Возможных перемещений принцип. Расчет реакции опоры по принципу возможных перемещений Принцип возможных перемещений механических систем

Принцип возможных перемещений сформулирован для решения задач статики методами динамики.

Определения

Связями называются все тела, ограничивающие перемещение рассматриваемого тела.

Идеальными называются связи, работа реакций которых на любом возможном перемещении равна нулю.

Числом степеней свободы механической системы называется число таких независимых между собой параметров, с помощью которых однозначно определяется положение системы.

Например, шар, расположенный на плоскости имеет пять степеней свободы, а цилиндрический шарнир - одну степень свободы.

В общем случае механическая система может иметь бесконечное число степеней свободы.

Возможными перемещениями будем называть такие перемещения, которые, во-первых, допускаются наложенными связями, и, во-вторых, являются бесконечно малыми.

Кривошипно-ползунный механизм имеет одну степень свободы. В качестве возможных перемещений могут приниматься параметры -  , x и др.

Для любой системы число независимых друг от друга возможных перемещений равно числу степеней свободы.

Пусть некоторая система находится в равновесии и связи, наложенные на эту систему, являются идеальными. Тогда для каждой точки системы можно записать уравнение

, (102)

где
- равнодействующая активных сил, приложенных к материальной точке;

- равнодействующая реакций связей.

Умножим (102) скалярно на вектор возможного перемещения точки

,

так как связи идеальные, то всегда
, останется сумма элементарных работ активных сил, действующих на точку

. (103)

Уравнение (103) можно записать для всех материальных точек, суммируя которые получим

. (104)

Уравнение (104) выражает следующий принцип возможных перемещений.

Для равновесия системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю.

Число уравнений (104) равно числу степеней свободы данной системы, что является достоинством этого метода.

Общее уравнение динамики (принцип Даламбера-Лагранжа)

Принцип возможных перемещений позволяет решать задачи статики методами динамики, с драгой стороны, принцип Даламбера дает общий метод решения задач динамики методами статики. Объединяя два эти принципа можно получить общий метод решения задач механики, который называется принципом Даламбера-Лагранжа.

. (105)

При движении системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равно нулю.

В аналитической форме уравнение (105) имеет вид

Уравнения Лагранжа II рода

Обобщенными координатами (q ) называются такие независимые друг от друга параметры, которые однозначно определяют поведение механической системы.

Число обобщенных координат всегда равно числу степеней свободы механической системы.

В качестве обобщенных координат могут быть выбраны любые параметры, имеющие любую размерность.

Н
апример, при изучении движения математического маятника, имеющего одну степень свободы, в качестве обобщенной координатыq могут быть приняты параметры:

x (м), y (м) – координаты точки;

s (м) – длина дуги;

 (м 2) – площадь сектора;

 (рад) – угол поворота.

При движении системы ее обобщенные координаты будут с течением времени непрерывно изменяться

Уравнения (107) – это уравнения движения системы в обобщенных координатах.

Производные от обобщенных координат по времени называются обобщенными скоростями системы

. (108)

Размерность обобщенной скорости зависит от размерности обобщенной координаты.

Через обобщенные координаты могут быть выражены любые другие координаты (декартовы, полярные и др.).

Наряду с понятием обобщенной координаты вводится понятие обобщенной силы.

Под обобщенной силой понимают величину равную отношению суммы элементарных работ всех сил, действующих на систему на некотором элементарном приращении обобщенной координаты, к этому приращению

, (109)

где S – индекс обобщенной координаты.

Размерность обобщенной силы зависит от размерности обобщенной координаты.

Для нахождения уравнений движения (107) механической системы с геометрическими связями в обобщенных координатах используются дифференциальные уравнения в форме Лагранжа II рода

. (110)

В (110) кинетическая энергия T системы выражена через обобщенные координаты q S и обобщенные скорости .

Уравнения Лагранжа дают единый и достаточно простой метод решения задач динамики. Вид и число уравнений не зависит от количества тел (точек), входящих в систему, а только от числа степеней свободы. При идеальных связях эти уравнения позволяют исключить все заранее неизвестные реакции связей.

КЛАССИФИКАЦИЯ СВЯЗЕЙ

Введенное в § 3 понятие о связях охватывает не все их виды. Поскольку рассматриваемые даже методы решения задач механики применимы вообще к системам не с любыми связями, рассмотрим вопрос о связях и об их классификации несколько подробнее.

Связями называются любого вида ограничения, которые налагаются на положения и скорости точекмеханической системы и выполняются независимо от того, какие на систему действуют заданные силы. Рассмотрим, как классифицируются эти связи.

Связи, не изменяющиеся со временем, называются стационарными, а изменяющиеся со с временем - нестационарными.

Связи, налагающие ограничения на положения (координаты) точек системы, называются геометрическими, а налагающие ограничения еще и на скорости (первые производные от координат по времени) точек системы - кинематическими или дифференциальными.

Если дифференциальную связь можно представить как геометрическую, т. е. устанавливаемую этой связью зависимость между скоростями свести к зависимости между координатами, то такая связь называется интегрируемой, а в противном случае - неинтегрируемой.

Геометрические и интегрируемые дифференциальные связи называют связями голсномньши, а неинтегрируемые дифференциальные связи - неголономньши.

По виду связей механические системы тоже разделяют на голономные (с голономными связями) и неголономные (содержащие неголономные связи).

Наконец, различают связи удерживающее (налагаемые ими ограничения сохраняются при любом положении системы) и неудерживающие, которые этим свойством не обладают (от таких связей, как говорят, система может «освобождаться»). Рассмотрим примеры.

1. Все связи, рассмотренные в § 3, являются геометрическими (голономными) и притом стационарными. Движущийся лнфт, изображенный на рис. 271, а, будет для лежащего в нем груза, когда положение груза рассматривается по отношению к осям Оху, нестационарной геометрической связью (пол кабины, реализующий связь, изменяет со временем свое положение в пространстве).

2 Положение катящегося без скольжения колеса (см. рис. 328) определяется координатой центра С колеса и углом поворота . При качении выполняется условие или

Это дифференциальная связь, но полученное уравнение интегрируется и дает , т. е. сводится к зависимости между координатами. Следовательно, наложенная связь голономная.

3. В отличие от колеса для шара, катящегося без скольжения по шероховатой плоскости, условие того, что скорость точки шара, касающаяся плоскости, равна нулю, не может быть сведено (когда центр шара движется не прямолинейно) к каким-нибудь зависимостям между координатами, определяющими положение шара. Это пример негалоиомной связи. Другой пример дают связи, налагаемые на управляемое движение. Например, если на движение точки (ракеты) налагается условие (связь), что ее скорость в любой момент времени должна быть направлена в другую движущуюся точку (самолет), то это условие к какой-нибудь зависимости между координатами тоже не сводится и связь является неголономной.



4. В § 3 связи, показанные на рис. являются, удерживающими, а на рис. 8 и 9 - неудерживающими (на рис. 8, а шарик может покинуть поверхность, а на рис. 9 - перемещаться в сторону точки А, сминая нить). С учетом особенностей неудерживающих связей мы сталкивались в задачах 108, 109 (§ 90) и в задаче 146 (§ 125).

Перейдем к рассмотрению еще одного принципа механики, который устанавливает общее условиеравновесия механической системы. Под равновесием (см. § 1) мы понимаем то состояние системы, при котором все ее точки под действием приложенных сил находятся в покое по отношению к инерциальной системе отсчета(рассматриваем так называемое «абсолютное» равновесие). Одновременно будем считать все наложенные на систему связи стационарными и специально это в дальнейшем каждый раз оговаривать не будем.

Введем понятие о возможной работе, как об элементарной работе, которую действующая на материальную точку сила могла бы совершить на перемещении, совпадающем с возможным перемещением этой точки. Будем возможную работу активной силы обозначать символом , а возможную работу реакции N связи - символом

Дадим теперь общее определение понятия об идеальных связях, которым мы уже пользовались (см. § 123): идеальными называются связи, для которых сумма элементарных работ их реакций на любом возможном перемещении системы равна нулю, т. е.

Приведенное в § 123 и выраженное равенством (52) условие идеальности связей, когда они одновременно являются стационарными, соответствует определению (98), так как при стационарных связях каждое действительное перемещение совпадает с одним из возможных. Поэтому примерами идеальных связей будут все примеры, приведенные в § 123.

Для определения необходимого условия равновесия докажем, что если механическая система с идеальными связями находится действием приложенных сил в равновесии, то при любом возможном перемещении системы должно выполняться равенство

где - угол между силой и возможным перемещением.

Обозначим равнодействующие всех (и внешних, и внутренних) активных сил и реакций связей, действующих на какую-нибудь точку системы соответственно через . Тогда, поскольку каждая из точек системы находится в равновесии, , а следовательно, и сумма работ этих сил при любом перемещении точки будет тоже равна нулю, т. е. . Составив такие равенства для всех точек системы и сложив их почленно, получим

Но так как связи идеальные, представляют собой возможные перемещения точек системы, то вторая сумма по условию (98) будет равна нулю. Тогда равна нулю и первая сумма, т. е. выполняется равенство (99). Таким образом, доказано, что равенство (99) выражает необходимое условие равновесия системы.

Покажем, что это условие является и достаточным, т. е. что если к точкам механической системы, находящейся в покое, приложить активные силы удовлетворяющие равенству (99), то система останется в покое. Предположим обратное, т. е. что система при этом Придет в движение и некоторые ее точки совершат действительные перемещения . Тогда силы совершат на этих перемещениях работу и по теореме об изменении кинетической энергии будет:

где, очевидно, , так как вначале система была в покое; следовательно, и . Но при стационарных связях действительные перемещения совпадают с какими-то из возможных перемещений и на этих перемещениях тоже должно быть что противоречит условию (99). Таким образом, когда приложенные силы удовлетворяют условию (99), система из состояния покоя выйти не может и это условие является достаточным условием равновесия.

Из доказанного вытекает следующий принцип возможных перемещений: для равновесия механической системыс идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю. Математически сформулированное условие равновесия выражается равенством (99), которое называют также уравнением возможных работ. Это равенство можно еще представить в аналитической форме (см. § 87):

Принцип возможных перемещений устанавливает общее условие равновесия механической системы, не требующее рассмотрения равновесия отдельных частей (тел) этой системы и позволяющее при идеальных связях исключить из рассмотрения все наперед неизвестные реакции связей.

Перейдем к рассмотрению еще одного принципа механики, который устанавливает общее условие равновесия механической системы. Под равновесием (см. § 1) мы понимаем то состояние системы, при котором все ее точки под действием приложенных сил находятся в покое по отношению к инерциальной системе отсчета (рассматриваем так называемое «абсолютное» равновесие). Одновременно будем считать все наложенные на систему связи стационарными и специально это в дальнейшем каждый раз оговаривать не будем.

Введем понятие о возможной работе, как об элементарной работе, которую действующая на материальную точку сила могла бы совершить на перемещении, совпадающем с возможным перемещением этой точки. Будем возможную работу активной силы обозначать символом , а возможную работу реакции N связи - символом

Дадим теперь общее определение понятия об идеальных связях, которым мы уже пользовались (см. § 123): идеальными называются связи, для которых сумма элементарных работ их реакций на любом возможном перемещении системы равна нулю, т. е.

Приведенное в § 123 и выраженное равенством (52) условие идеальности связей, когда они одновременно являются стационарными, соответствует определению (98), так как при стационарных связях каждое действительное перемещение совпадает с одним из возможных. Поэтому примерами идеальных связей будут все примеры, приведенные в § 123.

Для определения необходимого условия равновесия докажем, что если механическая система с идеальными связями находится действием приложенных сил в равновесии, то при любом возможном перемещении системы должно выполняться равенство

где - угол между силой и возможным перемещением.

Обозначим равнодействующие всех (и внешних, и внутренних) активных сил и реакций связей, действующих на какую-нибудь точку системы соответственно через . Тогда, поскольку каждая из точек системы находится в равновесии, , а следовательно, и сумма работ этих сил при любом перемещении точки будет тоже равна нулю, т. е. . Составив такие равенства для всех точек системы и сложив их почленно, получим

Но так как связи идеальные, представляют собой возможные перемещения точек системы, то вторая сумма по условию (98) будет равна нулю. Тогда равна нулю и первая сумма, т. е. выполняется равенство (99). Таким образом, доказано, что равенство (99) выражает необходимое условие равновесия системы.

Покажем, что это условие является и достаточным, т. е. что если к точкам механической системы, находящейся в покое, приложить активные силы удовлетворяющие равенству (99), то система останется в покое. Предположим обратное, т. е. что система при этом Придет в движение и некоторые ее точки совершат действительные перемещения . Тогда силы совершат на этих перемещениях работу и по теореме об изменении кинетической энергии будет:

где, очевидно, , так как вначале система была в покое; следовательно, и . Но при стационарных связях действительные перемещения совпадают с какими-то из возможных перемещений и на этих перемещениях тоже должно быть что противоречит условию (99). Таким образом, когда приложенные силы удовлетворяют условию (99), система из состояния покоя выйти не может и это условие является достаточным условием равновесия.

Из доказанного вытекает следующий принцип возможных перемещений: для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю. Математически сформулированное условие равновесия выражается равенством (99), которое называют также уравнением возможных работ. Это равенство можно еще представить в аналитической форме (см. § 87):

Принцип возможных перемещений устанавливает общее условие равновесия механической системы, не требующее рассмотрения равновесия отдельных частей (тел) этой системы и позволяющее при идеальных связях исключить из рассмотрения все наперед неизвестные реакции связей.


виртуальных скоростей принцип,- дифференциальный вариационный принцип классической механики, выражающий наиболее общие условия равновесия механических систем, стесненных идеальными связями.

Согласно В. п. п. механич. система находится в равновесии в нек-ром положении тогда и только тогда, когда сумма элементарных работ заданных активных сил на всяком возможном перемещении, выводящем систему из рассматриваемого положения, равна нулю или меньше нуля:

в любой момент времени.

Возможными (виртуальными) перемещениями системы наз. элементарные (бесконечно малые) перемещения точек системы, допускаемые в данный момент времени наложенными на систему связями. Если связи являются удерживающими (двусторонними), то возможные перемещения обратимы, и в условии (*) следует брать знак равенства; если же связи- неудерживающие (односторонние), то среди возможных перемещений имеются необратимые. При движении системы под действием активных сил связи действуют на точки системы с нек-рыми силами реакций (пассивные силы), в определении к-рых предполагается полностью учтенным механич. действие связей на систему (в том смысле, что связи возможно заменять вызванными ими реакциями) (аксиома освобождаемости). Связи наз. идеальными, если сумма элементарных работ их реакций причем знак равенства имеет место для обратимых возможных перемещений, а знаки равенства или больше нуля - для необратимых перемещений. Положения равновесия системы - такие положения в к-рых система будет оставаться все время, если она помещена в эти положения с нулевыми начальными скоростями при этом предполагается, что уравнения связей удовлетворяются при любом tзначениями Активные силы в общем случае предполагаются заданными функциями а в условии (*) следует считать

В условии (*) содержатся все уравнения и законы равновесия систем с идеальными связями, благодаря чему можно сказать, что вся статика сводится к одной общей формуле (*).

Закон равновесия, выражаемый В. п. п., впервые был установлен Гвидо Убальди (Guido Ubaldi) на рычаге и на движущихся блоках или полиспастах. Г. Галилей (G. Galilei) установил его для наклонных плоскостей и рассматривал этот закон как общее свойство равновесия простых машин. Дж. Валлис (J. Wallis) положил его в основание статики и из него вывел теорию равновесия машин. Р. Декарт (R. Descartes) свел всю статику к единому принципу, к-рый, по существу, совпадает с принципом Галилея. И. Бернулли (J. Bernoulli) первый понял большую общность В. п. п. и его полезность при решении задач статики. Ж. Лагранж выразил В. п. п. в общей форме и тем самым свел всю статику к адиной общей формуле; он дал доказательство (не вполне строгое) В. п. п. для систем, стесненных двусторонними (удерживающими) связями. Общая формула статики для равновесия любой системы сил и разработанный Ж. Лагранжем метод применения этой формулы были систематически им использованы для вывода общих свойств равновесия системы тел и решения различных проблем статики, включая задачи равновесия несжимаемых, а также сжимаемых и упругих жидкостей. Ж. Лагранж считал В. п. п. основным принципом для всей механики. Строгое доказательство В. п. п., а также распространение его на односторонние (неудерживающие) связи было дано Ж. Фурье , М. В. Остроградским .

Лит. : Lagrange J., Mecanique analytiquc, P., 1788 (рус. пер.: Лагранж Ж., Аналитическая механлка, М.-Л., 1950); Fourier J., "J. de 1"Ecole Polytechnique", 1798, t. II, p. 20; Остроградский М. В., Лекции по аналитической механике, Собр. соч., т. 1, ч. 2, М.-Л., 1946.

  • - виртуальных скоростей принцип,- дифференциальный вариационный принцип классической механики, выражающий наиболее общие условия равновесия механических систем, стесненных идеальными связями...

    Математическая энциклопедия

  • - Представление о том, что у настоящего может быть не одно, а несколько направлений развития в будущем, было, вероятно, в культуре всегда...

    Энциклопедия культурологии

  • - комплекс мероприятий по оценке состояния резервуаров, продуктопроводов, запорной арматуры и устройств, узлов и агрегатов на опасном производстве, средств хранения и транспортировки опасных грузов,...

    Гражданская защита. Понятийно-терминологический словарь

  • - графическое построение перемещении узлов стержневой системы по заданным продольным деформациям её стержней - диаграма на преместванията - translokační obrazec - Verschiebungsplan - elmozdulásábra - шилжилтийн диаграмм - wykres przesunięć -...

    Строительный словарь

  • - метод строительной механики для определения усилий и перемещений в статически неопределимых конструктивных системах, при котором в качестве основных неизвестных выбираются линейные и угловые перемещения - метод...

    Строительный словарь

  • - прогнозирование величины и структуры санитарных потерь при возможных чрезвычайных ситуациях, позволяющее определить объем предстоящей работы по оказанию медицинской помощи, эвакуации пораженных,...

    Словарь терминов черезвычайных ситуаций

  • - - метод логического анализа модальных и интенсиональных понятий, основу которого составляет рассмотрение мыслимых положений дел...

    Философская энциклопедия

  • - СЕМАНТИКА ВОЗМОЖНЫХ МИРОВ - совокупность семантических конструкций для истинностной интерпретации неклассических логических связок, главной особенностью которых является введение в рассмотрение так...

    Энциклопедия эпистемологии и философии науки

  • - датчик, преобразующий механические перемещения в изменение силы или напряжения электрического тока, предназначенный для регистрации физиологических процессов...

    Большой медицинский словарь

  • - теорема Максвелла, - состоит в том, что для линейно деформируемого тела перемещение сигмаki точки приложения единичной силы Pk первого состояния по направлению её действия, вызываемое любой др. единичной силой...
  • - диаграмма Вильо, - геометрич. построение, определяющее перемещения всех узлов плоской фермы по известным изменениям длины её стержней. См. рис. К ст. Перемещений диаграмма: а - схема фермы...

    Большой энциклопедический политехнический словарь

  • - теорема Максвелла, состоит в том, что для линейно деформируемого тела перемещение δki точки приложения единичной силы Pk первого состояния по направлению её действия, вызываемое любой др. единичной силой Pi...
  • - один из вариационных принципов механики, устанавливающий общее условие равновесия механической системы...

    Большая Советская энциклопедия

  • - ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ принцип - для равновесия механической системы необходимо и достаточно, чтобы сумма работ всех действующих на систему сил при любом возможном перемещении системы была равна нулю. Возможных...

    Большой энциклопедический словарь

  • - прил., кол-во синонимов: 1 ни попадя...

    Словарь синонимов

  • - прил., кол-во синонимов: 2 ревнивый ревностный...

    Словарь синонимов

"ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ ПРИНЦИП" в книгах

Типология социальных перемещений

Из книги Социальная философия автора Крапивенский Соломон Элиазарович

Типология социальных перемещений Прежде всего П. Сорокин выделил два основных типа социальной мобильности - горизонтальную и вертикальную. Примерами горизонтальной мобильности могут служить перемещение некоего индивида из баптистской в методистскую религиозную

12. (НП5) Пятый принцип НП - принцип улучшения или принцип вселенной

Из книги Путешествие длиною в себя (0.73) автора Артамонов Денис

12. (НП5) Пятый принцип НП - принцип улучшения или принцип вселенной Пятый принцип, является логическим продолжением - дополнением четвертого принципа. С его помощью, я хотел бы провести определенную параллель между целью, смыслом самой Вселенной и нашей деятельностью

Техника перемещений

Из книги Маленькая книга о капоэйре автора Капоэйра Нестор

Техника перемещений Теперь, оставив позади чистую теорию мы дошли до пункта, когда новичку начинают преподавать собственно джого, игру капоэйры. Излагаемая далее методика несколько отличается от используемых в течение последних пятидесяти лет (с тех пор как Бимба

Возможных перемещений принцип

Из книги Большая Советская Энциклопедия (ВО) автора БСЭ

Взаимности перемещений принцип

Из книги Большая Советская Энциклопедия (ВЗ) автора БСЭ

Как обеспечить анонимность перемещений в Интернете при противодействии черному PR

Из книги Противодействие черному PR в Интернете автора Кузин Александр Владимирович

Как обеспечить анонимность перемещений в Интернете при противодействии черному PR Поскольку противник, совершивший на вас нападение в Интернете, может представлять угрозу вашей жизни и здоровью, считаем необходимым подробно остановиться на вопросах обеспечения

Из книги AutoCAD 2009 для студента. Самоучитель автора Соколова Татьяна Юрьевна

Анимация перемещений при обходе и облете

Из книги AutoCAD 2008 для студента: популярный самоучитель автора Соколова Татьяна Юрьевна

Анимация перемещений при обходе и облете Анимация перемещений обеспечивает предварительный просмотр любого перемещения, включая обход и облет чертежа. Перед созданием анимации перемещения по траектории необходимо создать образец предварительного просмотра. Команда

Анимация перемещений при обходе и облете

Из книги AutoCAD 2009. Учебный курс автора Соколова Татьяна Юрьевна

Анимация перемещений при обходе и облете Анимация перемещений обеспечивает предварительный просмотр любого перемещения, включая обход и облет чертежа. Перед созданием анимации перемещения по траектории необходимо создать образец предварительного просмотра. Команда

Анимация перемещений при обходе и облете

Из книги AutoCAD 2009. Начали! автора Соколова Татьяна Юрьевна

Анимация перемещений при обходе и облете Анимация перемещений обеспечивает предварительный просмотр любого перемещения, включая обход и облет чертежа. Перед созданием анимации перемещения по траектории необходимо создать образец предварительного просмотра. Команда

ГОЛУБЯТНЯ: Диалектика как отражение сезонных перемещений

Из книги Журнал «Компьютерра» № 20 от 29 мая 2007 года автора Журнал «Компьютерра»

ГОЛУБЯТНЯ: Диалектика как отражение сезонных перемещений Автор: Сергей Голубицкий«Я почти ничего не понял. А главное – не понял, при чем тут компьютеры. Думаю, если бы этой статьи не было – мир бы не много потерял». Юзер «Рамзес» на форуме «Компьютерры» в адрес

«От возможных друзей, от возможных обид…»

Из книги Невидимая птица автора Червинская Лидия Давыдовна

«От возможных друзей, от возможных обид…» От возможных друзей, от возможных обид, От возможного, все-таки, полупризнанья, От возможного счастья так сердце болит… – До свиданья. Проезжали игрушечный мост над рекой, И откуда, откуда он взялся такой В этом городе

10.6 Планирование перемещений

Из книги Управление персоналом: учебное пособие автора

10.6 Планирование перемещений Удовлетворение многих потребностей и исполнение ожиданий связано непосредственно с содержанием труда, поскольку труд занимает важнейшее место в жизни человека, и человеку отнюдь не все равно, чему он посвящает большую часть жизни.

Планирование перемещений

Из книги Управление персоналом для менеджеров: учебное пособие автора Спивак Владимир Александрович

Планирование перемещений Удовлетворение многих потребностей и исполнение ожиданий связано непосредственно с содержанием труда, поскольку человеку отнюдь не все равно, чему он посвящает большую часть жизни. Удовлетворение потребностей зачастую сопряжено с занятием

Принцип 4. Медикаменты можно принимать только в том случае, если риск отказа от них превышает риск от возможных побочных эффектов

Из книги 10 шагов на пути к управлению своей эмоциональной жизнью. Преодоление тревоги, страха и депрессии благодаря исцелению личности человека автора Вуд Ева А.

Принцип 4. Медикаменты можно принимать только в том случае, если риск отказа от них превышает риск от возможных побочных эффектов Другими словами, вам необходимо взвесить соотношение между риском и выгодой. Каждое лекарство может оказаться для вас не только полезным и

Устанавливающий общее условие равновесия механической системы . Согласно этому принципу, для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма виртуальных работ A_i только активных сил на любом возможном перемещении системы была равна нулю (если система приведена в это положение с нулевыми скоростями).

Количество линейно независимых уравнений равновесия, которые можно составить для механической системы, исходя из принципа возможных перемещений, равно количеству степеней свободы этой механической системы.

Возможными перемещениями несвободной механической системы называются воображаемые бесконечно малые перемещения, допускаемые в данный момент наложенными на систему связями (при этом время, входящее явно в уравнения нестационарных связей, считается зафиксированным). Проекции возможных перемещений на декартовы координатные оси называются вариациями декартовых координат.

Виртуальными перемещениями называются бесконечно малые перемещения, допускаемые связями, при "замороженном времени". Т.е. они отличаются от возможных перемещений, только когда связи реономны (явно зависят от времени).

Если, например, на систему наложено l голономных реономных связей:

f_{\alpha}(\vec r, t) = 0, \quad \alpha = \overline{1,l}

То возможные перемещения \Delta \vec r - это те, которые удовлетворяют

\sum_{i=1}^{N} \frac{\partial f_{\alpha}}{\partial \vec{r}} \cdot \Delta \vec{r} + \frac{\partial f_{\alpha}}{\partial t} \Delta t = 0, \quad \alpha = \overline{1,l}

А виртуальные \delta \vec r:

\sum_{i=1}^{N} \frac{\partial f_{\alpha}}{\partial \vec{r}}\delta \vec{r} = 0, \quad \alpha = \overline{1,l}

Виртуальные перемещения, вообще говоря, не имеют отношения к процессу движения системы - они вводятся лишь для того, чтобы выявить существующие в системе соотношения сил и получить условия равновесия. Малость же перемещений нужна для того, чтобы можно было считать реакции идеальных связей неизменными.

Напишите отзыв о статье "Принцип возможных перемещений"

Литература

  • Бухгольц Н. Н. Основной курс теоретической механики. Ч. 1. 10-е изд. - Спб.: Лань, 2009. - 480 с. - ISBN 978-5-8114-0926-6 .
  • Тарг С. М. Краткий курс теоретической механики: Учебник для вузов. 18-е изд. - М .: Высшая школа, 2010. - 416 с. - ISBN 978-5-06-006193-2 .
  • Маркеев А. П. Теоретическая механика: учебник для университетов. - Ижевск: НИЦ "Регулярная и хаотичная динамика", 2001. - 592 с. - ISBN 5-93972-088-9 .

Отрывок, характеризующий Принцип возможных перемещений

– Nous у voila, [В этом то и дело.] отчего же ты прежде ничего не сказала мне?
– В мозаиковом портфеле, который он держит под подушкой. Теперь я знаю, – сказала княжна, не отвечая. – Да, ежели есть за мной грех, большой грех, то это ненависть к этой мерзавке, – почти прокричала княжна, совершенно изменившись. – И зачем она втирается сюда? Но я ей выскажу всё, всё. Придет время!

В то время как такие разговоры происходили в приемной и в княжниной комнатах, карета с Пьером (за которым было послано) и с Анной Михайловной (которая нашла нужным ехать с ним) въезжала во двор графа Безухого. Когда колеса кареты мягко зазвучали по соломе, настланной под окнами, Анна Михайловна, обратившись к своему спутнику с утешительными словами, убедилась в том, что он спит в углу кареты, и разбудила его. Очнувшись, Пьер за Анною Михайловной вышел из кареты и тут только подумал о том свидании с умирающим отцом, которое его ожидало. Он заметил, что они подъехали не к парадному, а к заднему подъезду. В то время как он сходил с подножки, два человека в мещанской одежде торопливо отбежали от подъезда в тень стены. Приостановившись, Пьер разглядел в тени дома с обеих сторон еще несколько таких же людей. Но ни Анна Михайловна, ни лакей, ни кучер, которые не могли не видеть этих людей, не обратили на них внимания. Стало быть, это так нужно, решил сам с собой Пьер и прошел за Анною Михайловной. Анна Михайловна поспешными шагами шла вверх по слабо освещенной узкой каменной лестнице, подзывая отстававшего за ней Пьера, который, хотя и не понимал, для чего ему надо было вообще итти к графу, и еще меньше, зачем ему надо было итти по задней лестнице, но, судя по уверенности и поспешности Анны Михайловны, решил про себя, что это было необходимо нужно. На половине лестницы чуть не сбили их с ног какие то люди с ведрами, которые, стуча сапогами, сбегали им навстречу. Люди эти прижались к стене, чтобы пропустить Пьера с Анной Михайловной, и не показали ни малейшего удивления при виде их.
– Здесь на половину княжен? – спросила Анна Михайловна одного из них…
– Здесь, – отвечал лакей смелым, громким голосом, как будто теперь всё уже было можно, – дверь налево, матушка.
– Может быть, граф не звал меня, – сказал Пьер в то время, как он вышел на площадку, – я пошел бы к себе.
Анна Михайловна остановилась, чтобы поровняться с Пьером.
– Ah, mon ami! – сказала она с тем же жестом, как утром с сыном, дотрогиваясь до его руки: – croyez, que je souffre autant, que vous, mais soyez homme. [Поверьте, я страдаю не меньше вас, но будьте мужчиной.]
– Право, я пойду? – спросил Пьер, ласково чрез очки глядя на Анну Михайловну.