Аутофагия как тип клеточной гибели - презентация. Аутофагия — правильное очищение организма Механизм аутофагии

В среднем килограмм картофельных чипсов стоит в двести раз дороже, чем килограмм картофеля.

Последнее время мне все чаще задают вопросы об аутофагии. Сначала такая волна интереса к молекулярной биологии меня удивила. Но оказалось, дело в том, что различные «тренеры по питанию» рекомендуют делать длительные перерывы между приемами пищи, нечто типа голодания продолжительностью в 14-16 часов и называют этот процесс аутофагией.

Якобы во время такого голодания, организм перерабатывает старые, больные, поврежденные клетки и создает из них новые – молодые и здоровые. И якобы именно за изобретение такой «диеты» японский ученый Есинори Осуми получил Нобелевскую премию.

Если кротко, то все эти истории — неправда. Но короткого ответа в данной ситуации как мне кажется недостаточно. Поэтому давайте разбираться подробно.

Есинори Осуми на самом деле существует, он биолог, работает в сфере молекулярной биологии. И он действительно получил Нобелевскую премию за то, что «выяснил механизм аутофагии, самофагоцитоз, в котором голодные клетки используют собственный белки в качестве источника питания». Но никакого отношения к похудению и омоложению организма это не имеет вообще. Я думаю, господин Осуми вообще очень сильно бы удивился, если бы узнал о подобной трактовке его работы.

Что такое аутофагия

Это механизм, обнаруженный в клетках эукариотических организмов, от дрожжей до людей, предотвращающий накопление аномального количества белка в клетке, обеспечивающий рециркуляцию белков при чрезмерном их синтезе. В случае голодания, разрушение клеточных компонентов способствует выживанию клеток, поддерживая уровни клеточной энергии.

Аутофагия участвует в поддержании гомеостаза живых организмов путем устранения патогенных микроорганизмов, вторгшихся в цитоплазму.

При болезни аутофагия рассматривается в одних случаях как адаптивный ответ на стресс, который способствует выживанию, а в других, способствует гибели клеток и заболеванию (болезнь Альцгеймера, ИБС и др.).

Как работает аутофагия в масштабе организма

Для того чтобы клетки могли выполнять жизненно важные функции, организму необходимо синтезировать белки, которые состоят из аминокислот. То есть для того, чтобы клетки могли функционировать нормально, нужны незаменимые аминокислоты, служащие источником питательных веществ.

При голодании, когда питательные вещества истощаются, а поступление аминокислот прекращается, организму может быть нанесен серьезный ущерб, связанный с гибелью клеток. Однако считается, что клетки могут временно избежать этого повреждения с помощью аутофагии.

Когда происходит аутофагия, часть белка, всегда присутствующего в клетке, разлагается с образованием пептидов или аминокислот. Тем не менее, избегание голода при помощи аутофагии носит временный характер и не может помочь, если голод продолжается в течение длительного времени. А когда аутофагия прогрессирует чрезмерно, это приводит к гибели клеток.

Роль аутофагии в предотвращении и провоцировании заболеваний

Как уже понятно из написанного выше, аутофагию никак нельзя назвать процессом однозначно полезным или однозначно вредным. Все зависит от конкретной ситуации и интенсивности процесса.

Например, аутофагия играет важную роль при раке. И роль может быть абсолютно противоположной. Она может, как защищать от рака, уничтожая потенциально опасные клетки, так и способствовать прогрессированию рака, помогая выживать опухолевым клеткам.

Аутофагия при болезни Альцгеймера наносит вред . Исследователи из Центра RIKEN в Японии выяснили, что отсутствие аутофагии в нейронах предотвращает секрецию бета-амилоида и образование амилоидных бляшек в мозге. Те же данные получили исследователи из Университета Сарагосы.

А вот при наследственной форме болезни Паркинсона, наоборот, отсутствие аутофагии , служит причиной накопления компонентов вызывающих гибель нейронов.

На заболевания сердечно-сосудистой системы, аутофагия влияет как положительно так и отрицательно. При ранних стадиях, например, гипертонии аутофагия помогает быстрее восстановить ткани, но при избыточной активации может усилить их повреждение. Особенно с учетом того, что регенеративная способность тканей миокарда крайне ограничена.

Поскольку нарушение процесса аутофагии вовлечено в патогенез широкого спектра заболеваний, ученые всего мира прилагают большие усилия для выявления или создания лекарств которые будут способны ее регулировать. Не только ускорять, но и замедлять или даже останавливать.

Какое отношение аутофагия имеет к похудению и омоложению?

К похудению однозначно никакого. В контексте питания, аутофагия это механизм который при голодании, больших физических нагрузках и др. позволяет поддерживать гомеостаз. Можно сказать, благодаря аутофагии, организм может безвредно голодать какое-то время, получая нужные аминокислоты из собственных тканей. То есть это функция, сохраняющая жизнь организма, во время перебоев с получением пищи.

Поскольку лишний вес это отнюдь не лишние белки, а лишний жир, абсолютно непонятно как адепты «аутофагии для похудения» вообще связали этот процесс со снижением веса.

С омоложением тоже проблема. То, что одна клетка погибла, не означает, что новая, сформировавшаяся вместо нее будет лучше по качеству и никто не может гарантировать, что это не будет клетка злокачественной опухоли.

Хотя конечно, не следует сбрасывать со счетов, что дисфункции процесса аутофагии играют роль во многих возрастных заболеваниях. Например ученым удалось увеличить продолжительность жизни нематод и фруктовых мух увеличив аутофагию. Но учитывая разницу в физиологии нематоды и человека и роль аутофагии в нейродегенеративных и сердечно-сосудистых заболеваниях, нельзя сказать, что такие же методы приведут к увеличению продолжительность жизни человека.

В общем, чтобы делать какие-то выводы о влиянии процесса аутофагии на продолжительность жизни, придется подождать, пока исследователи всесторонне изучат этот процесс и получат однозначные ответы.

Резюмируя вышеизложенное можно сказать только одно. «Чудесной пилюли» для похудения как не было, так и нет. Чтобы похудеть, чувствовать себя лучше и выглядеть моложе, нужно воспользоваться простым старым способом – правильно питаться, заниматься физкультурой и нормально высыпаться.

Механизмы активации аутофагии — Нобелевская премия по медицине 2016

Лауреат Нобелевской премии по медицине за 2016 год, доктор Осуми показывает нам, что периодическое голодание может дать нам более долгую и здоровую жизнь. Узнайте, как клеточная аутофагия может добавить десяток здоровых лет к вашей жизни.

Слышали ли вы, что доктор Иосинори Осуми в этом году получил Нобелевскую премию за свою работу, связанную с «самопоеданием» клеток организма?

«Зачем бы клеткам есть самим себя?» Могли бы вы спросить.

«Для того, чтобы жить дольше и более здоровым», я мог бы ответить.

Давайте я объясню.

Клетки на самом деле не едят себя полностью. Они лишь, частично разрушают белки и несущественные компоненты, чтобы повторно использовать их для получения энергии. Клеточный биолог доктор Осуми получил Нобелевскую премию по медицине в 2016 , потому что его работа по клеточной аутофагии дает нам большую ясность о том, как клетки организма избавляются от токсинов и восстанавливают себя.

Этот процесс называется «клеточная аутофагия» , и это то, что, вам необходимо, чтобы ваши собственные клетки, делали на регулярной основе. То есть, если вы хотите увеличить свои шансы прожить долгую, здоровую жизнь без затяжных болезней.

что такое клеточная Аутофагия?

Клеточная аутофагия является важным процессом для организма, чтобы выжить и остаться здоровым. В период когда человек ограничивает калорийность рациона, или полностью голодает не только клетки расщепляют белки и несущественные компоненты, чтобы повторно использовать их для получения энергии, но и клетки используют аутофагию для:

  • Уничтожения чужеродных вирусов и бактерий; (теперь вы наверно понимаете почему вам так не хочется есть во время болезни простудой или гриппом?), а также
  • Избавляете себя от поврежденных структур; процесс, который убирает, повреждения которые могут способствовать развитию рака, инфекционным заболеваниям, иммунологическим заболеваниям и нейродегенеративных заболеваний; включая болезнь Паркинсона, диабет 2-го типа.

Еще одна факт - перебои в работе механизмов аутофагии, играют определенную роль в старении; наоборот, улучшение аутофагии, как полагают, замедлит процесс старения.

Таким образом, эта аутофагия тема очень привлекающая внимание (получившая признание даже Нобелевской премией!) Она имеет очень важное значение, на самом деле она была открыта еще в 60 годы прошлого века, но мало что было известно о том, как на самом деле происходит аутофагия, какие участвуют гены, и её специфическая роль в болезнях и нормальном развитии до исследований д-ра Осуми, который начал изучать аутофагию в дрожжах. Он занимается процессом изучения аутофагии уже 27 лет.

Да, те самые дрожжи снова! Дело в том, однако, что новаторская работа доктора Осуми демонстрирует, что гены аутофагии и метаболические пути у дрожжей аналогичны у высших организмов, включая человека.

Слово «аутофагия» происходит от двух греческих слов, означающих «само-поедание». Это относится к процессу, в котором клеточный мусор захватывается и запечатывается в мешковидные мембраны, называемые аутофагосомы. Запечатанные содержимое транспортируются в другую структуру, которая называется лизосома, аналог клеточного бункера для мусора.

Изучая процесс в клетках дрожжей, доктор Осуми определил основные гены, участвующие в аутофагии и показал, какие белки они кодируют вместе, чтобы построить аутофагосомную мембрану. Позже он показал, что аналогичный процесс происходит при рециркуляции клеточной связи в клетках человека - и что наши клетки не выжили бы без этого процесса.

Аутофагия удаляет накопление холестерина в стенках артерий человека

Эта картинка иллюстрирует открытие, сделанное группой исследователей из Университета Оттавы института сердца во главе с биохимиком Ивом Марселем, директором биологической лаборатории липопротеинов высокой плотности Института Сердца в Канаде.

Д-р Марсель и его команда обнаружили, ещё одну функцию клеточной аутофагии - мобилизация и удаление холестерина из клеток.

Исследования Канадского института сердца показали, что аутофагия может поглотить и переварить холестерин накапливающийся в стенках артерий. «Этот процесс способствует выведению холестерина и может помочь найти совершенно новые пути для предотвращения развитие атеросклероза, являющегося основной причиной сердечных приступов и инсультов» заявляет д-р Ив Марсель.

История применения лечебного периодического голодания

Вручение Нобелевской премии в 2016 году за исследования в области аутофагии вновь пробудило интерес к теме, периодического лечебного голодания. Методику лечебного голодания многие люди старшего поколения, рожденные в СССР, помнят еще с 70 годов прошлого века, когда ее сделала популярным книга Поля Брега «Чудо голодания». Но положительное влияние голодания на здоровье известно с очень древнего времени - еще в библии его упоминают 74 раза! Голодали многие известные философы и ученые древности: величайший математик Пифагор, философы Сократ и Платон и все они прожили достаточно долго - в районе 90–100 лет.

В СССР тему лечебного голодания изучал доктор медицинских наук Юрий Николаев, в 1973 году он выпустил популярную книгу «Голодание ради здоровья» - она разлетелась мигом, тираж был 200 тысяч экземпляров, книга была переведена на многие зарубежные языки. Более 10 лет Николаев изучал влияние голодания на различные заболевания человека и в результате появился его метод названый «разгрузочно-диетической терапией» (РДТ). Метод был настолько популярен в СССР, что в больницах даже открывали отделения посвященные, конкретно этому методу лечения. Не знаю с чем связано, что методика была забыта у нас в стране - вероятнее всего, это связано с развалом СССР, как и многое другое. Сам доктор медицинских наук Юрий Николаев умер в 1998 году в возрасте 93 года.

Периодическое голодание для активации аутофагии

Ну а теперь перейдем к практике. Отличная новость в том, что вы можете выбрать методику периодического голодания для запуска аутофагии , которая лучше всего вам подходит:

  • Ешьте с 13:00 часов дня и до 8:00 вечера, давая вашему организму 17 часов без еды, для увеличения процессов аутофагии; или
  • Ешьте в течение пяти дней в неделю как обычно, и ограничивайте калории до 500 два дня в неделю (устраивайте разгрузочные дни на овощах); или
  • Питайтесь как обычно в течение пяти дней в неделю, но ограничивайте калории до 500 за счет употребления только сырых овощей в течение одного дня и полностью голодайте в течение одного дня.

Данные типы периодического голодания доказали эффективность в активации аутофагии на лабораторных животных, и так же на людях у которых снизились биомаркеры отвечающие за риск развития рака, диабета и болезней сердца.

Если вы придерживаетесь вегетарианского питания, то вероятно периодические голодания для вас не нужны, так как при этом типе питания скорее всего происходит активация аутофагии за счет постоянного ограничения калорийности питания, конечно если вы не питаетесь только лишь одними сладкими фруктами — так называемое фрукторианство, на мой взгляд весьма вредный способ питания для здоровья человека.

В своей статье я приводил документальный фильм ВВС «Есть, голодать, жить дольше» в, котором рассказывали о некоторых вариантах голодания, и ограничения калорийности диеты, рекомендую посмотреть, фильм действительно очень интересный. В нем главный герой — посещает несколько центров по изучению голодания, и применяет на себе выбирая наиболее подходящий для себя.

Вывод: в статье я рассказал о том как можно улучшить своё здоровье за счет периодического голодания активирующего процесс аутофагии в организме, это одно из самых важных действий, которое вы можете сделать для своего здоровья и долголетия, наравне с приемом и отказом от вредных привычек.

Спасибо за прочтение моей статьи, а как вы относитесь к голоданию ? Пробовали ли вы когда либо голодать? Напишите ваши комментарии после статьи мне будет интересно узнать о вашем опыте.

The following two tabs change content below.

Роман Заболотников

Я уже более пяти лет помогаю читателям этого сайта получать самую новую информацию по тематике биохакинга, улучшению здоровья, продлению молодости и достижению долголетия, а также делюсь личным опытом и практическими наработками в области применения добавок и препаратов с IHERB. Буду благодарен, если вы уделите несколько минут и оставите свои комментарии и вопросы по поводу прочитанной статьи, ваше мнение очень важно для того, чтобы данный сайт был более интересным, а материалы более понятными.

  • Аутофагия - это биологический процесс, благодаря которому улучшается сопсобность организма к детоксикации, восстановлению и регенерации.
  • Активируя процесс аутофагии в своем организме, вы уменьшаете воспаление, замедляете процесс старения и оптимизируете биологические функции
  • Для того, что бы активизировать этот процесс, существует три правила: употребление продуктов с высоким содержанием жиров, низким углеводов и высоким содержанием клетчатки, периодическое голодание и регулярные физические упражнения, особенно упражнения высокой интенсивности

Размер текста:

От д-ра Меркола

Несмотря на множество различных способов избавить свой организм от накопленных токсинов – от детоксикации пищевых продуктов и химикатов и/или натуральных обезвреживающих веществ до сауны , важную роль играет биологический процесс под названием «аутофагия».

Термин «аутофагия» означает «самопоглощение» и означает процессы, с помощью которых ваш организм очищается от различного мусора, в том числе от токсинов, а также перерабатывает поврежденные клеточные компоненты.
Как объясняют на сайте Greatist:

«Ваши клетки создают мембраны, которые охотятся на остатки мертвых, больных или изношенных клеток; они пожирают эти остатки, раздирая их на части; а полученные молекулы используют для создания энергии или образования новых частей клетки».

Доктор Колин Чемп, профессиональный лучевой терапевт и доцент медицинского центра Университета Питтсбурга объясняет это так:

«Считайте это врожденной программой утилизации нашего организма. Благодаря аутофагии, мы более эффективно избавляемся от дефектных частей, останавливаем раковые новообразования, а также прекращаем такие нарушения метаболизма, как ожирение и диабет».

Усиливая процесс аутофагии в своем организме, вы уменьшаете воспаление, замедляете процесс старения и оптимизируете биологическую функцию.

Усиление аутофагии с помощью упражнений

Кроме того, важно понимать, какие углеводы мы имеем в виду, когда мы говорим о «низком их содержании», поскольку овощи – тоже «углеводы». Тем не менее, углеводы с клетчаткой (т.е. овощи) не будут толкать ваш метаболизм в неправильном направлении – на это способны только углеводы без клетчатки (имеется в виду сахар и все, что в него превращается: газированные напитки, обработанные зерновые, макаронные изделия, хлеб и печенье, например).

Еще более важно то, что клетчатка, не расщепленная сахаром, проходит по пищеварительному тракту, где ее потребляют бактерии в вашем кишечнике, и преобразуется в короткоцепочечные жиры, которые на самом деле полезны для здоровья.

Если вы посмотрите на питательную ценность, указанную на упаковке обработанных продуктов, вы увидите общее количество углеводов , а это, опять же, не то, о чем мы говорим. Чтобы рассчитать вредные углеводы без клетчатки, нужно отнять граммы клетчатки от общего количества граммов углеводов, содержащихся в данном продукте. Помните, вам нужны углеводы, но все они должны быть из овощей , которые также богаты клетчаткой.

Аутофагия восстанавливает функции стволовых клеток стареющих мышц

Уже давно известно, что мезенхимальные стволовые клетки (МСК) в скелетных мышцах являются важной частью процесса восстановления мышц. Предыдущие исследования показали, что физические упражнения влияют на поведение мышечных стволовых клеток и могут помочь предотвратить или даже восстановить связанную с возрастом потерю мышечной массы. МСК в мышечной ткани очень чувствительны к механическим нагрузкам, а эти стволовые клетки накапливаются в мышечной массе после физических упражнений.

Несмотря на то, что МСК напрямую не способствуют созданию новых мышечных волокон, они вырабатывают фактор роста, стимулирующий другие клетки к созданию новых мышц. Также известно, что с возрастом, в мышцах человека снижается количество МСК, как снижается и эффективность аутофагии. В результате, отходы метаболизма начинают накапливаться в клетках и тканях.

Недавнее исследование, проведенное в Испании, сообщает, что сателлитные клетки - мышечные стволовые клетки, ответственные за регенерацию тканей - полагаются на аутофагию с целью предупреждения остановки клеточного цикла, известного как клеточное старение(состояние, при котором значительно снижается активность стволовых клеток). Короче говоря, чтобы улучшить регенерацию мышечной ткани, необходимо усилить процесс аутофагии.

При эффективной аутофагии – внутреннем механизме очистки тела- стволовые клетки сохраняют способность сохранять и восстанавливать ткани.

Здоровье и долголетие неразрывно связаны с митохондриальной функцией

Я хочу, чтобы вы поняли: ваш образ жизни определяет вашу судьбу с точки зрения того, как долго вы будете жить и насколько, в конечном счете, будут здоровыми эти годы. Для оптимального здоровья и профилактики заболеваний вам нужны здоровые митохондрии и эффективная аутофагия (клеточное очищение и переработка), а также три ключевых фактора образа жизни, которые оказывают благотворное влияние на оба этих фактора:

  1. Что вы едите : рацион с высоким содержанием полезных жиров, умеренным содержанием белка и низким содержанием углеводов без клетчатки. Также важно употреблять органические продукты растительного и животного (от выпасных животных) происхождения, поскольку часто используемые пестициды, такие как глифосат вызывают повреждения митохондрий
  2. Когда вы едите : легче всего, как правило, придерживаться ежедневных периодических голоданий, но эффективным будет любой график, которого вы будете последовательно придерживаться

Физические упражнения , причем наиболее эффективны высокоинтенсивные

Аутофагия - это процесс, с помощью которого эукариотические клетки утилизируют свои внутренние компоненты, «переваривая» их ферментами лизосом. Это непрерывный процесс, поддерживающий баланс между синтезом и деградацией и обеспечивающий необходимые условия для нормального клеточного роста, развития и смерти. В этой статье мы обобщаем понятие аутофагии до общего принципа работы живых систем и предлагаем термин протофагия для обозначения прокариотических процессов, подобных аутофагии.

Аутофагия (от греч. αυτος - «само» и φαγειν - «есть» : самопоедание ) является клеточным механизмом утилизации избыточных или поврежденных белков, белковых комплексов и клеточных органелл, осуществляемый лизосомами той же клетки. Такая утилизация выполняет несколько важных функций, в том числе - получение питательных веществ при голодании, поддержку клеточного гомеостаза и клеточного иммунитета, осуществление апоптоза и т.п. .

Как правило, термин аутофагия применяется для описания внутриклеточных процессов. Однако в определенном смысле ее можно рассматривать и как общий принцип, работающий не только на уровне клеток эукариот, но и в биосистемах других уровней, таких как организм, популяция или даже биосфера в целом. И на всех уровнях организации живого с принципом аутофагии можно соотнести многие известные процессы, - в частности, регуляцию жизнедеятельности бактериальных колоний. Здесь же мы рассмотрим аутофагию в более широком смысле - как процесс поглощения биологической системой своей части для поддержания собственной структуры и жизнедеятельности. Действительно: процессы, аналогичные аутофагии, появляются на разных «этажах» живой материи (см. примеры в таблице 1):

  • в эукариотических клетках (как сообществах органелл);
  • в организмах (как сообществах клеток и тканей);
  • в экосистемах (как сообществах живых организмов), и наконец;
  • во всей биосфере (как совокупности экосистем).

Например, на уровне организма одним из проявлений аутофагии является метаболизм подкожного жира, когда организм при голодании потребляет свою часть (жировую ткань) с перераспределением высвобожденной энергии. Другим примером служит апоптоз - регулируемое «самоубийство» клеток, необходимое для правильного развития любого растительного или животного организма .

Аутофагия присутствует и на уровне экосистем. Так же, как эукариотическая клетка постоянно утилизирует старые или дефектные органеллы, в экосистемах одни организмы «поглощаются» и служат источником энергии для других. Такой круговорот энергии и вещества в биосфере известен под термином «трофические цепи», которые можно определить как постоянное перераспределение биологического материала внутри экосистем.

Приведенные выше примеры аналогичны аутофагии в том, что в них для поддержания стабильности целого в жертву приносится часть системы. Так же, как аутофагия требуется эукариотической клетке для поддержания жизнедеятельности во время нехватки питательных веществ, сжигание жира организмом и экосистемные трофические цепи необходимы для адаптации к периодической нехватке энергии и стабилизации энергетического обмена.

Еще одна принципиальная функция процессов, подобных аутофагии, - обновление частей системы с целью поддержания ее стабильности как целого (гомеостаза). Время существования любого дифференцированного сообщества намного больше, нежели время жизни отдельных его частей, - вот тут-то и требуется механизм поддержания стабильности. Стабильность биосистем достигается путем постоянного обновления компонентов через аутофагию. Непрерывная утилизация старых компонентов обновляет биосистему, а также позволяет пополнить энергетические запасы. Этот же принцип используется и на других уровнях: в эукариотической клетке отработавшие свой ресурс органеллы перевариваются лизосомами, уступая место новым. На уровне организма поврежденные клетки элиминируются апоптозом или иммунной системой. В экосистемах отношения хищник–жертва не только поддерживают численность хищных видов, но и регулируют гомеостаз всей экосистемы, очищая ее от слабых и больных животных и предохраняя виды от вырождения.

Аутофагия является распространенным механизмом, используемым на различных уровнях биосферы. Почти любая живая система использует процессы, аналогичные аутофагии, для выживания и саморегуляции. Здесь мы использовали слово «почти» , так как аутофагия до сих пор не была описана у прокариот . Принимая во внимание роль аутофагии во всех других биосистемах, отсутствие ее у прокариот выглядит, по меньшей мере, странным. В этой статье мы попытаемся показать, что прокариоты не являются исключением, и аналог аутофагии у них также присутствует, - но обнаружить его можно лишь, если рассматривать прокариотические сообщества не как единичные клетки, а как мультиклеточные «организмы».

Прокариоты как многоклеточные организмы

На сегодня собрано достаточно данных о том, что в природе прокариоты существуют не в виде изолированных клеток, а в виде сложных микробных сообществ . Впервые эта смелая идея была выдвинуты в 80-х годах ХХ века, а сегодня она подкреплена солидной экспериментальной базой. Природные колонии прокариот имеют аналог эндокринной сигнализации внутри сообщества (например, чувство кворума ), дифференциацию клеток на специализированные подвиды, а также сложные паттерны коллективного поведения (совместная охота, коллективное переваривание добычи, коллективная устойчивость к антибиотикам и т.п.). Аутофагия как характеристика дифференцированных сообществ вполне может стать еще одним пунктом в этом списке.

Если бактериальная колония - это единая биосистема, то элементом ее будет служить единичная бактерия. Аналогично эукариотической органелле, прокариотическая клетка может рассматриваться как простейший элемент бактериального сообщества, окаймленный мембраной (и клеточной стенкой). Такое предположение ведет к интересному выводу: аутофагию нужно искать не внутри бактериальной клетки, а внутри бактериальной колонии. Действительно, «аутофагические» процессы хорошо известны у прокариотических колоний, правда под другими названиями - бактериальный каннибализм, бактериальный альтруизм, аутолиз или запрограммированная клеточная смерть . Бактериальный каннибализм впервые был описан как ответ бактериальной колонии на нехватку питательных веществ (см. врезку). Биологический механизм, запускающий аутофагию в этом случае, обнаружен у многих видов бактерий - это так называемая токсин-антитоксиновая система . Суть ее состоит в том, что при голодании колония лизирует («переваривает») часть своих клеток для того, чтобы остальные бактерии получили достаточно пищи для выживания. Таким образом колония переживает нехватку ресурсов или внешние неблагоприятные условия.

«Аутофагия» у бактерий

Типичные аутофагические модели описаны на молекулярном уровне у многих бактерий. Например, при нехватке пищи часть бактерий в колонии выделяет в окружающую среду токсин. При этом только некоторые из них способны производить молекулу антитоксина - белка, который обезвреживает токсин при его попадании в клетку. Такие клетки выживают и поглощают остальные, погибшие и лизированные под действием токсина. Это дает оставшимся в живых энергию, необходимую для споруляции , . Подобные процессы обнаружены у многих видов бактерий.

Для простоты описания мы введем термин протофагия как собирательный синоним процессов бактериального каннибализма, альтруизма, аутолиза и запрограммированной клеточной смерти . Прокариотическое сообщество представляет собой целостную биосистему, которая в случае необходимости перерабатывает часть себя для поддержания стабильности. При протофагии аутофагосомой (мембранной везикулы с продуктами деградации) служит сама прокариотическая клетка. Протофагия во многом схожа с аутофагией у эукариот (рис. 1):

  • оба процесса оперируют «везикулами» аналогичного размера (размер бактерии примерно равен размеру митохондрии или пероксисомы);
  • и про-, и аутофагия активируются подобными сигналами (голодание или стресс);
  • оба процесса осуществляются по одному и тому же принципу (регулируемое потребление биосистемой своей части);
  • оба процесса служат общей цели (выживание биосистемы в условиях стресса и поддержание ее гомеостаза).

Рисунок 1. Принципиальная похожесть протофагии и аутофагии.

Как и эукариотическая аутофагия, протофагия используется не только для получения пищи. Например, протофагия служит патогенным бактериям для инвазии организма-хозяина (рис. 2). Известно, что микрофлора хозяина (симбионты) может эффективно сдерживать рост патогенных микроорганизмов. С целью подавления конкуренции некоторые патогенные бактерии с помощью протофагии активируют антибактериальный иммунный ответ организма-хозяина. Для этого часть патогенной популяции индуцированно самолизируется, высвобождая токсины, что вызывает локальное воспаление. В итоге иммунная система организма уничтожает большу ю часть бактерий-симбионтов, в то время как патогенные бактерии избегают обнаружения и после окончания воспалительной реакции беспрепятственно размножаются в тканях хозяина . Интересно, что в отсутствие симбионтной микрофлоры (например, при экспериментальном заражении специальных линий стерильных мышей) такие патогенные бактерии заселяют кишечник без индукции воспаления. Это говорит о том, что протофагия тут является специфическим механизмом выживания патогенных организмов, который активируется только при неблагоприятных условиях.

Рисунок 2. Аналогичная роль протофагии и аутофагии в активации иммунного ответа.

Что дает нам концепция протофагии

Введенное понятие протофагии интересно не только как голая теория, но может быть полезно и на практике. Например, в биотехнологии сегодня широко используют бактерии, и манипуляция процессами протофагии может подсказать способ поддержания стабильности бактериальной культуры в промышленных масштабах. Так, активаторы протофагии должны повысить качество культур путем активации естественных механизмов устранения ослабленных и поврежденных микроорганизмов.

Другой важной областью применения протофагии может стать медицина. На сегодняшний день резистентность бактерий к антибиотикам является одной из ключевых фармакологических проблем. Вместо того, чтобы убивать отдельные бактериальные клетки (как это делают сегодня с помощью антибиотиков), можно сконцентрироваться на дезорганизации бактериальных сообществ как единого целого. Такие методы уже разрабатываются - это, например, блокаторы бактериального «чувства кворума», которые нацелены именно на нарушение межклеточной сигнализации в бактериальных колониях, чтобы сделать их уязвимыми для иммунной системы человека , . И хотя эта тема только развивается, и вопросов пока больше чем ответов, общий вектор работ показывает, что нарушение коммуникации между отдельными бактериями имеет все шансы стать терапией завтрашнего дня. В этом контексте активаторы протофагии помогут разрушить защитные барьеры бактериальной колонии и сделать ее уязвимой для иммунной системы организма хозяина.

Послесловие

Главный вопрос, который может возникнуть после прочтения этой статьи - а так ли необходимо введение нового термина - протофагия - для описания хорошо известных фактов? На наш взгляд, расширение понятия аутофагии и введение термина «протофагия» необходимо и полезно.

Биосфера в определенном смысле напоминает фрактал, где каждый последующий уровень повторяет предыдущий. Аналогичные процессы похожи между собой не только внешне - все они имеют сходные причины и принципы регуляции. Понятие протофагии, объединяющее разрозненные процессы прокариот вместе, позволяет обобщить и лучше понять глубинные механизмы, регулирующие жизнь прокариотических колоний. Это дает несомненные выгоды для биотехнологии и медицины завтрашнего дня.

Приживется ли термин «протофагия» и найдут ли его полезным другие ученые - покажет время. То, что нам показалось важным, мы изложили в статье, вышедшей в журнале Autophagy . Если микробиологи воспримут эти обобщения и найдут их полезными для себя - нам будет очень приятно. Если же цитируемость нашей статьи не будет бить рекордов - значит, мы ударились в средневековую схоластику и переоценили значимость собственных измышлений. В любом случае, представить данную работу на суд почтенной публике стоило - ведь протофагия является частным случаем аутофагии в бактериальном мире и следует тем же законам, что и остальные ее проявления - будь то аутофагия в эукариотической клетке, трофические цепи в биосфере или голодание по модной методике перед пляжным сезоном, который, кстати, уже на носу.

Написано по материалам оригинального эссе в Autophagy .

Литература

  1. Daniel J. Klionsky, Fabio C. Abdalla, Hagai Abeliovich, Robert T. Abraham, Abraham Acevedo-Arozena, et. al.. (2012). Guidelines for the use and interpretation of assays for monitoring autophagy . »;
  2. K. Lewis. (2000). Programmed Death in Bacteria . Microbiology and Molecular Biology Reviews . 64 , 503-514;
  3. Bärbel Stecher, Riccardo Robbiani, Alan W Walker, Astrid M Westendorf, Manja Barthel, et. al.. (2007). Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota . PLoS Biol . 5 , e244;
  4. Morten Hentzer, Michael Givskov. (2003). Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections . J. Clin. Invest. . 112 , 1300-1307;
  5. Маркина Н. (2010). «Биологи научились командовать бактериями ». INFOX.ru ;
  6. Petro Starokadomskyy, Kostyantyn V. Dmytruk. (2013). A bird’s-eye view of autophagy . Autophagy . 9 , 1121-1126.

© ПОТАПНЕВ М.П., 2014 УДК 612.014.3.017.1

Потапнев М.П.

АУТОФАГИЯ, АПОПТОЗ, НЕКРОЗ КЛЕТОК И ИММУННОЕ РАСПОЗНАВАНИЕ

своего и чужого

Белорусский государственный медицинский университет Минздрава Республики Беларусь, 220116, Минск

В обзоре литературы представлены данные о роли основных типов клеточной смерти для формирования иммунного ответа на патогены и собственные антигены. Рассмотрены основные механизмы аутофагии, апоптоза и некроза клеток, значение образующихся клеточных продуктов для индукции иммунного ответа. Отмечена роль аутофагии как клеточной автономной системы защиты от патогенов и клеточного стресса. Определена ведущая роль апоптоза, апоптозассоциированных молекулярных образов (паттернов) в индукции иммунологической толерантности. Подчеркнуто решающее значение некроза и продуктов повреждения собственных клеток в индукции воспалительной реакции макроорганизма и эффективного иммунного ответа на собственные антигены, патогены и молекулярные образы (паттерны) патогенов. Обсуждено взаимодействие различных типов клеточной смерти при патологических состояниях.

Ключевые слова: аутофагия; апоптоз; некроз; клеточная смерть; патогены; воспаление; иммунный ответ. Potapnev M.P.

AUTOPHAGY, APOPTOSIS, NECROSIS AND IMMUNE RECOGNITION OF SELF AND NONSELF

Belarusian State Medical University, Ministry of Public Health, 220116, Minsk, Belarus

The review of literature discusses the role of most essential types of cell death (autophagy, apoptosis, necrosis) for induction of immune response to pathogens and self antigens. The main mechanisms of cell death and biological characteristics of cellular products, released during autophagy, apoptosis, necrosis were reported. The role of autophagy as cellular self-defense system against pathogens and cellular stress was underlined. The receptor-ligand interaction for induction of immune tolerance by apoptotic cells and the role of apoptotic cell-associated molecular patterns (ACAMPs) and dendritic cells were described. Brief description of mechanisms of necrotic cell-induced inflammation and immune response as well as leading role of damage-associated molecular patterns/ DAMPs were done. Interaction of DAMPs and pathogen-associated molecular patterns/PAMPs in induction of host defense against pathogens was described. It was concluded that differential type of cell death may be occurred depending on strength of danger signal affecting cells and their function.

Key words: autophagy; apoptosis; necrosis; cell death; pathogens; inflammation; immune response.

Считается, что основной принцип действия иммунной системы заключается в распознавании чужого или измененного своего и его последующем удалении. Классическим примером иммунного распознавания чужого являются реакции врожденного и приобретенного иммунитета против микроорганизмов (бактерий, вирусов). Иммунное распознавание измененного своего ассоциировано с аутоиммунными заболеваниями. С развитием представлений о (за)программированной клеточной смерти (ПКС) стала важной оценка связи иммунитета с поддержанием клеточного гомеостаза в макроорганизме . Всякие изменения клеток в процессе роста и дифференцировки, старения, естественного отмирания, метаболической дисфункции, стресса, воздействия патологического процесса (инфекция, стерильное воспаление) должны рассматриваться иммунной системой как нарушения клеточного гомеостаза. Оценке роли ПКС в запуске иммунных реакций посвящен настоящий обзор.

На основании морфологических и биохимических критериев выделяют три основных типа ПКС: апоптоз (ПКС I типа), аутофагия (ПКС II типа) и некроз (ПКС III типа) . ПКС типов I и II имеют определенные генетически механиз-

Потапнев Михаил Петрович (Potapnev Michael Petrovich), email:[email protected]

мы реализации, поэтому называются активными. ПКС III типа (первичный некроз в результате внешнего повреждения) является неуправляемым, поэтому называется пассивным. Дополнительно выделяют вторичный некроз как конечный результат апоптоза , управляемый некроз (некроптоз) и другие пути гибели клеток . Перечень известных (13) типов клеточной смерти регламентирован Номенклатурным комитетом . Характеристика трех основных типов ПКС представлена в таблице.

Внимание иммунологов к клеточной смерти определяется тем, что не только инфекционные антигены и молекулярные образы (паттерны) патогенов (pathogen-associated molecular patterns - PAMPs), отличающие его от макроорганизма , но и продукты повреждения собственных клеток (damage-associated molecular patterns - DAMPs) вызывают воспаление и иммунный ответ . P. Matzinger подчеркнула, что для иммунной системы важно распознавание и ответ на сигналы опасности, образующиеся в результате повреждения тканей (клеток), а не выяснение различий между своим и чужим.

Аутофагия

Аутофагия - процесс прижизненной утилизации (деградации с помощью лизосом) измененного метаболитами содержимого цитоплазмы для поддержания клеточного и энергетического гомеостаза . Аутофагию рассматривают

ИММУНОЛОГИЯ № 2, 2014

Основные типы клеточной смерти

Характеры- Тип клеточной смерти

стика аутофагия апоптоз некроз

Назначение Деградация и внутриклеточная утилизация поврежденных органелл и белков без вреда для клетки. В случае избыточной деградации -клеточная смерть Деградация отмирающих клеток без воспалительного и иммунного ответа организма Ограничение очага нежизнеспособной ткани путем воспаления и иммунного ответа на токсические и угрожающие организму воздействия

Морфология клеток Вакуолизация цитоплазмы клетки Конденсация и уплотнение клетки, конденсация хроматина, фрагментация ядра, образование апоптоти-ческих телец Набухание органелл с последующим разрывом внутренних и внешних мембран. Набухание и последующий лизис клеток

Механизм действия Последовательное образование в цитоплазме фагофоры, аутофагосомы, аутолизосомы или шаперонопосредованное слияние с лизосомами Каспаззависимый (рецепторный) или митохондриально-зависимый пути деградации ДНК Неконтролируемое повреждение клетки или рецепторзависимый (RAGE, TLRs, CD91 и др.) путь разрушения клетки

Ыаркер LC3-II, ULK 1, ATG12, ATG4, GABARAP ДНК фрагменты 50 kbp, ФС внешней мембраны, FAS, CASP 3, APAF1 ЛДГ, HBGH1, S100-белки, АТФ, HSP90

Участие фагоцитоза Отсутствует Присутствует Присутствует

как преимущественно «запрограммированное выживание клетки» . Стресс вызывает аутофагию, а избыточная активность аутофагии ведет к клеточной смерти . Недостаточность аутофагии провоцирует накопление метаболитов, связанных со старением, дегенеративными процессами в нервной ткани и печени, аутоиммунные, легочные заболевания (особенно на фоне курения). Показана связь аутофагии с болезнью Крона, муковисцидозом, ожирением, сепсисом .

Основной тип аутофагии - макроаутофагия, включающая этапы инициации, нуклеации, элонгации и слияния (с лизосомой) . Измененные белки цитоплазмы (в результате стресса, недостатка энергетического обеспечения), поврежденные митохондрии, избыточный эндоплазматический ретикулум (ЭР), пероксисомы транслоцируются к мембранам органелл благодаря комплексированию с белками ULK 1/2, Atg13, Atg101, fIp-200. На мембранах органелл (ЭР, митохондрии, аппарат Гольджи) эти белки формируют комплекс I, включающий дополнительно белки Vps34, Beclin

I, Vps15, Atg14L. Вокруг комплекса I образуется внутренняя мембрана фагофоры. Формирование аутофагосомы (диаметром 0,3-1 мкм) с двойной мембраной требует участия LC3

II, образующегося в результате липолизации фосфатидилэ-таноламином цитозольного белка LC3, и комплекса белков Atg5-Atg12/Atg16L1. Последующее созревание аутофагосомы в аутофаголизосому осуществляется путем слияния с лизосомами с помощью комплекса белков II, включающего Vps34, Beclin 1, UVRAG . В аутофаголизосоме осуществляется деградация измененных белков под действием гидролаз и высвобождение в цитоплазму питательных и энергоемких субстанций . Кроме макроаутофагии выделяют микроаутофагию (когда захват содержимого цитоплазмы осуществляется путем инвагинации мембраны лизо-сом) и шаперонопосредованную аутофагию (когда доставка цитоплазматического материала в лизосомы осуществляется с помощью белков-шаперонов) .

В связи с наличием в цитоплазме клетки измененных своих и чужеродных макромолекул процесс аутофагии, являясь метаболическим, выступает еще как механизм распознавания и утилизации внутриклеточных микроорганизмов (вирусы, бактерии, простейшие), несущих PAMPs . Проникновение в цитоплазму микроорганизмов и их продуктов запускает механизмы аутофагии в качестве клеточной автономной защитной системы-cell-autonomous defense system. Разделение цитоплазмы клетки на отдельные, ограниченные (эндо)мембранами участки и органеллы (т. е. компартментализация) предполагает наличие в каждом их них своего набора рецепторов, распознающих чужеродные PAMPs и измененные собственные DAMPs. Это создает многоступенчатую систему защиты от патогенов, проник-

ших внутрь клетки. На каждом этапе продвижения патогена в клетке происходит распознавание ДНК, агрегированных собственных белков, комплекса микробов и сывороточных белков. Патоген сталкивается с различными ферментами; NO и H2O2; наличием или недостатком питательных веществ . Микробы активируют рецепторы на эндомембранах цитоплазмы, что ведет к формированию инфламмасомы, продукции интерлейкина (ИЛ)-1р и ИЛ-18 . Попадание патогена в аутофаголизосомы резко изменяет условия его существования за счет действия рН, гидролаз, супероксидных анионов. При этом возможны персистенция патогена (длительная для M. tuberculosis, короткая для других бактерий) в аутофагосомах либо разрушение патогена в аутофаголизо-сомах . Toll-like receptors (TLRs) распознают попавшие в цитоплазму макрофагов бактериальный липополисахарид (ЛПС), вирусную однонитчатую рибонуклеиновую кислоту (онРНК), другие полимерные нуклеиновые кислоты. При аутофагии в распознавании внутриклеточных патогенов (Str. pyogenes, M. tuberculosis, BCG, Salmonella, вирусы) участвуют TLRs, RLRs (retinoid acid inducible gene I-like receptors), NLRs (nucleotide oligomerization domain- like receptors) . TLR3, распознающий РНК вирусов, локализуется в эндосомах клетки; TLR7, TLR8, TLR9, распознающие РНК и ДНК вирусов и бактерий, CpG-мотивы нуклеиновых кислот микробного происхождения, - в эндолизосомах. RLRs, распознающие РНК вирусов, и NLRs, распознающие PAMPs (мурамил дипептид, токсины, кристаллы солей, другие компоненты) бактерий, вирусов, клеточные продукты химического воздействия и УФ-облучения, расположены в цитоплазме . Важной функций TLRs является обеспечение жесткого контроля за нормальной (комменсальной) микрофлорой кишечника .

PAMPs, распознаваемые TLR1, TLR2, TLR4, TLR5, TLR6, вызывают образование в инфламасоме цитокинов воспаления ИЛ-ф и ИЛ-18. PAMPs, распознаваемые TLR7, TLR9, стимулируют продукцию интерферона-а (ИФНа) и ИФНр, что способствует формированию Th1 иммунного ответа . Продукция ИЛ-1Р и ИЛ-18 защищает клетки от вируса гриппа и бактерий рода Shigella соответственно. А вызванный в результате активации инфламмасом пироптоз (гибель клеток с признаками апоптоза и некроза) губителен для сальмонелл, легионелл и других бактерий . Активация TLR4 разрушает связь Bcl-2 c белком Beclin 1, что ведет к образованию фагосомы из фагофоры . Активация TLRs индуцирует быстрый переход Lc3 из цитоплазмы в фагосому, активацию клетки, способствует созреванию фагосомы и слиянию ее с лизосомой . L. monocytogenesis в цитоплазме клетки распознают NLRs и TLR2, а S. flexneri распознают NLRs, что приводит к деградации микробов механизмами аутофагии с участием инфламмасом . При захвате

живых бактерий (в отличие от мертвых) в инфицированную клетку попадает микробная мРНК, которая создает дополнительный сигнал опасности (vita-PAMPs), активирующий инфламмасомы типа NLRP3 и TRIF-зависимую продукцию ИФНр . Таким образом, аутофагия выступает как механизм деградации микроорганизмов при их попадании в цитоплазму клетки и распознавании патогенассоциированными рецепторами.

Аутофагия участвует в презентации антигенов Т-клеткам. Образование протеосом, ассоциированных с ЭР, или ау-тофагосом создает благоприятные условия для контакта мембранно-связанных молекул MHC I или II классов с пептидами и последующей передачи их комплексов на внешнюю мембрану антигенпредставляющих клеток для индукции соответственно CD8- или CD4- зависимых Т-клеточных реакций . Белки аутофагии LC3 и GABARAP в аутофагосомах повышают в 20 раз сродство собственных и чужеродных пептидов к молекулам MHC II класса . Блокирование гена аутофагии Atg5 подавляет образование CD4+ Т-клеточного (Th1) ответа на вирус простого герпеса или ВИЧ-1, а также препятствует распознаванию В-клеток, инфицированных вирусом Эпштейна-Барр .

Аутофагия в тимическом эпителии является основой негативной селекции аутореактивных Т-клеток. Блок гена аутофагии Atg5 приводит к аутоиммунному CD4+ Т-клеточному пролиферативному заболеванию мышей и накоплению апоптотических CD4+ и CD8+ Т-клеток . Дефицит аутофагии в периферических Т-клетках вызывает ускоренную клеточную смерть наивных, но не Т-клеток памяти, что связывают с продукцией супероксидных анионов при активации наивных Т-клеток . Важной функцией аутофагии является изоляция поврежденных митохондрий, генерирующих супероксидные анионы, как источник стресса и повреждения (вплоть до гибели) самой клетки .

Аутоиммунный ответ при сахарном диабете и аутоиммунном гепатите вызывают аутоантигены GAD65 (глутамат декарбоксилаза 65) и SMA (мутантная к-легкая цепь иммуноглобулинов), которые подвергаются в цитоплазме шаперо-нопосредованной аутофагии с участием HSC70 и связанного с лизосомами мембранного белка LAMP-2A соответственно. После деградации в лизосомах они вместе с молекулам MHC II класса презентируются аутореактивным cD4+ Т-клеткам. Образование в аутофаголизосомах цитрулированных пептидов под действием пептидиларгинин деаминаз и формирование их комплексов с молекулами MHc II класса является основой аутоиммунного cD4+ Т-клеточного ответа при ревматоидном артрите - РА . В Т-клетках мышей линии MRL с лимфопролиферативным синдромом, аналогом системной красной волчанки (СКВ) человека, выявляется значительное количество аутофагосом в Т-клетках, что объясняют их длительным выживанием .

Продукция супероксидных анионов митохондриями макрофагов способствует переваривание бактерий в процессе аутофагии . Бактерии, распознаваемые NLRs, стимулируют аутофагию в фибробластах. В дендритных клетках (ДК) это приводит к представлению пептидов бактерий вместе с молекулами MHC II класса CD4+ T-клеткам . Важной защитной функцией аутофагии является способность снижать уровень собственных DAMPs в цитоплазме и сдерживать секрецию ИЛ-ф и ИЛ-18 в ответ на экзогенные источники DAMPs. Механизмы аутофагии обеспечивают деградацию инфламмасом - комплекса белков, превращающих прокаспазу-1 в каспазу-1, конвертирующую про- ИЛ-ф и про-ИЛ-18 в секретируемые активные цитокины . Блокировка гена аутофагии Atg16L1 приводит у мышей к повышенной продукции ИЛ-ф и ИЛ-18, воспалению, повышению уровня смертности при антигенной стимуляции декстран сульфатом .

Внеклеточные цитокины влияют на процессы аутофагии бактерий и их переваривание в фаголизосомах. Цитокины ТЫ-зависимого ответа ИФНу и фактор некроза опухолей а (ФНОа) стимулируют аутофагию. Цитокины №2-зависимого

ответа ИЛ-4 и ИЛ-13, наоборот, снижают образование фаго-лизосом и повышают внутриклеточное выживание M. tuberculosis . Дифференцировка Т-клеток в Th1 и Th2 in vitro характеризуется большим и меньшим образованием ауто-фагосом соответственно. Внутриклеточные инфекционные агенты (цитомегаловирус, ВИЧ, вирус герпеса простого I, вирус гриппа А, йерсинии, листерии, шигеллы, сальмонеллы, E. coli и др.) избегают иммунного ответа путем ослабления процесса аутофагии .

Аутофагия является физиологическим процессом самообновления клетки, которое при стрессовых воздействиях может привести к ее гибели . В то же время естественное отмирание клеток (у человека от 50 до 500 млрд клеток ежедневно) осуществляется преимущественно путем апоптоза .

Апоптоз. Апоптоз обеспечивает удаление отмирающих клеток посредством фагоцитоза без воспаления, губительного для макроорганизма, или сопровождает очаг воспаления для его ограничения и окончательного заживления . Формирование иммунной системы и созревание антигенспецифических Т- и В-лимфоцитов также сопровождается массовым апоптозом клеток . Апоптоз обеспечивает поддержание клеточного гомеостаза, стимуляцию клеточной регенерации, заживление ран. Апоптотические клетки (АК) утилизируются соседними клетками эпителия, эндотелия, фибробластами, макрофагами, ДК . При заболеваниях и переливании хранившейся донорской крови в периферической крови, лимфоузлах, костном мозге выявляются апоптотические тельца диаметром 0,2 мкм, образующиеся из АК. Выделяемые АК липидные медиаторы (лизофосфа-тидилхолин, сфингозин-1-фосфат), рибосомальный dRP S19, EMAP II эндотелиальных клеток, TyrRS синтетазу, тромбоспондин 1, растворимый рецептор к ИЛ-6, фракталкин (CX3-CR1L), нуклеотиды АТФ и УТФ привлекают фагоциты. При этом лактоферрин, выделяемый клетками слизистых и нейтрофилов при апоптозе, избирательно подавляет хемотаксис нейтрофилов, но не макрофагов . Поверхностная экспрессия фосфатидилсерина (ФС), других окисленных липидов и калретикулина является признаком ранних АК, распознаваемых рецепторами макрофагов (стабилин-2, CR3, рецепторы-мусорщики (scavenger receptors), CD91, CD31, TIM4, CD36, steroid receptor activator 1; TAM-рецепторы (Ty-ro2, Ax1, Mer); LRP-1). Молекулярные маркеры АК получили общее название apoptotic cell-associated molecular patterns (ACAMPs) . Макрофаги распознают апоптотические клетки посредством нескольких апоптозассоциированных рецепторов одновременно для быстрого удаления клеток на ранних этапах апоптоза. Экспрессия поверхностного CD31 (и/или CD47) на АК предотвращает их захват макрофагами . Важно, что рецепторы макрофагов, распознающие АК и апоптотические тельца, отличаются от рецепторов, распознающих PAMPs и DAMPs . Более того, активация рецепторов, различающих АК и апоптотические тельца, способствует подавлению распознавания макрофагами PAM-Ps инфекционных агентов через TLRs .

Распознавание АК и апоптотических телец облегчается участием сывороточных опсонинов Gas6, MFG-E8, P2GP1, аннексина I, С-реактивного белка (СРБ), пентраксина PTX-3, коллектинов, dq-компонента комплемента, сурфактантов SP-A и SP-D (в легочной ткани) и т. д. . При этом опсо-нин MFG-E8, участвующий в захвате АК макрофагами, одновременно подавляет фагоцитоз некротических клеток (НК) и их иммуногенность для ДК. C1q взаимодействует с ФС ранних АК, а коллектин маннозасвязывающий лектин (MBL) - с поздними АК. Калретикулин (в комплексе с CD91), пентрак-сины СРБ, SAP (компонент сывороточного амилоида Р); фи-колины взаимодействуют с поздними АК . Оценивая роль системы комплемента и естественных антител в клиренсе АК. Ряд авторов определили, что лизофосфатидилхо-лин, появляющийся (и частично секретируемый) на поверхности АК, является мишенью естественных антител - IgM, а также маннозасвязывающих белков, других коллектинов. Их взаимодействие в свою очередь приводит к связыванию

ИММУНОЛОГИЯ № 2, 2014

с C1q, C3b/bi. В результате АК фагоцитируются без активации выброса макрофагами провоспалительных цитокинов. Аутоиммунные реакции с участием антикардиолипиновых антител класса G, наоборот, протекают с участием комплемента и аутоантител к фосфолипидам мембран поздних АК . Важно, что апоптотические тельца на ранних этапах апоптоза покрыты элементами ФС-содержащей внешней мембраны клеток, а на поздних этапах - элементами эндоплазматических мембран. И если антигенная презентация ранних апоптотических телец вызывает образование иммунорегуляторных Т-клеток (Treg), то контакт поздних апопто-тических телец с ДК вызывает образование ТЫ7-клеток . Апоптотические нейтрофилы (и внешние мембраны лизированных нейтрофилов) вызывают продукцию трансформирующего ростового фактора в (ТРФр) макрофагами, а внутреннее содержимое лизированных нейтрофилов - образование ИЛ-8, ФНОа, хемокина MIP-2 . В очаге воспаления сами нейтрофилы проявляют «каннибализм», фагоцитируя апоптотические нейтрофилы (например, индуцированные УФ-облучением). Этому способствуют дополнительная активация TLRs эффекторных нейтрофилов и цитокины ФНОа и гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ-КСФ), но не ИЛ-1-р, ИЛ-6, ИЛ-8, ИЛ-12, ИЛ-17 . В очаге воспаления макрофаги являются основными фагоцитами АК . Это не приводит к продукции провоспалительных цитокинов (ИЛ-1р, ФНОа, ИЛ-6, ИЛ-12), но вызывает образование иммуносупрессорных ИЛ-10, ТРФр, простагландина Е2 (ПГЕ2) . Формируется иммунная толерантность к антигенам АК и одновременно к другим антигенам, включая PAMPs микроорганизмов, которая опосредуется СЭ8а+ДК. ДК, стимулированные АК, представляют антиген(ы) только CD8+ Т-клеткам, а ДК, стимулированные НК, представляют антиген(ы) CD4+ и CD8+ Т-клеткам . Иммуносупрессия, развивающаяся в результате массового образования АК и их захвата макрофагами, лежит в основе лечебного действия экстракорпорального фотофереза у пациентов с хроническими воспалительными заболеваниями .

Длительно протекающий процесс апоптоза в очаге воспаления может привести к формированию фиброза, что связывают со способностью макрофагов, фагоцитировавших АК, секретировать ТРФр и другие ростовые факторы . В то же время подавление воспаления, усиление репаративных процессов при фагоцитозе АК приводит при наличии генетической предрасположенности к аутоиммунным заболеваниям (СКВ, хроническое обструктивное заболевание легких) . В норме В1-подобные клетки с фенотипом CD43+CD27-IgM+ или cD24++cD38++cD27- IgM+ являются основным источником естественных антител к поверхностным молекулам АК . Значительное количество АК в герминативных центрах лимфоузлов у пациентов с СКВ обеспечивает длительное выживание и костимуляцию аутореактивных В-клеток, активированных однониточной ДНК, нуклеосомами, другими клеточными антигенами. Это связано с Oq-зависимым генетическим дефектом быстрого клиренса ранних АК и накоплением поздних АК с признаками вторичного некроза . Образующиеся низкоаффинные антитела класса IgM взаимодействуют с клетками, находящимися на ранних стадиях апоптоза, а высокоаффинные антитела класса IgG - с клетками, находящимися на поздних стадиях апоптоза. Плазмацитоидные ДК и активация ДНК-связывающих TLR9 В-клеток обеспечивает Т-независимое образовании аутоантител. Индуцируемая АК продукция иммуносупрессорного ИЛ-10 значительно снижена при стимуляции В-клеток иммунными комплексами, включающими хроматин, или апоптотическими тельцами, образующимися на поздних этапах апоптоза .

Элиминация АК осуществляется в основном на ранних этапах апоптоза, когда экспрессия на внешней мембране ФС и калретикулина сигнализирует об «измененном своем» . Ранние этапы апоптоза обратимы, их продление обеспечивает фагоцитоз большинства АК и формирование толерантности иммунной системы . Переход клеток на поздние этапы

апоптоза характеризуется снижением уровня гликозилирова-ния поверхностных молекул, фрагментаций ядерной ДНК и признаками вторичного некроза, вызывающего воспаление и иммунный ответ .

Основными путями запуска апоптоза клеток являются рецепторный (extrinsic), обусловленный внешним воздействием, или стрессиндуцированный (intrinsic), связанный с внутренним воздействием. Рецепторный путь запуска апоптоза клетки опосредован рецепторами смерти (death receptors), включающими Fas, TNFR (рецептор I типа к ФНОа), TRAIL, Apo2/Apo3. Активация каспаз является ключевой для апоптоза и последовательность их включения достаточно описана в литературе . Стрессиндуцированный (митохондриальный) путь апоптоза связан с высвобождением цитохрома С из митохондрий и регулируется белками семейства Bcl2. Каспаззависимая активация и повышение уровня супероксидных анионов (преимущественно за счет повреждения митохондрий) определяют иммуносупрессорное действие АК. Толерогенное действие АК, считается, опосредуется Heg-клетками, вызывающими TRAIL-индуцированную гибель CD4+ Т-клеток-хелперов [ 52]. Оба пути апоптоза приводят к поверхностной экспрессии ФС, фрагментации ДНК ядра, образованию апоптотических телец и их быстрому фагоцитозу. Это предотвращает иммунный ответ на отмирающую клетку, продукцию макрофагами цитокинов воспаления, презентацию ДК клеточных антигенов.

При инфицировании клетки проявляют признаки раннего апоптоза (экспрессия на клеточных мембранах ФС, начало фрагментации ДНК) и NF-кБ-зависимого пути клеточной активации. Одновременно клетки сдерживают репликацию патогенов без образования DAMPs, свойственных некротическим клеткам . Дефекты звеньев апоптоза (преимущественно митохондриальнозависимого пути активации), или запоздалый запуск апоптоза приводят к распространению инфекции (вызванной Legionella pneumonia, Pseudomonas aeroginosa, Helicobacter pylori), сепсису . Многие вирусы содержат ингибиторы каспаз, а Chlamydiae и Coxiella burnetii блокируют выход цитохрома c из митохондрий и апоптоз клетки, что обеспечивает жизненный цикл патогена на ранних этапах инфекции . Захват АК, содержащих бактерии, вызывает созревание ДК, воспаление, полноценный (Th17) иммунный ответ, при захвате неинфицированных АК признаки созревания ДК и воспаления отсутствуют, формируется иммуносупрессия . Стратегия ограниченной репликации патогена в АК выгодна отсутствием сильного иммунного ответа на некроз клеток и массовый выброс бактерий во внеклеточное пространство .

Некроз. Клетки, отмирающие в результате травмы, дегенеративных процессов, воздействия патогена, эффективно утилизируются путем некроза. Некроз демаркирует нежизнеспособную ткань, подлежащую уничтожению и последующему восстановлению . Некроз клеток всегда сопровождается воспалением и ведет к выраженному иммунному ответу и последующей репарации тканей . НК характеризуются разрушением внешней клеточной мембраны и поступлением во внеклеточное пространство скрытых внутриклеточных молекул (см. таблицу), что вызывает токсическую реакцию окружающих здоровых клеток и иммунный ответ . Первичный некроз клеток не зависит от действия каспаз и является прямым результатом внешнего травматического повреждения или запрограммированных генетически событий, связанных с повреждением белка митохондриального матрикса циклофилина Д; воздействием на рецепторы смерти или TLR3/TLR4 и рецепторнезависимым повреждением ДНК . Оксидативный стресс клетки, активные формы кислорода являются индукторами (управляемого) некроза . Вторичный некроз - это конечный результат позднего апоптоза, часто он лежит в основе аутоиммунной патологии (СКВ и другие).

НК фагоцитируются путем макропиноцитоза после исчезновения поверхностных CD31- и СЭ47-молекул, блокирующих фагоцитоз. НК в отличие от АК вызывают созревание ДК

и (Th1) иммунный ответ . НК выделяют внутриклеточные молекулы, провоцирующие воспаление и иммунную реакцию, поэтому они названы аларминами (alarmins) или DAMPs . Они привлекают нейтрофилы в очаг некроза. НК выделяют белки теплового шока (HSP70, HSP90, gp96), калгра-нулины, цитокины (ИЛ-1а, ИЛ-6), формилпептиды митохондрий, РНК, двунитчатую (геномную) ДНК, другие молекулы . Выделение ядерного белка HMGB1 (high-mobility group box 1), связанного в норме с хроматином, является основным маркером (первичного) некроза клеток . При апоптозе и вторичном некрозе HMGB1 удерживается в ядре или находится в цитоплазме или внеклеточно в неактивном (окисленном) состоянии в результате действия супероксидных анионов . Сам HMGB1 является митогеном и хемоаттрактантом, но образуемые им комплексы с однонитчатой ДНК, ЛПС бактерий, нуклеосомой вызывают секрецию макрофагами цитокинов воспаления ФНОа, ИЛ-1р, ИЛ-6, хемокины ИЛ-8, MIP-1a, MIP-ip . Высокий уровень HMGB1 в крови связан с массивным некрозом клеток организма и является маркером системного воспаления . HMGB1 - мощный адъювант образования высокоаффинных антител и созревания ДК . Циркулирующий в кровотоке неокисленный (активный) HMGB1 взаимодействует c TLR2, TLR4, TLR9 и RAGE (receptor for advanced glycation end-products) фагоцитов, вызывая воспалительный ответ . Одновременно HMGB1 (а также HSPs) взаимодействует с CD24 и Siglec-10 на поверхности фагоцитов, что ограничивает воспаление, вызванное DAMPs, но не PAMPs . Разграничение иммунного ответа на патогенассоциированные PAMPs и связанные с повреждением собственных клеток DAMPs происходит на уровне рецепторов клеток. Типичным рецептором для DAMPs является RAGE на клетках иммунной и нервной систем, эндотелиальных клетках, кардиомиоцитах. RAGE распознает белки и липиды, модифицированные в результате неферментативного гликозили-рования и появляющиеся при хронических воспалительных заболеваниях как результат окислительного стресса. RAGE распознает такие продукты НК, как HMGB1 и калгранулины (белки семейства S 100) .

НК выделяют нуклеиновые кислоты. При этом РНК становится двунитчатой, взаимодействует с TLR3 на ДК, а двунитчатая ДНК - с TLR9 фагоцитов, что приводит к продукции ИФНу, CXCL10 (IP-10), ИЛ-1Р, экспрессии костимулирую-щих молекул (cD40, cD54, cD69, MHc II класса) на поверхности макрофагов и ДК . Для того чтобы не вызвать воспаления, молекулы ДНК подвергаются ферментативному расщеплению, например каспаз при апоптозе . Дефект ДНКаз, разрезающих двунитчатую ДНК, вызывает у мышей аутоиммунные заболевания (СКВ, полиартрит). Нуклеотиды АТФ и УТФ, в норме находящиеся в цитоплазме, при некрозе клеток выделяются во внеклеточное пространство. Действуя на пуринэргические рецепторы ДК, они вызывают хемотаксис незрелых ДК, образование NALP3 инфламмасом и секрецию ИЛ-1р, Th2 иммунного ответа . Действие АТФ на аллергенактивированные миелоидные ДК провоцирует развитие легочной аллергии и поддержание бронхиальной астмы . Ядерные рибонуклеопротеины (их короткие фрагменты) выделяются при разрушении НК и выступают в качестве DAMPs, стимулируя образование цитокинов и а-хемокинов . Соли ураты, образуемые из мочевой кислоты при разрушении в цитоплазме эндогенной ядерной или микробной ДНК и ионов натрия внеклеточного пространства, стимулируют образование инфламмасом в макрофагах и ДК, синтез цитокинов ИЛ-1Р, ИЛ-18, ИЛ-33, нейтрофильную инфильтрацию, созревание ДК, усиление антигенспецифического Т-клеточного ответа .

Стрессиндуцированные цитоплазматические белки-шапероны HSP70, HSP90 при некрозе (но не апоптозе) клеток поступают во межклеточное пространство. Внеклеточные HSP70, HSP90 стимулируют образование цитокинов воспаления (ФНОа, ИЛ-1Р, ИЛ-6, ИЛ-12) . Антигенспецифический иммунный ответ на комплекс пептид-HSP значительно возрастает. Клеточными рецепторами HSPs выступают cD91,

CD40, TLR2/TLR4/CD14, рецепторы-мусорщики, LOX-1 . НК выделяют калгранулины (S100 белки), которые распознаются RAGE рецепторами клеток эндотелия, микроглии, моноцитов и становятся маркерами воспаления (при пневмониях, полиартритах и т. д.) . Выделение цитокинов (ИЛ-1, ИЛ-6, ИЛ-33) также может быть результатом стрессового воздействия на клетки и их некротической гибели . Высвобождаемые из НК протеазы и биологически активные молекулы воздействуют на окружающие ткани и отщепляют от них низкомолекулярные фрагменты (гиалуроновая кислота, фибриллярный белок, коллаген, гепарансульфат), которые также вызывают воспаление .

Как и при утилизации АК, сывороточные факторы (кол-лектин MBL) связываются с НК, усиливая их распознавание и связывание с калретикулином на поверхности макрофагов . Макрофаги распознают некротические клетки посредством TLRs, лектин С-типа рецепторов Clec9A, RAGE; CD14, CD91, CD40, Mincle (взаимодействующим с SAP-130) и других. Важно, что рецепторы фагоцитов, распознающие НК, не распознают АК и (частично) распознают молекулы (PAMPs) патогенов (микобактерии, грибки и др.) .

Регулируемый некроз (некроптоз) клеток связан с активностью киназ RIPK1 и RIPK3, проявляется быстрым повышением проницаемости клеточных мембран и высвобождением во внеклеточное пространство внутриклеточных DAMPs . Некроптоз клеток кожи, слизистых, лейкоцитов при ишемической реперфузии вызывает сильный воспалительный ответ. Одновременно он выступает в качестве защитного механизма при вирусной инфекции (при наличии вирусных ингибиторов каспазы 8), а также участвует в поддержании гомеостаза Т-лимфоцитов . Некроптоз инфицированной клетки означает резкое изменение среды обитания внутриклеточных патогенов, что губительно для них. Пироптоз клеток, имея черты апоптоза и некроза, характеризуется образованием инфламмасом как комплекса активированных каспаз и продуцентов цитокинов воспаления ИЛ-1Р и ИЛ-18. Пироптоз эффективно защищает клетки от S. aureus, S. ty-phimurium, P. aeruginosa, L. pneumophila, F.tularensis, B. an-thracis. При этом разные типы специализированных инфлам-масом образуются в ответ на живые бактерии, их токсины, ЛПС, споры, флагеллин, ДНК, РНК вирусов и бактерий . Некроз клеток характеризует продвинутые (не ранние) этапы инфекционного процесса, когда патогены (Shigella, Salmonella, Yersinia, M.tuberculosis) переходят от тактики выживания в апоптотических клетках к тактике разрушения клетки и межклеточного распространения .

Вторичный некроз как исход апоптоза клеток характеризуется выделением DAMPs нуклеосом (фрагментов геномной ДНК размером 180 пар оснований), HMGB1. Иммуностиму-

Индукция «сигналами опасности» различных типов гибели клеток. Сплошные линии - основное действие, пунктирная линия - дополнительное действие (при слабом воздействии), -I означает подавление клеточной гибели. Остальные обозначения в тексте.

ИММУНОЛОГИЯ № 2, 2014

лирующее действие таких DAMPs связано с образованием комплексов нуклеосом с HMGB1, характерных для пациентов с СКВ . Вторичный некроз сопровождается массовым высвобождением модицифированных (в результате ферментативной обработки, окисления) аутоантигенов, которые в комплексе с HSPs (и другими DAMPs) вызывают антигенспецифический иммунный ответ. Но только наличие генетической предрасположенности приводит к формированию аутоиммунной патологии .

Взаимодействие между путями клеточной смерти.

Аутофагия и апоптоз клеток рассматривают как механизмы поддержания жизнеспособности многоклеточного организма, а формирование инфламмасом и некрозиндуцированное воспаление считают механизмами ограниченного отмирания тканей для сохранения макроорганизма . Распознавание DAMPs при аутофагии создает дополнительную страховку клеткам макроорганизма в защите от патогенов с неизвестными PAMPs . В результате инфицирования макрофагов L. pneumophila активация инфламмасом вызывает пироптоз и ау-тофагию, которая защищает клетку от пироптоза и патогена. Но недостаточность аутофагии для противодействия патогену ведет инфицированную клетку к пироптозу . Запуск PIRK1-3-зависимого механизма некроптоза предполагает первоначально высокий уровень аутофагии поврежденных митохондрий и при ее неэффективности последующую деградацию клетки . Аутофагия выступает в качестве механизма утилизации фагоцитированных апоптотические телец макрофагами и ДК. Повышение при некрозе клеток уровня HMGBT цитоплазме стимулирует вместе с HSP27 аутофагию (митофагию) митохондрий и подавляет апоптоз. Другие DAMPs (АТФ, белки S100/ калгранулины, двунитчатая ДНК), взаимодействуя с TLRs, также стимулируют аутофагию в очагах апоптоза. Известно, что основной Beclin 1 -зависимый путь аутофагии (макроаутофагия) может быть подавлен анти-апоптотическими белками семейства Bcl-2 и образованием NLRP3-инфламмасом, т. е. возрастание резистентности клетки к апоптотической гибели повышает ее устойчивость к избыточной аутофагии, приводящей к гибели клеток . При фагоцитозе клеток, умерших путем аутофагии или апоптоза, воспаление отсутствует. Блокирование аутофагии в клетке приводит к накоплению в цитоплазме поврежденных митохондрий, супероксидных анионов, активации NALP3-инфламмасомы, воспалению. Взаимодействие DAMPs с рецепторами RAGE стимулирует аутофагию и подавляет апоптоз клеток . При недостаточном выделении DAMPs из НК в очаге повреждения апоптотические клетки вызывают состояние толерантности и снижение воспаления. ^зревание ДК вызывают DAMPs из НК, но не ACAMPs из АК. Макрофаги, фагоцитировавшие АК, выделяют ТРФр, что вызывает образование Teg-клеток. При фагоцитозе АК, инфицированных E. coli, макрофаги выделяют ТРФр и ИЛ-6, что ведет к образованию ТЫ7-клеток, а при фагоцитозе НК -Th1 иммунного ответа . При совместном воздействии PAMPs и DAMPs последние выполняют роль адъюванта . Известно, что в зависимости от дозы воздействия (например, ФНОа) клетка погибает путем апоптоза (при низких концентрациях) или некроза (при высоких концентрациях) . Связь между апоптозом и некрозом клеток определяется также наличием промежуточных подтипов клеточной смерти - не-кроптоза и других .

Разные типы клеточной смерти как результат ответа клеток на внешние (включая микроорганизмы) и внутренние воздействия могут протекать одновременно и регулировать друг друга (см. схему). До конца неясны механизмы, определяющие выбор пути клеточной смерти, но чем сильнее воздействие, тем сильнее ответ в виде некроза клеток, мощной воспалительной и иммунной реакции макроорганизма. Слабые воздействия (за счет аутологичных apoptotic cell-associated molecular patterns (AcAMPs) или DAMPs, PAMPs нормальной микрофлоры) вызывают интенсификацию аутофагии и апоптоза клеток без очевидной воспалительной и иммунной реакций.

Заключение. Гибель клеток макроорганизма (человек,

животные), обусловленная внешними или внутренними причинами, вызывает иммунный ответ на повреждение. При этом микробные воздействия всегда дозированы концентрацией и жизнеспособностью патогена, его растворимыми продуктами, локализацией очага повреждения . Сочетанное действие PAMPs и DAMPs, наиболее часто встречающееся в реальных условиях, а также влияние толерогенных апопто-тических клеток на их взаимодействие требуют дальнейшего изучения и оценки иммунологических последствий .

литература

1. Ярилин А.А. Апоптоз. Природа феномена и его роль в целостности организма. Патологическая физиология. 1998; 2: 38-48.

3. Бра М., Квинан Б., Сузин С.А. Митохондрии в программированной гибели клетки: различные механизмы гибели. Биохимия. 2005; 70 (2): 284-93.

4. Черников В.П., Белоусова Т.А., Кактурский Л.В. Морфологические и биохимические критерии клеточные гибели. Архив патологии. 2010; 72 (3): 48-54.

5. Galluzzi L., Vitale I., Abrams J.M., Alnemri E.S., Baehrecke E.H., Blagosklonny M.V et al. Molecular definition of cellular death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Different. 2012; 19 (1): 107-20.

9. Манских В.Н. Пути гибели клетки и их биологическое значение. Цитология. 2007; 49 (11): 909-15.

11. Хаитов Р.М., Пащенков М.В., Пинегин Б.В. Роль паттернораспознающих рецепторов во врожденном и адаптивном иммунитете. Иммунология. 2009; 1: 66-76.

15. Romao S., Gannage M., Munz C. Checking the garbage bin for problems in the house, or how autophagy assists in antigen presentation to the immune system. Semin. Cancer Biol. 2013; 23 (5): 391-6.

16. Rubinsztein D.C., Marino G., Kroemer G. Autophagy and aging. Cell. 2011; 146 (5): 682-95.

19. Walsh C.M., Edinger A.L. The complex interplay between au-tophagy, apoptosis and necrotic signals promotes T-cell homeostasis. Immunol. Rev. 2010; 236 (1): 95-109.

20. Amre D.K., Mack D.R., Morgan K., Krupoves A., Costea I., Lam-brette P. et al. Autophagy gene ATG16L1 but not IRGM is associated with Crohn’s disease in Canadian children. Inflamm. BowelDis. 2009; 15 (4): 501-7.

21. Salminen A., Kaarniranta K., Kauppinen A. Beclin 1 interactome controls the crosstalk apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res. Rev 2012; 12 (2): 520-34.

24. Mostowy S., Cossart P. Bacterial autophagy: restriction or promotion of bacterial replication? Trends Cell Biol. 2012; 22 (6): 283-91.

25. Randow F., MacMicking J.D., James L.C. Cellular self-defense:

how cell-autonomous immunity protects against pathogens. Science. 2013; 340 (6133): 701-6.

26. Lamkanfi M., Dixit v.M. Manipulation of host cell death pathways during microbial infections. Cell Host Microbe. 2010; 8 (l): 44-54.

30. Бонаренко В.М., Лиходед В.Г. Распознавание комменсальной микрофлоры образраспознающими рецепторами в физиологии и патологии человека. Журнал микробиологии, эпидемиологии и иммунологии. 2012; 3: 82-9.

31. Paul-Clark M.J., George P.M., Gatheral T., Parzych K., Wright W.R., Crawford D. et al. Pharmacology and therapeutic potential of pattern recognition receptors. Pharmacol. Ther 2012; 135 (2): 200-15.

40. Byrne B.G., Dubuisson J.-F., Joshi A.D., Persson J.J., Swanson M.S. Inflammasome components coordinate autophage and pyroptosis as macrophage response to infection. mBio.2013; 4 (1): e00620-

12. Available at http://mbio.asm.org/content/4/1/e00620-12.full. pdf+html

41. Kleinnijenhuis J., Oosting M., Platinga T.S., van der Meer J.W.M., Joosten L.A.B., Crevel R.V et al. Autophagy modulates the Mycobacterium tuberculosis-induced cytokine response. Immunology. 2011; 134 (3): 341-8.

42. Гариб Ф.Ю., Ризопулу А.П. Взаимодействие патогенных бактерий с врожденными иммунными реакциями хозяина. Инфекция и иммунитет. 2012; 2 (3): 581-96.

47. Saas P., Angelot F., Bardiaux L., Seilles E., Garnache-Ottou F., Per-ruche S. Phosphatidylserine-expressing cell by-products in transfusion: a pro-inflammatory or an anti-inflammatory effects? Transfus. Clin. Biol. 2012; 19 (3): 90-7.

54. Miles K., Heaney J., Sibinska Z., Salter D., Savill J., Gray D. et al. A tolerogenic role for Toll-like receptor 9 is revealed by B-cell interaction with DNA complexes expressed on apoptotic cells. Proc. Natl Acad. Sci. USA. 2012; 109 (3): 887-92.

59. Проскуряков С.Я., Габай В.Л., Коноплянников А.Г. Некроз -управляемая форма программируемой клеточной смерти. Биохимия. 2002; 67 (4): 467-91.

63. Blander J.M., Sander L.E. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nature Rev. Immunol. 2012; 12 (3): 215-25.

1. Yarilin A.A. Apoptosis. Nature of the phenomenon and its role in the whole organism. Patologicheskaya fiziologiya. 1998; 2: 38-48 (in Russian).

2. Green D.R. The end and after: how dying cells impact the living organism. Immunity. 2011; 35 (4): 441-5.

3. Bras M., Queenan B., Susin S.A. Programmed cell death via mitochondria: Different modes of dying. Biokhimiya. 2005; 70 (2): 231-9 (in Russian).

4. Chernikov V.P., Belousova T.A., Kaktursky L.V. Morphological and biochemical criteria for cell death. Arkhiv patologii. 2010; 72 (3): 48-54 (in Russian).

5. Galluzzi L., Vitale I., Abrams J.M., Alnemri E.S., Baehrecke E.H., Blagosklonny M.V. et al. Molecular definition of cellular death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Different. 2012; 19 (1): 107-20.

6. Peter C., Wesselborg S., Herrman M., Lauber K. Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis. 2010; 15 (9): 1007-28.

7. Kaczmarek A., Vandenabeele P., Krysko D.V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013; 38 (2): 209-23.

8. Rock K.L., Lai J.-J., Kono H. Innate and adaptive immune responses to cell death. Immunol. Rev. 2011; 243 (1): 191-205.

9. Manskikh V.N. Pathways of cell death and their biological importance. Tsitologiya. 2007; 49 (11): 909-15 (in Russian).

10. Janeway C.A. Jr., Medzhitov R. Innate immune recognition. Ann. Rev. Immunol. 2002; 20 (1): 197-216.

11. Khaitov R.M., Pashchenkov M.V., Pinegin B.V. The role of pattern-recognizing receptors in congenital and active immunity. Immunologiya. 2009; 1: 66-76 (in Russian).

12. Seong S.Y., Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nature Rev. Immunol. 2004; 4 (6): 469-78.

13. Chen G.Y., Nunez G. Sterile inflammation: sensing and reacting to damage. Nature Rev. Immunol. 2010; 10 (12): 826-37.

14. Kuballa P., Nolte W.M., Castoreno A.B., Xavier R.J. Autophagy and the immune system. Ann. Rev. Immunol. 2012; 30: 611-46.

15. Romao S., Gannage M., Munz C. Checking the garbage bin for problems in the house, or how autophagy assists in antigen

ИММУНОЛОГИЯ № 2, 2014

presentation to the immune system. Semin. Cancer Biol. 2013; 23 (5): 391-6.

16. Rubinsztein D.c., Marino G., Kroemer G. Autophagy and aging. Cell. 2011; 146 (5): 682-95.

17. Tang D., Kang R., Coyne C.B., Zeh H.J., Lotze M.T. PAMPs and DAMPS: signal Os that spur autophagy and immunity. Immunol. Rev. 2012; 249 (1): 158-75.

18. Zelenay S., Reis e Sousa C. Adaptive immunity after cell death. Trends Immunol. 2013; 34 (7): 329-35.

19. Walsh C.M., Edinger A.L. The complex interplay between autophagy, apoptosis and necrotic signals promotes T-cell homeostasis. Immunol. Rev. 2010; 236 (1): 95-109.

20. Amre D.K., Mack D.R., Morgan K., Krupoves A., Costea I., Lambrette P. et al. Autophagy gene ATG16L1 but not IRGM is associated with Crohn’s disease in Canadian children. Inflamm. Bowel Dis. 2009; 15 (4): 501-7.

21. Salminen A., Kaarniranta K., Kauppinen A. Beclin 1 interactome controls the crosstalk apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res. Rev. 2012; 12 (2): 520-34.

22. Levine B., Mizushima N., Virgin H.W. Autophagy in immunity and inflammation. Nature. 2011; 469 (7330): 323- 35.

23. Liu G., Bi Y., Wang R., Wang X. Self-eating and self-defense: autophagy controls innate immunity and adaptive immunity. J. Leukoc. Biol. 2013; 93 (4): 511-9.

24. Mostowy S., Cossart P. Bacterial autophagy: restriction or promotion of bacterial replication ? Trends Cell Biol. 2012; 22 (6): 283-91.

25. Randow F., MacMicking J.D., James L.C. Cellular self-defense: how cell-autonomous immunity protects against pathogens. Science. 2013; 340 (6133): 701-6.

26. Lamkanfi M., Dixit V.M. Manipulation of host cell death pathways during microbial infections. Cell Host Microbe. 2010; 8 (1): 44-54.

27. Mintern J.D., Villadangos J.A. Autophagy and mechanisms of effective immunity. Front. Immunol. 2012; 3: 60.

28. Travassos L.H., Carneiro L.A.M, Ramjeet M., Hussey S., Kim Y.-G., Magalhaes J.G. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nature Immunol. 2010; 11 (1): 55-62.

29. Kumar H., Kawai T., Akira S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 2011; 30 (1): 16-34.

30. Bondarenko V.M., Likhoded V.G. Recognition of commensal microflora by pattern recognition receptors in human physiology and pathology. Zhurnal Mikrobiologii, epidemiologii i immunologii. 2012; 3: 82-9 (in Russian).

31. Paul-Clark M.J., George P.M., Gatheral T., Parzych K., Wright W.R., Crawford D. et al. Pharmacology and therapeutic potential of pattern recognition receptors. Pharmacol. Ther. 2012; 135 (2): 200-15.

32. Strowig T., Henao-Mejia J., Elinav E., Flavell R. Inflammasomes in health and disease. Nature. 2012; 481 (7381): 278-86.

33. Underhill D.M., Goodridge H.S. Information processing during phagocytosis. Nature Rev. Immunol. 2012; 12 (7): 492-502.

34. Sander L.E., Davis M.J., Boekschoten M.V., Amsen D., Dascher C.C., Ryffel B. et al. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature. 2011; 474 (7351): 385-9.

35. Schmid D., Pypaert M., Munz C. Antigen- loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity. 2007; 26 (1): 79-92.

36. Paludan C., Schmid D., Landthaler M., Vockerodt M., Kube D., Tuschl T. et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science. 2005; 307 (5709): 593-6.

37. Pua H.H., Guo J., Komatsu M., He Y.W. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J. Immunol. 2009; 182 (7): 4046-55.

38. Lu J.V., Walsh C.M. Programmed necrosis and autophagy in immune function. Immunol. Rev. 2012; 249 (1) : 205-17.

39. Gros F., Arnold J., Page N., Decossas M., Korganow A.-S., Martin T. et al. Macroautophagy is deregulated in murine and human lupus T lymphocytes. Autophagy. 2012; 8 (7): 1113-23.

40. Byrne B.G., Dubuisson J.-F., Joshi A.D., Persson J.J., Swanson M.S. Inflammasome components coordinate autophage and pyroptosis as

macrophage response to infection. mBio. 2013; 4 (1): e00620-12. Available at http://mbio.asm.org/content/4/1/e00620-12.full.pdf+html

41. Kleinnijenhuis J., Oosting M., Platinga T.S. , van der Meer J.W.M., Joosten L.A.B., Crevel R.V et al. Autophagy modulates the Mycobacterium tuberculosis-induced cytokine response. Immunology. 2011; 134 (3): 341-8.

42. Garib F.Yu., Rizopulu A.P. Interaction of pathogenic bacteria with innate immune reactions of host. Infektsiya i immunitet. 2012; 2 (3): 581-96 (in Russian).

43. Majai G., Petrovski G., Fesus L. Inflammation and the apopto-phagocytic system. Immunol. Lett. 2006; 104 (1-2): 94-101.

44. Janssen W.J., Henson P.M. Cellular regulation of the inflammatory response. Toxicol. Pathol. 2012; 40 (2): 166-73.

45. Zitvogel L., Kepp O., Kroemer G. Decoding cell death signals in inflammation and immunity.Cell. 2010; 140 (6): 798-804.

46. Bekeredjian-Ding I. B cell encounters with apoptotic cells. Autoimmunity. 2013; 46 (5): 307-11.

47. Saas P., Angelot F., Bardiaux L., Seilles E., Garnache-Ottou F., Perruche S. Phosphatidylserine-expressing cell by-products in transfusion: a pro-inflammatory or an anti-inflammatory effects? Transfus. Clin. Biol. 2012; 19 (3): 90-7.

48. Jeannin P., Jaillon S., Delneste Y. Pattern recognition receptors in the immune response against dying cells. Curr. Opin. Immunol. 2008; 20 (5): 530-7.

49. Lauber K., Blumenthal S.B., Waibel M., Wesselborg S. Clearance of apoptotic cells: getting rid of the corpses. Mol. Cell. 2004; 14 (3): 277-87.

50. Fadok V.A., Bratton D.L., Guthrie L., Henson P.M. Differential effects of apoptotic versus lysed cells on macrophage production of cytokines: role of proteases. J. Immunol. 2001; 166 (11): 6847-54.

51. Hellberg L., Fuchs S., Gericke C., Sarkar A., Behhen M., Solbach W. et al. Proinflammatory stimuli enhance phagocytosis of apoptotic cells by neutrophil granulocytes. Scient. World J. 2011; 11: 2230-6.

52. Ferguson T.A., Choi J., Green D.R. Armed response: how dying cells influence T-cell functions. Immunol. Rev. 2011; 241 (1): 77-88.

53. Douglas I. S., Diaz del Valle F., Winn R.A., Voelkel N.F. P-catenin in the fibroproliferative response to acute lung injury. Am. J. Respir. Cell Mol. Biol. 2006; 34 (3): 274-85.

54. Miles K., Heaney J., Sibinska Z., Salter D., Savill J., Gray D. et al. A tolerogenic role for Toll-like receptor 9 is revealed by B-cell interaction with DNA complexes expressed on apoptotic cells. Proc. Natl Acad Sci. USA. 2012; 109 (3): 887-92.

55. Ashida H., Mimuro H., Ogawa M., Kobayashi T., Sanada T., Kim M. et al. Cell death and infection: a double-edged sword for host and pathogen survival. J. Cell Biol. 2011; 195 (6): 931-42.

56. Manfredi A.A., Capobianco A., Bianchi M.E., Rovere- Querini P. Regulation of dendritic- and T-cell fate by injury-associated endogenous signals. Crit. Rev. Immunol. 2009; 29 (1): 69-86.

57. Torchinsky M.B., Garaude J., Martin A.P., Blander J.M. Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature. 2009; 458 (7234): 78-82.

58. Bianchi M.E. HMGB1 loves company. J. Leukoc. Biol. 2009; 86 (3): 573-6.

59. Proskuryakov S.Ya., Gabai V.L., Konoplyannikov A.G. Necrosis - an active, regulated form of programmed cell death (review). Biokhimiya. 2002; 67 (4): 467-91 (in Russian).

60. Idzko M., Hammad H., van Nimwegen M., Kool M., Willart M.A.M., Muskens F. et al. Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritric cells. Nature Med. 2007; 13 (8): 913-9.

61. Kono H., Rock K.L. How dying cells alert the immune system to danger. Nature Rev. Immunol. 2008; 8 (4): 279-89.

62. Eigenbrod T., Park J.-H., Harder J., Iwakura Y., Nunez G. Cutting edge: Critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1a released from dying cells. J. Immunol. 2008; 181 (2): 8194-8.