коллимация и юстировка, которые могут утрачиваться во время использования или перевозки.

Для исправления аберрации и построения изображения катадиоптрические телескопы применяют как зеркала, так и линзы. Набольшим спросом сегодня пользуются два типа таких телескопов: на схеме Шмидт-Кассегрена и Максутов-Кассегрена.

Конструкция приборов Шмидта-Кассегрена (ШК) состоит из сферических главного и вторичного зеркал. При этом сферическая аберрация корректируется полноапертурной пластиной Шмидта, которая установлена на входе в трубу. Однако здесь сохраняются некоторые остаточные аберрации в виде комы и кривизны поля. Их исправление возможно при использовании линзовых корректоров, которые особенно актуальны в астрофотографии.

Основные достоинства приборов такого типа касаются минимального веса и короткой трубы при сохранении внушительного диаметра апертуры и фокусного расстояния. Вместе с тем, для данных моделей не характерны растяжки крепления вторичного зеркала, а особая конструкция трубы исключает проникновение внутрь воздуха и пыли.

Разработка системы Максутова-Кассегрена (МК) принадлежит советскому инженеру-оптику Д. Максутову. Конструкция такого телескопа оснащена сферическими зеркалами, а за коррекцию аберраций отвечает полноапертурный линзовый корректор, в роли которой выступает выпукло-вогнутая линза – мениск. Именно поэтому такое оптическое оборудование часто называют менисковым рефлектором.

К достоинствам МК относится возможность корректировки практически любой аберрации с помощью подбора основных параметров. Единственное исключение – это сферическая аберрация высшего порядка. Всё это делает схему популярной среди производителей и любителей астрономии.

Действительно, при прочих равных условиях система МК дает более качественные и четкие изображения, чем схема ШК. Однако у более габаритных телескопах МК продолжительнее период термостабилизации, поскольку толстый мениск теряет температуру гораздо медленнее. Кроме того, МК более чувствительны к жесткости крепления корректора, поэтому конструкция телескопа обладает большим весом. С этим связана высокая популярность систем МК с малыми и средними апертурами и систем ШК со средними и большими апертурами.

Кроме того, разработаны катадиоптрические системы Максутова-Ньютона и Шмидта-Ньютона, конструкция которых создана специально для исправления аберраций. Они сохранили ньютоновские габариты, но вес их существенно возрос. Особенно это касается менисковых корректоров.

Достоинства

  • Универсальность. Могут использоваться и для наземных, и для космических наблюдений;
  • Повышенный уровень исправления аберрации;
  • Защита от пыли и тепловых потоков;
  • Компактные размеры;
  • Доступная цена.

Недостатки катадиоптрических телескопов:

  • Долгий период термостабилизации, что особенно актуально для телескопов с менисковым корректором;
  • Сложность конструкции, которая вызывает трудности при установке и самостоятельной юстировке.