Явление резонанса. Резонанс: это простыми словами

Резонанс — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы.

Всякая мех-ая упругая система имеет собственную частоту колебаний. Если какая-либо сила выведет эту систему из равновесия, а затем перестанет действовать, то система будет некоторое время колебаться около своего положения равновесия. Частота этих колебаний и называется собственной частотой колебаний системы. Скорость её затухания зависит от упругих свойств и массы, от сил трения и не зависит от силы, вызвавшей колебания.

Если сила, выводящая мех систему из равновесия, будет меняться с частотой, равной частоте собственной частотой колебаний, то на деформацию одного периода будет накладываться деформация следующего периода и система будет раскачиваться со всё возрастающей амплитудой, теоретически до бесконечности. Естественно, что конструкция не сможет противостоять такой всё возрастающей деформации и будет разрушаться.

Совпадение частоты собственных колебаний с частотой изменения электродинамической силы называется механическим резонансом .

Полный резонанс наблюдается при точном совпадении частоты колебаний силы с частотой собственных колебаний конструкции и равных положительных и отрицательных амплитудах, частичный - при неполном совпадении частот и неравных амплитудах.

Для избежания мех резонанса необходимо, чтобы частота собственных колебаний конструкции отличалась от частоты изменения электродинамической силы. Лучше, когда частота собственных колебаний лежит ниже частоты изменения силы. Подбор требуемой частоты собственных колебаний можно производить различными способами. Для шин, например, - изменением длины свободного пролёта

В случае, когда частота переменной составляющей ЭДУ близка к собственной частоте механических колебаний, даже при сравнительно небольших усилиях возможно разрушение аппарата вследствие явлений резонанса.

Шины под воздействием ЭДУ совершают вынужденные колебания в виде стоячих волн. Если частота свободных колебаний выше 200 Гц, то расчёт усилий производится для статического режима без учёта резонанса.

Если частота свободных колебаний шины при конструировании стремятся исключить возможность резонанса за счёт выбора длины свободного пролета шины.

При гибком креплении шины собственная частота механических колебаний снижается. Энергия ЭДУ частично тратится на деформацию токоведущих частей, частично на перемещение их и связанных с ним гибких креплений. При этом мех. Напряжения в материале шин уменьшаются

Слово «резонанс» используется людьми каждый день в самых разных значениях. Его произносят политики и телеведущие, пишут в своих работах ученые и изучают на уроках школьники. У этого слова есть несколько значений, относящихся к разным областям человеческой деятельности.

Откуда взялось слово резонанс

Все мы узнаем, что такое резонанс впервые из курса школьной физики. В научных словарях этому термину дается подробное объяснение с точки зрения механики, электромагнитных излучений, оптики, акустики и астрофизики.

С технической точки зрения резонанс - это явление отклика колебательной системы не внешнее воздействие. При совпадении периодов воздействия и отклика системы возникает резонанс - резкое увеличение амплитуды рассматриваемых колебаний.

Простейший пример механического резонанса приводит в своих работах средневековый ученый Торичелли. Точное определение явления резонанса дано Галилео Галилеем в работе о маятниках и звучании музыкальных струн. Что такое электромагнитный резонанс, объяснил в 1808 году Джеймс Максвелл, основоположник современной электродинамики.

Узнать, что такое «резонанс» можно не только в Википедии, но в таких справочных изданиях:

  • учебники физики за 7-11 классы;
  • физическая энциклопедия;
  • научно-технический энциклопедический словарь;
  • словарь иностранных слов русского языка;
  • философская энциклопедия.

Резонанс в полемике и риторике

Еще одно значение слово «резонанс» приобрели в сфере общественных наук. Этим словом называют отклик общественности на некоторое явление в жизни людей, определенное высказывание, происшествие. Как правило, слово «резонанс» используют, когда нечто вызывает у многих людей одновременно схожую и очень яркую реакцию. Известно даже общеупотребимое выражение «широкий общественный резонанс», которое является речевым штампом. В собственной речи, письменной или устной, его лучше избегать.

В философском словаре резонанс трактуется как понятие, имеющее переносное значение и понимаемое как согласие или единомыслие двух людей, двух душ в сострадании, симпатии или антипатии, сочувствии или возмущении.

В значении «сильный отклик», «единодушная оценка» слово резонанс очень любят использовать политики, ораторы, дикторы. Оно помогает передать эмоциональный подъем, единодушный порыв, подчеркнуть значимость происходящего.

Где мы встречаемся с резонансом

В прямом смысле слово резонанс стоит употреблять в отношении множества естественных процессов, происходящих вокруг нас. Все дети, которые катаются на обычных качелях или каруселях на детской площадке, эксплуатируют механический резонанс.

Хозяйки, разогревая пищу в микроволновке, используют электромагнитный резонанс. На принципах резонанса построена теле- и радиовещательная сеть, работа мобильных телефонов и wifi для интернета.

Звуковой резонанс позволяет нам наслаждаться музыкой или баловаться эхом в горах и закрытых помещениях, где стены не имеют достаточной звукоизоляции. На принципе акустического резонанса построена работа эхолотов и многих других измерительных приборов.

Чем опасен резонанс

В естественно-научном смысле резонанс как явление может быть не только полезен человеку, но и опасен. Самый яркий пример — строительство.

При конструировании зданий и сооружений расчеты конструкций на резонанс строго необходимы. Так просчитываются все высотные сооружения, башни, опоры ЛЭП, передающие и принимающие антенны, а также высотные здания, которые входят в резонанс с ветрами на большой высоте.

На резонанс обязательно проверяются все мосты и протяженные объекты. В 2010 году весь интернет облетело видео моста через Волгу, который пошел волной как шелковая лента. Результаты расследования показали, что конструкции моста вошли в резонанс с ветром.

Аналогичный случай произошел в США. 7 ноября 1940 года разрушился один из пролетов висячего Такомского моста, расположенного в штате Вашингтон. Еще при строительстве специалисты отмечали колебания полотна моста, связанные с ветром и низкой высотой опор. В результате обрушения были проведены многочисленные исследования и расчеты, ставшие основой для технологий современного мостостроения. В среде специалистов возник даже термин «Такомский мост», означающий ненадлежащее качество строительных расчетов.

С резонансом каждый из нас сталкивается ежедневно. Об этом явлении необходимо помнить в повседневной жизни, вздумав раскачаться на пешеходном мосту или отправляя металлическую посуду в микроволновку (это запрещено правилами). А само слово «резонанс» можно использовать в своей речи для ее украшения и усиления впечатления от сказанного вами.

Определение понятия резонанса (отклика) в физике возлагается на специальных техников, которые обладают графиками статистики, часто сталкивающихся с этим явлением. На сегодняшний день резонанс представляет собой частотно-избирательный отклик, где вибрационная система или резкое возрастание внешней силы вынуждает другую систему осциллировать с большей амплитудой на определенных частотах.

Принцип действия

Это явление наблюдается , когда система способна хранить и легко переносить энергию между двумя или более разными режимами хранения, такими как кинетическая и потенциальная энергия. Однако есть некоторые потери от цикла к циклу, называемые затуханием. Когда затухание незначительно, резонансная частота приблизительно равна собственной частоте системы, которая представляет собой частоту невынужденных колебаний.

Эти явления происходят со всеми типами колебаний или волн: механические, акустические, электромагнитные, ядерные магнитные (ЯМР), электронные спиновые (ЭПР) и резонанс квантовых волновых функций. Такие системы могут использоваться для генерации вибраций определенной частоты (например, музыкальных инструментов).

Термин «резонанс» (от латинской resonantia, «эхо») происходит от поля акустики, особенно наблюдаемого в музыкальных инструментах, например, когда струны начинают вибрировать и воспроизводить звук без прямого воздействия игроком.

Толчок человека на качелях является распространенным примером этого явления. Загруженные качели, маятник имеют собственную частоту колебаний и резонансную частоту, которая сопротивляется толканию быстрее или медленнее.

Примером является колебание снарядов на детской площадке, которое действует как маятник. Нажатие человека во время качания с естественным интервалом колебания приводит к тому, что качели идут все выше и выше (максимальная амплитуда), в то время как попытки делать качание с более быстрым или медленным темпом создают меньшие дуги. Это связано с тем, что энергия, поглощаемая колебаниями, увеличивается, когда толчки соответствуют естественным колебаниям.

Отклик широко встречается в природе и используется во многих искусственных устройствах. Это механизм, посредством которого генерируются практически все синусоидальные волны и вибрации. Многие звуки, которые мы слышим, например, когда ударяются жесткие предметы из металла, стекла или дерева, вызваны короткими колебаниями в объекте. Легкое и другое коротковолновое электромагнитное излучение создается резонансом в атомном масштабе, таким как электроны в атомах. Другие условия, в которых могут применяться полезные свойства этого явления:

  • Механизмы хронометража современных часов, колесо баланса в механических часах и кварцевый кристалл в часах.
  • Приливной отклик залива Фанди.
  • Акустические резонансы музыкальных инструментов и человеческого голосового тракта.
  • Разрушение хрустального бокала под воздействием музыкального правого тона.
  • Фрикционные идиофоны, такие как изготовление стеклянного предмета (стекла, бутылки, вазы), вибрируют, при потирании вокруг его края кончиком пальца.
  • Электрический отклик настроенных схем в радиостанциях и телевизорах, которые позволяют избирательно принимать радиочастоты.
  • Создание когерентного света оптическим резонансом в лазерной полости.
  • Орбитальный отклик, примером которого являются некоторые луны газовых гигантов Солнечной системы.

Материальные резонансы в атомном масштабе являются основой нескольких спектроскопических методов, которые используются в физике конденсированных сред, например:

  • Электронный спиновой.
  • Эффект Мёссбауэра.
  • Ядерный магнитный.

Типы явления

В описании резонанса Г. Галилей как раз обратил внимание на самое существенное - на способность механической колебательной системы (тяжелого маятника) накапливать энергию, которая подводится от внешнего источника с определенной частотой. Проявления резонанса имеют определенные особенности в различных системах и поэтому выделяют разные его типы.

Механический и акустический

Это тенденция механической системы поглощать больше энергии, когда частота ее колебаний соответствует собственной частоте вибрации системы. Это может привести к сильным колебаниям движения и даже катастрофическому провалу в недостроенных конструкциях, включая мосты, здания, поезда и самолеты. При проектировании объектов инженеры должны обеспечить безопасность, чтобы механические резонансные частоты составных частей не соответствовали колебательным частотам двигателей или других осциллирующих частей во избежание явлений, известных как резонансное бедствие.

Электрический резонанс

Возникает в электрической цепи на определенной резонансной частоте, когда импеданс схемы минимален в последовательной цепи или максимум в параллельном контуре. Резонанс в схемах используется для передачи и приема беспроводной связи, такой как телевидение, сотовая или радиосвязь.

Оптический резонанс

Оптическая полость, также называемая оптическим резонатором, представляет собой особое расположение зеркал, которое образует резонатор стоячей волны для световых волн . Оптические полости являются основным компонентом лазеров, окружающих среду усиления и обеспечивающих обратную связь лазерного излучения. Они также используются в оптических параметрических генераторах и некоторых интерферометрах.

Свет, ограниченный в полости, многократно воспроизводит стоячие волны для определенных резонансных частот. Полученные паттерны стоячей волны называются «режимами». Продольные моды отличаются только частотой, в то время как поперечные различаются для разных частот и имеют разные рисунки интенсивности поперек сечения пучка. Кольцевые резонаторы и шепчущие галереи являются примерами оптических резонаторов, которые не образуют стоячих волн.

Орбитальные колебания

В космической механике возникает орбитальный отклик , когда два орбитальных тела оказывают регулярное, периодическое гравитационное влияние друг на друга. Обычно это происходит из-за того, что их орбитальные периоды связаны отношением двух небольших целых чисел. Орбитальные резонансы значительно усиливают взаимное гравитационное влияние тел. В большинстве случаев это приводит к нестабильному взаимодействию, в котором тела обмениваются импульсом и смещением, пока резонанс больше не существует.

При некоторых обстоятельствах резонансная система может быть устойчивой и самокорректирующей, чтобы тела оставались в резонансе. Примерами является резонанс 1: 2: 4 лун Юпитера Ганимед, Европа и Ио и резонанс 2: 3 между Плутоном и Нептуном. Неустойчивые резонансы с внутренними лунами Сатурна порождают щели в кольцах Сатурна. Частный случай резонанса 1: 1 (между телами с аналогичными орбитальными радиусами) заставляет крупные тела Солнечной системы очищать окрестности вокруг своих орбит, выталкивая почти все остальное вокруг них.

Атомный, частичный и молекулярный

Ядерный магнитный резонанс (ЯМР) - это имя, определяемое физическим резонансным явлением, связанным с наблюдением конкретных квантовомеханических магнитных свойств атомного ядра, если присутствует внешнее магнитное поле. Многие научные методы используют ЯМР-феномены для изучения молекулярной физики, кристаллов и некристаллических материалов. ЯМР также обычно используется в современных медицинских методах визуализации, таких как магнитно-резонансная томография (МРТ).

Польза и вред резонанса

Для того чтобы сделать некий вывод о плюсах и минусах резонанса, необходимо рассмотреть, в каких случаях он может проявляться наиболее активно и заметно для человеческой деятельности.

Положительный эффект

Явление отклика широко используется в науке и технике . Например, работа многих радиотехнических схем и устройств основывается на этом явлении.

Отрицательное воздействие

Однако не всегда явление полезно . Часто можно встретить ссылки на случаи, когда навесные мосты ломались при прохождении по ним солдат «в ногу». При этом ссылаются на проявление резонансного эффекта воздействия резонанса, и борьба с ним приобретает масштабный характер.

Борьба с резонансом

Но несмотря на иногда губительные последствия эффекта отклика с ним вполне можно и нужно бороться. Чтобы избежать нежелательного возникновения этого явления, обычно используют два способа одновременного применения резонанса и борьбы с ним:

  1. Производится «разобщение» частот, которые в случае совпадения приведут к нежелательным последствиям. Для этого повышают трение различных механизмов или меняют собственную частоту колебаний системы.
  2. Увеличивают затухание колебаний, например, ставят двигатель на резиновую подкладку или пружины.

Что общего между звуками прекрасной музыки, катанием на качелях, грозой и молитвой? Как мы связаны со своей Землей? И что происходит, когда работают целители? Этому явлению дано очень простое определение — резонанс .

Резонанс, как основа всех явлений в природе

С переходом к новому веку, как обычно, не было недостатка в предсказаниях относительно тенденций развития науки и техники. Значительно реже встречались высказывания о будущем самого человечества как вида. Если не брать в расчет глобальные катаклизмы типа затопления-оледенения или столкновения с астероидом, то пожалуй, наиболее важное, ярко выраженное масштабное явление, способное сильно повлиять на человека - это электромагнитные поля. Даже для тех, у кого невидимый мир населен ангелами, бесами и другими сущностями, он реально пронизан электромагнитными колебаниями, вибрациями самых разных частот, порожденными как человеком, так и самой природой. Однако видим мы менее одного процента всего этого великолепия.

Распространяются эти колебания в виде волн. Замечательно, что колебания и волны любой природы описываются одними и теми же уравнениями. И если разобраться с некоторыми понятиями, удобными для рассуждений о колебаниях и волнах, то мы довольно неожиданно сможем выйти на очень разные явления в жизни, о которых точно думали, но «не у кого было спросить». Начнем с того, что легче ощутить.

Вибрации и колебания, волны, резонанс в музыке

Вот, например, восхитительное явление - резонанс. Не только музыканты знают, что если бы не резонанс, то музыки не существовало бы. Щипком струны, ударом молоточка по ней или потоком воздуха в трубке исполнитель создает только слабое первоначальное колебание. Оно осталось бы незамеченным, если бы не резонатор или, проще говоря, корпус инструмента, который способен откликаться на каждую частоту, усиливать ее, придавать тембр.
Такое возможно потому, что у этого резонатора есть свои резонансные частоты, то есть он способен усиливать, окрашивать и продлевать некоторые колебания струны. Но не любые, а только те, которые близки к так называемым собственным частотам. А эти последние зависят, прежде всего, от размеров и формы корпуса-резонатора. И еще от множества тонкостей, куда входят вид древесины, влажность её и т.п. Вот здесь-то и проявляется мастерство изготовителя инструмента, о котором мы так часто слышим. В случае удачи инструмент будет петь в руках исполнителя в полном соответствии с той музыкой, что звучит в его душе.

Интересно, что, по современным понятиям, органы и системы человеческого тела имеют собственные частоты колебаний, которые звуковая волна усиливает или подавляет, тем самым влияя на их функции.

Бывают резонансы и другого вида. Механический резонанс, например. Можно хорошо ощутить механический резонанс, предаваясь всеми любимому веселому занятию - раскачиванию на качелях. Развлекая себя или ребенка, мы прилагаем силу нужного направления в строго определенный момент. Точная формула для определения этого момента довольно сложна, как ни странно. Но каждый легко определяет его инстинктивно. Очень странно выглядел бы человек, который пытается раскачать качели, подталкивая их не вовремя, то есть не в резонансе с собственной частотой его колебаний. Здесь уместно сказать, наконец, что такое частота колебания. Она показывает, сколько раз в секунду качели придут в одно и то же место своей траектории. Ну, скажем для определенности, - в то место, где их толкают. И если частота колебаний качелей совпадает с частотой толчков, возникает явление резонанса - тогда размах колебаний качелей будет возрастать. Для наших дальнейших рассуждений важно, что при резонансе некие внешние воздействия синхронизованы во времени с внутренними свойствами системы, то есть максимально реализован принцип «в нужное время в нужном месте».

Явление механического резонанса способно причинить и жуткий вред. Известен случай разрушения моста, по которому маршировала рота солдат. Мост-то, наверное, рассчитывался на очень большие нагрузки. Но резонанс! Кто же мог предполагать, что собственная частота колебаний моста совпадет с ритмом продвижения роты. Солдаты шли в ногу, синхронно чеканили шаг, как один большой солдат. И именно с той частотой, которая была резонансной для этого моста! С той поры в уставе отмечено, что при передвижении по мосту необходимо сбивать шаг.

Мы познакомились со звуковыми и механическими резонансами. И теперь легче будет разобраться с самыми интересными резонансами - электромагнитными.

Резонанс другого уровня взаимодействия — электромагнитный


Резонанс Шумана

Мы живем в слое между поверхностью Земли и ионосферой, нижняя граница которой находится на уровне примерно 80 км и называется слоем Хевисайда. Если представить Землю в виде апельсина размером 5 сантиметров, то этот слой будет на высоте 3 миллиметра, то есть этот слой очень близко к Земле. Длинноволновая радиосвязь возможна только благодаря слою Хевисайда, потому что именно от него происходит отражение радиоволн, огибающих Землю. Земля - хороший проводник электрического тока, в любом случае на ней для этого достаточно воды, причем две трети из нее - соленая вода океанов. В ионосфере тоже есть чему обеспечивать проводимость - солнечный свет отрывает электроны от молекул газов разреженной атмосферы, создается плазма. В пространстве между этими сферами - воздух, слабый проводник. Получается симметричный сферический конденсатор, образованный двумя помещенными друг в друга проводящими сферами. При этом Земля заряжена отрицательно, а ионосфера - положительно. Такая система называется волноводом, в ней хорошо распространяются электромагнитные волны.

Те волны, которые являются резонансными для этого гигантского природного волновода, могут несколько раз огибать Землю. Совершенно аналогично тому, как звук резонирует в объеме музыкального инструмента. Какие это частоты? Такую задачу в 1949 поставил перед своими студентами на занятиях по электрофизике профессор Мюнхенского технического университета Винфред Отто Шуман. Если подойти к вопросу приблизительно и просто, достаточно знать размеры Земли и ее ионосферы, чтобы рассчитать эти частоты. Получилось, что в полости Земля - ионосфера могут распространяться (резонировать) электромагнитные волны довольно низкой, даже сверхнизкой частоты - 10 герц. Вскоре Шуман и экспериментально обнаружил такие волны и опубликовал статью об этом в каком-то физическом журнале. Эти волны так и стали называть - резонансы Шумана. А откуда же они вообще взялись, эти волны, в полости Земля - ионосфера? Молнии! Их, оказывается, так много вблизи Земли - в среднем около сотни разрядов за минуту. Молнии производят целый спектр электромагнитных колебаний. Но только те из них, что совпадают с собственными частотами природного волновода, то есть с рассчитанной частотой около 10 герц, могут огибать Землю несколько раз за секунду.

Никто поначалу не придал особого значения этим открытиям, даже сам Шуман. Тем более что на самом-то деле по миру ранее уже бродили подобные идеи. Автор их - гениальный серб Никола Тесла - создавал искусственные молнии еще в конце девятнадцатого века. Он обнаружил, что при разряде появляются волны очень низкой частоты. И они могут глубоко проникать в Землю без ослабления, потому что резонируют с собственными колебаниями Земли. Более того, образуется стоячая волна, обегающая Землю. Эти исследования Теслы тогда не были поддержаны - время не пришло. Пришло оно через 50 лет - с работами Шумана.

Резонанс и новый взгляд на вибрации и частоту в науке, резонанс Шумана

Здоровое любопытство иногда заставляет исследователей просматривать книги и журналы по далеким от специальности разделам науки. Быть бы резонансам Шумана похороненными в анналах истории науки, если бы не любопытство одного оставшегося неизвестным психолога, просматривавшего физико-техническую периодику. Прочтя публикацию Шумана, он оторопел. Основная частота резонанса - около 10 герц - совпадала с основным ритмом человеческого мозга - альфа-ритмом! Почему?! Конечно, он сразу же позвонил Шуману. Ведь в высшей степени удивительно, что совпадают ритмы Земли и мозга человека в состоянии спокойного бодрствования. Шуман подключил к работам студента-выпускника, будущего своего преемника Герберта Кёнига. Необычным делом увлекался этот студент. Он исследовал, как работают те, кто может находить в земле воду или минералы при помощи ивового прута, лозоходцы то есть. Далее мы увидим всю примечательность этого обстоятельства. В своей докторской диссертации Кёниг сообщил о более точных измерениях основной частоты резонанса Шумана - 7,83 гц.

Удалось измерить и более высокие гармоники первой частоты. Они составляют в среднем 14, 20, 26, 33, 39 и 45 герц. Оказалось, и этим частотам есть соответствие в спектре волн, излучаемых мозгом человека! Словом, частотная полоса изменения биотоков мозга лежит в пределах изменения резонансных частот полости Земля - ионосфера в спокойных условиях. Колебательная система «человек - среда обитания» находится в состоянии равновесия. Это не может быть случайным совпадением! Если бы мы сознательно всё устраивали для жизни на Земле, лучше бы не сделали.


Измерить резонанс Шумана - это значит для какого-нибудь места на Земле сделать запись интенсивности электрического и магнитного полей отдельно в зависимости от времени либо от частоты. Несмотря на глобальную важность, до недавнего времени работ по резонансам Шумана было мало. Может, потому, что этим диапазоном частот интересуются военные - для связи с подводными лодками, ведь такие волны проникают глубоко в воду и в землю. А может, потому, что измерять резонансы Шумана - трудная задача. Они слишком слабы на фоне собственных электрического и магнитного полей Земли, которые в 10 тысяч, а то и в 100 тысяч раз больше. Чтобы измерить резонансы Шумана, необходима стандартная электроника (усилители-предусилители) и очень необычные антенны. Для измерения электрического поля обычная антенна должна была бы быть длиной 20 тысяч километров. Поэтому используют специальную, шаровую антенну вместе с усилителем. Магнитные поля измерять - тоже нужны всяческие ухищрения. Перемещение людей, животных, раскачивание деревьев при ветре могут перечеркнуть кропотливые труды коллективов геофизиков и радиоэлектронщиков.

Где измеряют резонансы Шумана? Да по всей Земле. В Америке и в Австралии, в Финляндии, Германии и в России, в Англии и в Исландии.
Чтобы получше понять явление, хорошо бы узнать, отчего оно зависит. Частота и интенсивность естественных пульсаций Земли - не постоянные фиксированные величины. Как показали дальнейшие исследования, они слегка изменяются под влиянием следующих факторов:

Географическое место. Сильнее всего резонансы Шумана заметны вблизи мировых очагов гроз. Если рассмотреть данные со спутников NASA о местах возникновения молний за много лет, можно заметить, что молнии в основном случаются над землей, а не над поверхностью воды. Больше всего их в Африке. Так ведь по современным воззрениям там и появился человек.

Время суток. Ночью Солнце не ионизирует атмосферу на темной стороне Земли, и слой Хевисайда здесь исчезает, а с ним и шумановские волны. С рассветом восстанавливается верхняя граница околоземного волновода и вновь появляются волны Шумана. Земля отдыхает и пробуждается вместе с нами. Или это мы - с нею.

Чистота воздуха. Наблюдается повышение частоты, если в воздухе много водяных паров, газов.

Окружающая обстановка. Электромагнитный смог от всего электрооборудования перекрывает в сотни раз живительные природные всплески резонансов Шумана. Их гасят и некоторые строительные материалы. Может, поэтому собаки и дети хотят гулять, даже если только что вернулись с улицы.

Вспышки на Солнце. Исследователи утверждают, что при магнитных бурях или в условиях электромагнитных полей техногенного происхождения, когда изменяется частота природных резонансов Шумана, ухудшается состояние людей в возрасте и детей, чаще случаются гипертонические кризы, эпилептические припадки и суициды.

А каким образом все же осуществляется влияние магнитных бурь на человека? Возможно, дело обстоит так. При вспышках на Солнце изменяются свойства слоя Хевисайда - верхней границы нашего природного резонатора. Это приводит к изменениям частоты резонанса Шумана. Еще в 1665 году Христиан Гюйгенс заметил, что если неподалеку друг от друга начинают колебаться два маятника с близкой, но все же различной частотой, то по прошествии некоторого времени их частота колебаний станет одинаковой. И это всеобщий закон. Каждой колебательной системе «легче» колебаться в такт, чем вразнобой. Значит, резонансы Шумана для нас являются как бы ритмоводителем.

Изменилась по какой-то причине частота Шумана - это приводит к изменению частоты электромагнитных колебаний мозга и ухудшению состояния человека. Таким образом, именно через резонансы Шумана здоровье человека связано с геофизическим состоянием Земли. Более того, оказалось, что не только физическое здоровье, но и душевное, да и просто способность мыслить. Ведь мозг работает в режиме альфа-ритма (на частоте около 8 герц) в тех случаях, когда человек, находясь в состоянии мышечной релаксации, решает творческие задачи. У большинства людей, имеющих четко выраженный альфа-ритм, преобладает способность к абстрактному мышлению. Изредка встречаются люди, у которых обнаруживается полное отсутствие альфа-ритмов. Они свободно мыслят зрительными образами, однако испытывают трудности в решении проблем абстрактного характера.

Те, кто склонен к исследовательской деятельности, могут сами проследить связь собственного самочувствия (изменение артериального давления, например) с изменениями в спектре волн Шумана. Сделать это можно, посещая, например, сайт Томского государственного университета http://sosrff.tsu.ru/ . Данные обновляются каждые два часа. Кроме того, интересно самому убедиться, действительно ли растет частота шумановских волн, как сообщается иногда об этом. Ведь это означало бы, ни много ни мало, что идет эволюция мозга человека.

Оказалось: собственное магнитное поле Земли пульсирует в том же диапазоне частот, что и резонансы Шумана, и ритмы мозга. Это привело даже к некоторой путанице. Вы можете иногда услышать, что резонансы Шумана - это просто колебания магнитного поля Земли. А не волны, рожденные молниями и огибающие Землю в естественном волноводе.
Сейчас количество публикаций по резонансам Шумана сильно возросло - примерно до тысячи в год. Обсудим две главных причины этого.

Во-первых, обнаружилась возможность определения по резонансам Шумана температуры и грозовой активности в масштабах планеты. Сейчас уже точно известно, что чем выше температура воздуха нижних слоев атмосферы, тем больше гроз, молний и осадков. А значит, мощнее резонансы Шумана. По нехитрой логике, измеряя интенсивность резонансов в разных местах Земли, можно судить о ее средней температуре. То есть резонанс Шумана - это термометр для матушки-Земли. «Средняя по Земле» температура - сейчас больной вопрос для всех людей вообще, а не только для ученых. Не утихают споры, началось ли уже глобальное потепление или это проблема наших потомков.

С резонансами Шумана, точнее, с деятельностью человеческого мозга на частотах этих резонансов, некоторые исследователи связывают различные эффекты дальновидения, целительства, гипноза, поисков воды и полезных ископаемых с помощью лозы или рамки. Доктор Джон Циммерман, основатель и президент Института биоэлектромагнетизма в Рено, штат Невада, занимался изучением обширной литературы по деятельности целителей. Он обнаружил, что в начале сеанса у целителя устанавливается связь с волнами Шумана. Его правое и левое полушария мозга синхронизируются, в то время как обычно они слегка разбалансированы. Оба полушария начинают работать в альфа-ритме с частотой около 8 герц. Затем в альфа-ритм входят и мозговые волны пациента. Эти волны синхронизируются с волнами целителя. У пациентов во время сеанса также наблюдается частотное равновесие между полушариями мозга. Образно говоря, целитель присоединяет своего пациента к электромагнитному полю волн Шумана и к пульсациям магнитного поля Земли.

Резонанс ритмов человека при медитации и молитве

Существуют исследования, свидетельствующие, что при медитации и во время молитвы человеческий мозг тоже работает с частотой около 8 герц, в ритме с волнами Шумана и магнитным полем Земли.

До сих пор мы размышляли главным образом о природной составляющей системы человек - среда его обитания. Но уже существует понятие «электромагнитный смог». Это хаотическое излучение от различных бытовых и промышленных электроприборов. Его мощность уже в сотни раз превышает природный фон. Конечно, волны с частотой альфа-ритма очень слабенькие, их размах, или амплитуда, составляет всего около 30 миллионных долей вольта. Казалось бы, это ничтожно мало по сравнению с собственным магнитным полем Земли и с техногенными полями. Но частоты-то совпадают с ритмами мозга! Вспомните о резонансных эффектах! С этой точки зрения для человека опасны устройства, работающие в том же диапазоне частот, что и слабые, но такие необходимые естественные поля. Вот, например, сотовые телефоны. Все исследования их «вредности» проводились с учетом только их теплового воздействия. Но очень важно и информационное воздействие, которое никто не учитывает. Ведь одна из частот излучения сотового телефона - все те же 8 Гц - связана с нашей индивидуальной умственной деятельностью. Следовательно, извне, причем из непосредственной близости, в головной мозг человека поступают сигналы, которые способны резонансным образом взаимодействовать с собственной биоэлектрической активностью головного мозга и тем самым нарушать его функции. Такие изменения заметны на электроэнцефалограмме и не исчезают длительное время после окончания разговора.

Сообщают, что в Америке каждый сотрудник NASA имеет при себе приборчик - индивидуальный источник «полезных» электромагнитных волн в диапазоне волн Шумана, для улучшения самочувствия при «подстройке» к естественным природным ритмам.
А вот пчелы… Пчелы вымирают. По заключению ученых немецкого университета Кобленц-Ландау, в США и в некоторых странах Европы погибло до 70% пчелиных семей. Их гибель связывают с потерей ориентации под воздействием техногенных электромагнитных полей, порождаемых мощными антеннами сотовой связи.

Человечество как вид обладает необычайным потенциалом, который едва только начали изучать. Дар творчества, интуиция, талант - без этих качеств человек не смог бы создать тот прекрасный мир, в котором он живет. А что, если, окутанные антропогенным электромагнитным смогом, разрушающим тонкие настройки взаимосвязей в этом изменчивом, колеблющемся мире, мы потеряем свои бесценные дары?

…Рассвет. На зыбкой границе между сном и бодрствованием Земля посылает нам свой утренний привет на частоте 7,8 герц - частоте альфа-ритма нашего мозга. Что бы ни происходило, мы в резонансе со своей Землей и со всем живым на ней.

*************************

Наиболее выдающиеся из всех известных изобретений Теслы связаны с понятием резонанса. Тесла считал резонанс ключом к пониманию и управлению любой системой, природной или рукотворной. Каждая система, по его мнению, обладает некой «собственной частотой колебания». Таких частот может быть несколько, они являются своего рода «паспортом», «удостоверением личности» любой системы. Любые системы могут взаимодействовать, будучи настроенными друг на друга. Это очень легко объяснить на примере человеческих отношений: два человека, желающие понять друг друга (то есть «настроенные в резонанс» друг к другу), потратят гораздо меньше времени и сил на решение какой-то проблемы, чем те же два человека, не желающие понимать или просто безразличные. Таким образом, задача человека — не «брать силой» у Природы ее богатства, а уметь настраивать свою технику в резонанс с природными явлениями, чтобы взаимодействие было максимально естественным и эффективным. По этому пути и шел сам Тесла, поражая современников результатами.

При резонансе энергия поступает в систему согласованно с колебаниями в ней, постоянно увеличивая их амплитуду. В стационарном режиме большая амплитуда колебаний поддерживается малыми поступлениями энергии в систему, восполняющими потери энергии колебаний (нагрев проводников, преодоление сил сопротивления, потери на излучение электромагнитных и механических волн) за один период. В системе при резонансе созданы наиболее благоприятные условия для реализации свойственных системе свободных незатухающих колебаний, и поэтому амплитуда колебаний резко возрастает.

Рассмотрим некоторые примеры проявления резонанса в природе.

Пример 1 . Солдаты проходят по мосту строевым шагом, частота ударов ног о поверхность моста может совпасть с собственной частотой колебаний моста как колебательной системы, наступает явление резонанса, при котором амплитуда колебаний моста постепенно нарастает и при больших числовых значениях может привести к его разрушению.

Пример 2 . Вентилятор плохо прикреплен к потолку и при своем вращении он создает толчки на потолок, частота которых может совпасть с собственной частотой колебаний комнаты (потолка) как колебательной системы, амплитуда колебаний потолка нарастает и может привести к его обрушению.

Пример 3 . Приборы на кораблях максимально утяжеляют (делают тяжелыми подставки) и подвешивают на мягких пружинах (коэффициент жесткости для них будет малым). В этом случае частота качки корабля будет больше собственной частоты колебаний (
) приборов на пружинах и поэтому резонанса не наступает.

Пример 4 . В радиоприемниках на основе явления резонанса можно выделить нужный сигнал из большого числа сигналов разных радиостанций, поступающих на его приемную антенну (рис. 5.23,а). Пусть на вход радиоприемника поступают сигналы малой амплитуды с различной несущей частотой

Для выделения сигнала с несущей частотой , необходимо добиться равенства частотысобственных свободных незатухающих колебаний приемного контура и частоты(=). Тогда за счет явления резонанса амплитуда сигнала с частотойна выходе конденсатора резко возрастает, а амплитуды остальных сигналов останутся прежними (рис. 5.23,б показана сплошной линией резонансная кривая, максимум которой приходится на частоту)

и тем самым происходит выделение сигнала с несущей частотой . Изменяя электроемкость конденсатора, можно настроить приемный контур антенны на несущую частоту(на рис. 5.22,б пик резонансной кривой смещается на частоту).

    1. Нелинейные системы. Автоколебания

1. Нелинейные системы . Под нелинейными системами понимают такие колебательные системы, свойства которых зависят от происходящих в них процессов. В таких системах существуют нелинейные связи, например, между: 1) силой упругости и смещениемгруза относительно положения равновесия. Это приводит к нарушению закона Гука и к зависимости коэффициента к жесткости системы от смещения , что изменяет собственную частотуколебаний системы; 2) электрическими зарядами конденсатора и создаваемой ими напряженностью поля (сегнетоэлектрик между пластинами конденсатора под действием электрического поля изменяет свою диэлектрическую проницаемость и тем самым приводит к изменению электроемкости конденсатора в зависимости от подаваемого в контур напряжения, т.е. к изменению собственной частоты колебаний контура) и т.д.

Все физические системы являются нелинейными системами. При малых амплитудах колебаний (при малых отклонениях от положения равновесия) физические системы можно считать линейными, колебания в них описываются одинаковыми дифференциальными уравнениями, что и позволяет построить общую теорию колебаний.

Нелинейные эффекты в физических системах обычно проявляются при увеличении амплитуды колебаний – это приводит к тому, что собственные колебания системы (осциллятора) уже не будут гармоническими, а их частота будет зависеть от амплитуды колебаний. Уравнения движения для них являются нелинейными, а такие системы называют ангармоническими осцилляторами(см. § 5.5).

Действительно, например, для малых отклонений потенциального поля от параболического вида () дифференциальное уравнение колебаний будет иметь вид

,

Из записанного дифференциального уравнения видно, что коэффициент жесткости зависит от амплитуды колебаний, что приводит к зависимости угловой частоты свободных незатухающих колебаний системы от амплитуды колебаний
.

Для больших отклонений от линейного поведения зависимость
усложняется, и поэтому усложняются уравнения описывающие колебания в системе.

Для нелинейных систем, в отличие от линейных, нарушается принцип суперпозиции , согласно которому результирующий эффект от сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности, при условии, что последние взаимно не влияют друг на друга.

Изменение в нелинейных системах формы гармонического внешнего воздействия и нарушение принципа суперпозиции позволяют осуществлять с помощью таких систем генерирование и преобразование частоты электромагнитных колебаний – выпрямление, умножение частоты, модуляцию колебаний и т.д.

Резонанс в такой нелинейной системе будет отличаться тем, что в ходе раскачки осциллятора внешней силой величина расстройки (
) будет изменяться, так как частота будет зависеть от амплитуды колебаний.

2.Автоколебательные системы . Рассмотрим подробнее один из примеров нелинейных систем - автоколебательные системы.

Преимуществом использования резонансных явлений является их экономичность и большая амплитуда колебаний. Недостатком является нестабильность работы системы, связанная с необходимостью с большой степенью точности поддерживать условие резонанса (
), так как любые отклонения частоты внешнего воздействия от резонансной частоты при узкой резонансной кривой резко изменяют амплитуду колебаний в системе (рис. 5.17,а, б).

Для того чтобы избежать таких нежелательных явлений, можно заставить саму систему поддерживать это резонансное условие, такая система является автоколебательной системой. Автоколебательная система относится к группе нелинейных колебательных систем, в которых происходит компенсация диссипативных потерь за счет притока энергии от внешнего постоянного источника. При этом система сама регулирует подвод энергии в систему, подавая ее в нужный момент времени в нужном количестве.

Автоколебательная система состоит из колебательной системы, источника энергии и клапана - устройства, которое регулирует подвод энергии в систему. Работой клапана управляет сама система с помощью обратной связи (рис.5.24,а)

В качестве примера автоколебательной системы можно привести систему, состоящую из груза, прикрепленного к двум пружинам и совершающего колебания на металлическом стержне (рис. 5.24,б). Источник постоянного тока с помощью электромагнита за каждый период колебаний совершает работу по увеличению кинетической энергии груза, восполняя потери энергии колебаний на преодоление сил сопротивления.

Это происходит следующим образом. При своем движении металлическая пластина, прикрепленная к грузу, касается контакта-прерывателя (он играет роль клапана), электрическая цепь замыкается и электромагнит притягивает к себе пластину, сообщая при этом дополнительную скорость грузу. Таким образом, в системе возникают незатухающие колебания на частоте
с большой амплитудой, которую можно регулировать, меняя положение контакта прерывателя.

Примерами автоколебательных систем могут служить духовые и смычковые инструменты, колебания голосовых связок при разговоре, механические часы. Примером автоколебательной системы в природе является ядерный реактор, который проработал в течение 500 тысяч лет на урановом руднике в Африке 2,5 миллиарда лет тому назад. Для его работы необходимы были достаточное количество урана-235, который делится под действием медленных нейтронов, и замедлитель нейтронов – вода. В определенный момент времени вода скопилась в достаточном количестве и реактор заработал. Его работу поддерживала цепочка процессов, указанных на рис. 5.25:

Такая автоколебательная система работала до тех пор, пока не выгорело ядерное топливо. Здесь источником энергии является деление ядер U-235, клапаном служит изменение температуры воды, а колебательной системой является вода, уровень которой совершает колебания.