Патофизиология боли при воспалении. Физиологическая и патологическая боль. Боль центрального происхождения. Причины, механизмы развития Виды и механизмы болевых синдромов

Это первый из описанных врачами Древней Греции и Рима симптомов – признаков воспалительного повреждения. Боль – это то, что сигнализирует нам о каком-либо неблагополучии, возникающем внутри организма или о действии некоего разрушающего и раздражающего фактора извне.

Боль, по мнению широко известного русского физиолога П. Анохина, призвана мобилизовывать разнообразные функциональные системы организма для его защиты от воздействия вредящих факторов. Боль включает в себя такие компоненты как: ощущение, соматические (телесные), вегетативные и поведенческие реакции, сознание, память, эмоции и мотивации. Таким образом, боль есть объединяющая интегративная функция целостного живого организма. В данном случае – человеческого организма. Ибо живые организмы, даже не обладая признаками высшей нервной деятельности, могут испытывать боль.

Имеются факты изменения электрических потенциалов у растений, которые фиксировались при повреждении их частей, а также такие же электрические реакции, когда исследователи наносили травму соседним растениям. Таким образом, растения реагировали на причиняемые им или соседним растениям повреждения. Только боль имеет такой своеобразный эквивалент. Вот такое интересное, можно сказать, универсальное свойство всех биологических организмов.

Виды боли – физиологическая (острая) и патологическая (хроническая).

Боль бывает физиологической (острой) и патологической (хронической) .

Острая боль

По образному выражению академика И.П. Павлова, является важнейшим эволюционным приобретением, и требуется для защиты от воздействия разрушающих факторов. Смысл физиологической боли заключается в отбрасывании всего, что угрожает жизненному процессу, нарушает равновесие организма с внутренней и внешней средой.

Хроническая боль

Это явление несколько более сложное, которое формируется в результате длительно существующих в организме патологических процессов. Процессы эти могут быть как врожденными, так и приобретенными в течение жизни. К приобретенным патологическим процессам относят следующие – длительное существование очагов воспаления, имеющих различные причины, всевозможные новообразования (доброкачественные и злокачественные), травматические повреждения, операционные вмешательства, исходы воспалительных процессов (например, образование спаек между органами, изменение свойств тканей, входящих в их состав). К врожденным патологическим процессам относятся следующие – различные аномалии расположения внутренних органов (например, расположение сердца снаружи грудной клетки), врожденные аномалии развития (например, врожденный дивертикул кишечника и прочие). Таким образом, длительно существующий очаг повреждения, приводит к постоянным и небольшим повреждениям структур организма, что также постоянно создает болевую импульсацию о повреждениях данных структур организма, затронутых хроническим патологическим процессом.

Так как данные повреждения минимальны, то и болевые импульсы довольно таки слабые, а боль становится постоянной, хронической и сопровождает человека повсеместно и практически круглосуточно. Боль становится привычной, однако никуда не исчезает и остается источником длительного раздражающего воздействия. Болевой синдром, существующий у человека шесть или более месяцев, приводит к значительным изменениям в организме человека. Происходит нарушение ведущих механизмов регуляции важнейших функций организма человека, дезорганизация поведения и психики. Страдает социальная, семейная и личностная адаптация данного конкретного индивида.

Как часто встречаются хронические боли?
Согласно исследованиям Всемирной Организации Здравоохранения (ВОЗ), каждый пятый житель планеты страдает хроническими болями, причиняемыми всевозможными патологическими состояниями, связанными с заболеваниями различных органов и систем организма. Это означает, что как минимум 20% людей страдают хроническими болями разной степени выраженности, различной интенсивности и длительности.

Что такое боль и как она возникает? Отдел нервной системы ответственный за передачу болевой чувствительности, вещества вызывающие и поддерживающие болевые ощущения.

Ощущение боли представляет собой сложный физиологический процесс, включающий периферические и центральные механизмы, и имеющий эмоциональную, психическую, а зачастую и вегетативную окраску. Механизмы болевого феномена полностью на сегодняшний день не раскрыты, несмотря на многочисленные научные исследования, которые продолжаются вплоть до сегодняшнего времени. Однако рассмотрим основные этапы и механизмы восприятия боли.

Нервные клетки, передающие болевой сигнал, виды нервных волокон.


Самый первый этап восприятия боли представляет собой воздействие на болевые рецепторы (ноцицепторы ). Данные болевые рецепторы расположены во всех внутренних органах, костях, связках, в коже, на слизистых оболочках различных органов, соприкасающихся с внешней средой (например, на слизистой кишечника, носа, горла и т.д.).

На сегодняшний день выделяют два основных вида болевых рецепторов: первые – это свободные нервные окончания, при раздражении которых возникает ощущение тупой, разлитой боли, а вторые представляют собой сложные болевые рецепторы, при возбуждении которых возникает чувство острой и локализованной боли. То есть характер болевых ощущений напрямую зависит от того, какие болевые рецепторы восприняли раздражающее воздействие. Относительно специфических агентов, которые могут раздражать болевые рецепторы, можно сказать, что к ним относятся различные биологически активные вещества (БАВ) , образующиеся в патологических очагах (так называемые, алгогенные вещества ). К данным веществам относятся различные химические соединения – это и биогенные амины, и продукты воспаления и распада клеток, и продукты локальных иммунных реакций. Все эти вещества, совершенно разные по химической структуре, способны оказывать раздражающее действие на болевые рецепторы различной локализации.

Простагландины – вещества, поддерживающие воспалительную реакцию организма.

Однако, существует ряд химических соединений, участвующих в биохимических реакциях, которые сами непосредственно не могут воздействовать на болевые рецепторы, однако усиливают эффекты веществ вызывающих воспаление. К классу данных веществ, например, относятся простагландины. Простагландины образуются из особых веществ – фосфолипидов , которые составляют основу клеточной мембраны. Данные процесс протекает следующим образом: некий патологический агент (например, ферментов образуются простагландины и лейкотриены. Простагландины и лейкотриены в целом называются эйкозаноиды и играют важную роль в развитии воспалительной реакции. Доказана роль простагландинов в формировании болевых ощущений при эндометриозе, предменструальном синдроме, а также синдроме болезненных менструаций (альгодисменорее).

Итак, мы рассмотрели первый этап формирования болевого ощущения – воздействие на специальные болевые рецепторы. Рассмотрим, что происходит дальше, каким образом человек чувствует боль определенной локализации и характера. Для понимания данного процесса необходимо ознакомиться с проводящими путями.

Как болевой сигнал поступает в головной мозг? Болевой рецептор, периферический нерв, спинной мозг, таламус – подробнее о них.


Биоэлектрический болевой сигнал, сформировавшийся в болевом рецепторе, по нескольким типам нервных проводников (периферическим нервам), минуя внутриорганные и внутриполостные нервные узлы, направляется к спинальным нервным ганглиям (узлам) , расположенным рядом со спинным мозгом. Эти нервные ганглии сопровождают каждый позвонок от шейных до некоторых поясничных. Таким образом, образуется цепочка нервных ганглиев, идущая справа и слева вдоль позвоночного столба. Каждый нервный ганглий связан с соответствующим участком (сегментом) спинного мозга. Дальнейший путь болевого импульса из спинальных нервных ганглиев направляется в спинной мозг, который непосредственно соединен с нервными волокнами.


На самом деле спинной мог – это неоднородная структура – в нем выделяют белое и серое вещество (как и в головном мозге). Если спинной мозг рассмотреть на поперечном разрезе, то серое вещество будет выглядеть как крылья бабочки, а белое будет окружать его со всех сторон, формируя округлые очертания границ спинного мозга. Так вот, задняя часть этих крылышек бабочки называется задними рогами спинного мозга. По ним нервные импульсы переправляются к головному мозгу. Передние же рога, по логике должны располагаться в передней части крыльев – так оно и происходит. Именно передние рога проводят нервный импульс от головного мозга к периферическим нервам. Так же в спинном мозге в центральной его части существуют структуры, которые непосредственно соединяют нервные клетки передних и задних рогов спинного мозга – благодаря этому имеется возможность формирования так называемой «кроткой рефлекторной дуги», когда некоторые движения происходят неосознанно - то есть без участия головного мозга. Примером работы короткой рефлекторной дуги является одергивание руки от горячего предмета.

Поскольку спинной мозг имеет сегментарное строение, следовательно, в каждый сегмент спинного мозга входят нервные проводники со своей зоны ответственности. При наличии острого раздражителя с клеток задних рогов спинного мозга возбуждение может резко переключаться на клетки передних рогов спинномозгового сегмента, что вызывает молниеносную двигательную реакцию. Коснулись рукой горячего предмета – одернули сразу руку. При этом болевая импульсация все равно достигает коры головного мозга, и мы осознаем, что прикоснулись к горячему предмету, хотя руку уже рефлекторно отдернули. Подобные нервно-рефлекторные дуги для отдельных сегментов спинного мозга и чувствительных периферических участков могут различаться в построении уровней участия центральной нервной системы.

Как нервный импульс достигает головного мозга?

Далее из задних рогов спинного мозга путь болевой чувствительности направляется в вышележащие отделы центральной нервной системы по двум путям – по так называемым «старым» и «новым» спиноталамическим (путь нервного импульса: спинной мозг – таламус) путям. Названия «старый» и «новый» являются условными и говорят лишь о времени появления указанных путей на историческом отрезке эволюции нервной системы. Не будем, однако, вдаваться в промежуточные этапы довольно сложного нервного пути, ограничимся лишь констатацией факта, что оба указанных пути болевой чувствительности оканчиваются в участках чувствительной коры головного мозга. И «старый», и «новый» спиноталамические пути проходят через таламус (особый участок головного мозга), а «старый» спиноталамический путь – еще и через комплекс структур лимбической системы мозга. Структуры лимбической системы мозга во многом участвуют в образовании эмоций и формировании поведенческих реакций.

Предполагается, что первая, более эволюционно молодая система («новый» спиноталамический путь) проведения болевой чувствительности рисует более определенную и локализованную боль, вторая же, эволюционно более древняя («старый» спиноталамический путь) служит для проведения импульсов, дающих ощущение тягучей, плохо локализованной боли. Дополнительно к этому, указанная «старая» спиноталамическая система обеспечивает эмоциональное окрашивание болевого ощущения, а также участвует в формировании поведенческих и мотивационных составляющих эмоциональных переживаний, связанных с болью.

Перед достижением чувствительных участков коры головного мозга, болевая импульсация проходит, так называемую, предварительную обработку в определенных отделах центральной нервной системы. Это уже упомянутый таламус (зрительный бугор), гипоталамус, сетчатая (ретикулярная) формация, участки среднего и продолговатого мозга. Первый, и, пожалуй, один из самых важных фильтров на пути болевой чувствительности – это таламус. Все ощущения из внешней среды, от рецепторов внутренних органов – всё проходит через таламус. Невообразимое количество чувствительной и болевой импульсации проходит ежесекундно, днем и ночью через данный участок мозга. Мы не ощущаем, как происходит трение клапанов сердца, движение органов брюшной полости, всевозможных суставных поверхностей друг о друга – и всё это благодаря таламусу.

При нарушении работы, так называемой, антиболевой системы (например, в случае отсутствия выработки внутренних, собственных морфиноподобных веществ, возникшей по причине употребления наркотических средств) вышеупомянутый шквал всевозможной болевой и прочей чувствительности просто захлестывает головной мозг, приводя к ужасающим по длительности, силе и выраженности эмоционально-болевым ощущениям. Такова причина, в несколько упрощенном виде, так называемой «ломки» при дефиците поступления извне морфиноподобных веществ на фоне длительного приема наркотических средств.

Как болевой импульс обрабатывается головным мозгом?


Задние ядра таламуса дают информацию о локализации источника боли, а срединные его ядра – о продолжительности воздействия раздражающего агента. Гипоталамус, как важнейший регуляторный центр вегетативной нервной системы, участвует в образовании вегетативного компонента болевой реакции опосредованно, через задействование центров регулирующих обмен веществ, работу дыхательной, сердечно-сосудистой и других систем организма. Ретикулярная формация координирует уже частично обработанную информацию. Особенно подчеркивается роль ретикулярной формации в формировании ощущения боли как некоего особого интегрированного состояния организма, с включением всевозможных биохимических, вегетативных, соматических составляющих. Лимбическая система мозга обеспечивает негативную эмоциональную окраску.Сам процесс осознания боли как таковой, определение локализации болевого источника (имеется ввиду конкретная область собственного тела) в совокупности со сложнейшими и разнообразнейшими реакциями на болевую импульсацию происходит непременно при участии мозговой коры.

Сенсорные участки коры головного мозга являются высшими модуляторами болевой чувствительности и играют роль, так называемого, коркового анализатора информации о факте, длительности и локализации болевого импульса. Именно на уровне коры происходит интеграция информации от различных видов проводников болевой чувствительности, что означает полновесное оформление боли как многогранного и многообразного ощущения.В конце прошлого века было выявлено, что каждый уровень построения болевой системы от рецепторного аппарата до центральных анализирующих систем мозга может обладать свойством усиления болевой импульсации. Как бы своего рода трансформаторные подстанции на линиях электропередач.

Приходится говорить даже о, так называемых, генераторах патологически усиленного возбуждения. Так, с современных позиций данные генераторы рассматриваются как патофизиологические основы болевых синдромов. Упомянутая теория системных генераторных механизмов позволяет объяснить, почему при незначительном раздражении болевой ответ бывает довольно значителен по ощущениям, почему после прекращения действия раздражителя ощущение боли продолжает сохраняться, а также помогает объяснить появление боли в ответ на стимуляцию зон кожной проекции (рефлексогенных зон) при патологии различных внутренних органов.

Хронические боли любого происхождения приводят к повышенной раздражительности, снижению работоспособности, потере интереса к жизни, нарушению сна, изменениям эмоционально-волевой сферы, часто доводят до развития ипохондрии и депрессии. Все указанные последствия уже сами по себе усиливают патологическую болевую реакцию. Возникновение подобной ситуации трактуется как образование замкнутых порочных кругов: болевой раздражитель – психо-эмоциональные нарушения – поведенческие и мотивационное нарушения, проявляющиеся в виде социальной, семейной и личностной дезадаптации – боль.

Антиболевая система (антиноцицептивная) – роль в организме человека. Порог болевой чувствительности

Наряду с существованием в организме человека болевой системы (ноцицептивной ), существует еще и антиболевая система (антиноцицептивная ). Что осуществляет антиболевая система? Прежде всего, для каждого организма существует свой, генетически запрограммированный порог восприятия болевой чувствительности. Данный порог позволяет объяснить, почему на раздражители одинаковой силы, продолжительности и характера разные люди реагируют по-разному. Понятие порога чувствительности – это универсальное свойство всех рецепторных систем организма, в том числе и болевых. Так же как и система болевой чувствительности, антиболевая система имеет сложное многоуровневое строение, начиная с уровня спинного мозга и заканчивая мозговой корой.

Как регулируется деятельность антиболевой системы?

Сложная деятельность антиболевой системы обеспечивается цепочкой сложных нейрохимических и нейрофизиологических механизмов. Основная роль в этой системе принадлежит нескольким классам химических веществ – мозговым нейропептидам, В их число входят и морфиеподобные соединения – эндогенные опиаты (бета-эндорфин, динорфин, различные энкефалины). Названные вещества могут считаться так называемыми эндогенными анальгетиками. Указанные химические вещества обладают угнетающим воздействием на нейроны болевой системы, активируют антиболевые нейроны, модулируют активность высших нервных центров болевой чувствительности. Содержание данных антиболевых веществ в центральной нервной системе при развитии болевых синдромов уменьшается. По всей видимости, этим и объясняется снижение порога болевой чувствительности вплоть до появления самостоятельных болевых ощущений на фоне отсутствия болевого раздражителя.

Следует также отметить, что в антиболевой системе наряду с морфиеподобными опиатными эндогенными анальгетиками большую роль играют и широко известные мозговые медиаторы, такие как: серотонин, норадреналин, дофамин, гамма-аминомасляная кислота (ГАМК), а также гормоны и гормоноподобные вещества – вазопрессин (антидиуретический гормон), нейротензин. Интересно, что действие мозговых медиаторов возможно как на уровне спинного, так и головного мозга. Резюмируя вышесказанное, можно заключить, что включение антиболевой системы позволяет ослабить поток болевой импульсации и снизить болевые ощущения. При возникновении каких-либо неточностей в работе данной системы любая боль может быть воспринята как интенсивная.

Таким образом, все болевые ощущения регулируются совместным взаимодействием ноцицептивной и антиноцицептивной систем. Только их согласованная работа и тонкое взаимодействие позволяет адекватно воспринимать боль и её интенсивность, в зависимости от силы и продолжительности воздействия раздражающего фактора.

Глава 2. ПАТОФИЗИОЛОГИЯ БОЛИ

Боль как ощущение

Ощущение боли есть функция больших полушарий. Однако в жизни, наряду с раздражением болевых рецепторов возбуждаются и другие рецепторы. Поэтому боль возникает в комплексе с другими ощущениями.

1. Ощущения могут влиять друг на друга. Чувство боли можно снять другим сильным раздражением: пищевым, половым и т.п. (И. П. Павлов).

2. Ощущение боли в значительной степени определяется исходным состоянием коры головного мозга. Боль мучительнее при ожидании ее. Напротив, при угнетении коры боль ослабевает и даже утрачивается. Лица, находящиеся в состоянии аффекта (резкого возбуждения) не чувствуют боли (бойцы на фронте).

Лериш Р., рассматривая эволюцию боли на протяжении последних 100 лет, отмечает снижение устойчивости к боли (анальгетики, обезболивание, иное воспитание нервной системы). Ирасек говорил: “Современный человек не хочет страдать от боли, боится ее и не намерен переносить” . По мнению Геда, чувство боли диффузное и локализуется лишь благодаря одновременному раздражению тактильных образований. Внутренние органы, очевидно, получают лишь волокна нелокализованной грубой болевой чувствительности. Этим объясняется неспособность пациентов к точной локализации болевого очага. Этим же объясняется наличие отраженных болей (зоны Геда).

Пути восприятия и проведения болевых ощущений

Большинство отечественных и зарубежных ученых придерживается той точки зрения, которая допускает существование специализированных нервных приборов, воспринимающих боль и связанных с ними путей проведения. Вторая точка зрения - специфические виды раздражения (температурная, тактильная и др.), перерастая определенные пороговые значения, становятся разрушающими и воспринимаются как болевые (возражение - при местной анестезии устраняется чувство боли, но сохраняется ощущение прикосновения и давления). Прямым доказательством наличия обособленных путей болевой чувствительности является наблюдение Лючиани. Один швейцарский врач обладал исключительной способностью оценивать состояние пульса и внутренних органов с помощью пальпации, т.е. тактильная чувствительность была хорошо развита. Вместе с тем этот врач совершенно не знал чувства боли. При исследовании его спинного мозга оказалось, что группы мелких клеток в задних рогах серого вещества были полностью атрофированы, что и являлось причиной отсутствия болевой чувствительности.

Восприятие боли связано с наличием свободных нервных окончаний в различных морфологических структурах организма. Особенно много их в коже (до 200 на 1 см 2). Свободных окончаний нервов не найдено в веществе мозга, висцеральной плевре и легочной паренхиме.

Любое воздействие, ведущее к денатурации цитоплазмы, вызывает вспышку импульсов в свободных нервных окончаниях. При этом нарушается тканевое дыхание, и выделяются Н-вещества (апетилхолин, гистамин и т. п.). Эти вещества обнаружены в биологических жидкостях и, по-видимому, способствуют появлению болевых ощущений (яд комаров, крапива). Проведение боли осуществляется волокнами двух групп: тонкими миэлиновыми (В) и тонкими безмиэлиновыми (С). Так как скорость проведения импульса в этих волокнах различна, то при коротком раздражении болевое ощущение проявляется в два этапа. Вначале возникает точно локализованное чувство короткой боли, за которым следует “эхо” в виде вспышки диффузной боли значительной интенсивности. Интервал между этими фазами восприятия тем больше, чем дальше отстоит место раздражении от головного мозга.

Дальнейший путь болевого раздражения проходит через задние корешки в дорзолатеральнын тракт Лиссауэра. Поднимаясь кверху, болевые пути достигают зрительных чертогов и заканчиваются на клетках задних вентральных ядер. В последние годы получены данные в пользу того, что часть волокон, передающих боль, теряется в ретикулярном образовании и гипоталамусе.

Напомню, что ретикулярная формация простирается от верхних сегментов спинного мозга до зрительных бугров, суб- и гипоталамических областей. Важнейшей анатомо-физиологической особенностью ретикулярной формации является то, что она собирает все афферентные раздражения. Благодаря чему она имеет высокий энергетический потенциал и оказывает восходящее активирующее действие на кору головного мозга. В свою очередь, кора головного мозга оказывает нисходящее тормозящее влияние на ретикулярную формацию. Это динамическое корко-подкорковое равновесие и поддерживает бодрствующее состояние человека. Кора находится в тесных взаимоотношениях с ядрами большинства черепно-мозговых нервов, дыхательным, сосудодвигательным и рвотным центрами, спинным мозгом, таламусом и гипоталамусом.

Таким образом, болевые импульсы поступают в кору больших полушарий двумя путями: через систему ретикулярная формация и по классическому чувствительному тракту. Особенно тесно отношение диффузной таламической проекции к так называемым ассоциативным полям плаща (лобные доли). Это позволяет думать, что эта область получает наибольшее число болевых стимулов. Часть болевых проводников поступает в область задней центральной извилины.

Итак, пути проведения болей на периферии более или менее известны. Что касается внутрицентральной передачи, то здесь необходима дальнейшая проверка и уточнения. Однако, факт, что наибольшее количество импульсов поступает в лобные доли, можно считать доказанным.

Нервные центры, получающие импульсы с периферии, функционируют по типу доминанты А. Л. Ухтомского. Доминантный очаг не только гасит эффекты других раздражении, но возбуждение в нем усиливается за их счет и может принимать устойчивый характер. Если таким очагом становится центр, передающий болевые импульсы, то боли приобретают особую интенсивность и устойчивость (читай ниже).

Реакция организма на боль

Поток болевых импульсов вызывает в организме ряд характерных сдвигов. Психическая деятельность сосредотачивается на организации мер защиты от болевого воздействия. Это вызывает напряжение скелетных мышц и мощную голосовую и оборонительную реакцию.

Изменение сердечно-сосудистой системы: возникает тахикардия, снижается АД, может быть брадикардия и остановка сердца при очень сильной боли , спазм периферических сосудов, централизация кровообращения с уменьшением ОЦК. Болевое раздражение часто вызывает угнетение и остановку дыхания, сменяющееся учащенным и аритмичным дыханием, нарушается снабжение кислородом (за счет гипокапнии нарушается диссоциация оксигемоглобина) - кислород плохо отдается в ткани.

Изменение функции желудочно-кишечного тракта и мочевыделения: наиболее часто отмечается полное торможение секреции пищеварительных желез, понос, непроизвольное мочеиспускание, анурия, последняя часто сменяется полиурией. Изменяются все виды обмена веществ. Возникает метаболический ацидоз. Нарушается водный, электролитный, энергетический обмен.

Гормональные сдвиги: кровяное русло наводняется адреналином, норадреналином, гидрокортизоном. По мнению Селье в ответ на чрезвычайное воздействие (боль) в организме создается состояние всеобщего системного напряжения - “стресс”. В нем различают три фазы:

1. Аварийная (тревоги), возникает непосредственно после воздействия агента (на первый план выступают симптомы возбуждения симпатико-адреналовой системы).

2. Фаза сопротивления (адаптации) - адаптация оптимальная.

3. Фаза истощения, когда адаптация теряется - угнетение всех функций и гибель.

Трудно себе представить, что организм с его целесообразным устройством оставил беззащитной кору головного мозга. Больной в тяжелейшем шоке трезво оценивает обстановку. По-видимому, болевая травма создает очаг торможения где-то ниже. Экспериментально доказано (раздражение седалищного нерва), что торможение развивается в ретикулярной формации, а кора сохраняет свою функциональную способность. Хорошо бы (для защиты больного от боли) углубить торможение в ретикулярней формации, если бы она не была так интимно связана с дыхательным и сосудодвигательным центрами.

Каждый человек в своей жизни испытывал боль - неприятное ощущение с негативными эмоциональными переживаниями. Часто боль выполняет сигнальную функцию, предупреждает организм об опасности и защищает его от возможных чрезмерных повреждений. Такую боль называют физиологической.

Восприятие, проведение и анализ болевых сигналов в организме обеспечивают специальные нейрональные структуры ноцицептивной системы, входящие в состав соматосенсорного анализатора. Поэтому боль можно рассматривать как одну из сенсорных модальностей, необходимую для нормальной жизнедеятельности и предупреждающую нас об опасности.

Вместе с тем существует и патологическая боль. Эта боль делает людей нетрудоспособными, снижает их активность, вызывает психо-эмоциональные расстройства, приводит к региональным и системным нарушениям микроциркуляции, является причиной вторичных иммунных депрессий и нарушения деятельности висцеральных систем. В биологическом смысле патологическая боль представляет опасность для организма, вызывая целый комплекс дезадаптивных реакций.

Боль всегда субъективна. Конечная оценка боли определяется местом и характером повреждения, природой повреждающего фактора, психологическим состоянием человека и его индивидуальным пытом.

В общей структуре боли выделяют пять основных компонентов:

  1. Перцептуальный - позволяет определить место повреждения.
  2. Эмоционально-аффективный - отражает психоэмоциональную реакцию на повреждение.
  3. Вегетативный - связан с рефлекторным изменением тонуса симпатоадреналовой системы.
  4. Двигательный - направлен на устранение действия повреждающих стимулов.
  5. Когнитивный - участвует в формировании субъективного отношения к испытываемой в данный момент боли на основе накопленного опыта.

По временным параметрам выделяют острую и хроническую боль.

Острая боль - новая, недавняя боль, неразрывно связанная с вызвавшим ее повреждением. Как правило, является симптомом какого-либо заболевания, травмы, оперативного вмешательства.

Хроническая боль - часто приобретает статус самостоятельной болезни. Продолжается длительный период времени. Причина этой боли в ряде случаев может не определяться.

Ноцицепция включает 4 основных физиологических процесса:

1. Трансдукция - повреждающее воздействие трансформируется в виде электрической активности на окончаниях чувствительных нервов.

2. Трансмиссия - проведение импульсов по системе чувствительных нервов через спинной мозг в таламокортикальную зону.

3. Модуляция - модификация ноцицептивных импульсов в структурах спинного мозга.

4. Перцепция - финальный процесс восприятия передаваемых импульсов конкретной личностью с ее индивидуальными особенностями, и формирование ощущения боли (рис.1).

Рис. 1. Основные физиологические процессы ноцицепции

В зависимости от патогенеза болевые синдромы подразделяются на:

  1. Соматогенные (ноцицептивная боль).
  2. Нейрогенные (нейропатическая боль).
  3. Психогенные.

Соматогенные болевые синдромы возникают вследствие стимуляции поверхностных или глубоких тканевых рецепторов (ноцицепторов): при травме, воспалении, ишемии, растяжении тканей. Клинически среди этих синдромов выделяют: посттравматический, послеоперационный, миофасциальный, боли при воспалении суставов, боли у онкологических больных, боли при поражении внутренних органов и многие другие.

Нейрогенные болевые синдромы возникают при повреждении нервных волокон в любой точке от первичной афферентной проводящей системы до кортикальных структур ЦНС. Это может быть результатом дисфункции самой нервной клетки или аксона вследствие компрессии, воспаления, травмы, метаболических нарушений или дегенеративных изменений.

Пример: постгерпетическая, межреберная невралгия, диабетическая нейропатия , разрыв нервного сплетения, фантомно-болевой синдром.

Психогенные - в их развитии ведущее значение отводится психологическим факторам, которые инициируют боль при отсутствии каких-либо серьезных соматических расстройств. Часто боли психологической природы возникают вследствие перенапряжения каких-либо мышц, которое провоцируется эмоциональными конфликтами или психосоциальными проблемами. Психогенная боль может являться частью истерической реакции или возникать как бред или галлюцинация при шизофрении и исчезать при адекватном лечении основного заболевания. К психогенным относят боли связанные с депрессией, которые не предшествуют ей и не имеют какой-либо другой причины.

Согласно определению Международной ассоциации по изучению боли (IASP - Internatinal Association of the Stady of Pain):
«Боль - это неприятное ощущение и эмоциональное переживание, связанное с реальным или потенциальным повреждением тканей или описываемое в терминах такого повреждения».

Это определение свидетельствует о том, что ощущение боли может возникать не только при повреждении ткани или в условиях риска повреждения ткани, но даже при отсутствии какого-либо повреждения. Иными словами, интерпретация человеком болевого ощущения, его эмоциональная реакция и поведение могут не коррелировать с тяжестью повреждения.

Патофизиологические механизмы соматогенных болевых синдромов

Клинически соматогенные болевые синдромы проявляются наличием постоянной болезненности и/или повышением болевой чувствительности в зоне повреждения или воспаления. Пациенты легко локализуют такие боли, четко определяют их интенсивность и характер. Со временем зона повышенной болевой чувствительности может расширяться и выходить за пределы поврежденных тканей. Участки с повышенной болевой чувствительностью к повреждающим стимулам называют зонами гипералгезии.

Выделяют первичную и вторичную гипералгезию:

Первичная гипералгезия охватывает поврежденные ткани. Характеризуется снижением болевого порога (БП) и болевой толерантности к механическим и термическим стимулам.

Вторичная гипералгезия локализуется вне зоны повреждения. Имеет нормальный БП и сниженную болевую толерантность только к механическим раздражителям.

Механизмы возникновения первичной гипералгезии

В зоне повреждения выделяются медиаторы воспаления, включающие брадикинин, метаболиты арахидоновой кислоты (простагландины и лейкотриены), биогенные амины, пурины и ряд других веществ, которые взаимодействуют с соответствующими рецепторами ноцицептивных афферентов (ноцицепторами) и повышают чувствительность (вызывают сенситизацию) последних к механическим и повреждающим стимулам (рис.2).

В настоящее время большое значение в проявлении гиперальгезии отводится брадикинину, оказывающему прямое и непрямое действие на чувствительные нервные окончания. Прямое действие брадикинина опосредуется через Бэта 2- рецепторы и связано с активацией мембранной фосфолипазы С. Непрямое действие: брадикинин воздействует на различные тканевые элементы - эндотелиальные клетки, фибробласты, тучные клетки, макрофаги и нейтрофилы, стимулирует образование в них медиаторов воспаления (например, простогландинов), которые, взаимодействуя с рецепторами на нервных окончаниях, активируют мембранную аденилатциклазу. Аденилатциклаза и фосфолипаза-С стимулируют образование фрементов, фосфорилирующих белки ионных каналов. В результате, изменяется проницаемость мембраны для ионов - нарушается возбудимость нервных окончаний и способность генерировать нервные импульсы.

Сенситизации ноцицепторов при повреждении тканей способствуют не только тканевые и плазменные алгогены, но и нейропептиды, выделяющиеся из С-афферентов: субстанция Р, нейрокинин-А или кальцитонин-ген-родственный пептид. Эти нейропептиды вызывают расширение сосудов, увеличивают их проницаемость, способствуют высвобождению из тучных клеток и лейкоцитов простогландина Е 2 , цитокининов и биогенных аминов.

На сенситизацию ноцицепторов и развитие первичной гипералгезии влияют также афференты симпатической нервной системы. Повышение их чувствительности апосредуется двумя путями:

1. За счет повышения сосудистой проницаемости в зоне повреждения и увеличения концентрации медиаторов воспаления (непрямой путь);

2. За счет прямого воздействия норадреналина и адреналина (нейротрансмиттеров симпатической нервной системы) на альфа 2 -адренорецепторы, расположенные на мембране ноцицепторов.

Механизмы развития вторичной гипералгезии

Клинически область вторичной гипералгезии характеризуется повышением болевой чувствительности к интенсивным механическим стимулам вне зоны повреждения и может располагаться на достаточном удалении от места повреждения, в том числе и на противоположной стороне тела. Этот феномен может быть объяснен механизмами центральной нейропластичности, приводящими к стойкой гипервозбудимости ноцицептивных нейронов. Это подтверждают клинико-экспериментальные данные, свидетельствующие о том, что зона вторичной гипералгезии сохраняется при введении местных анестетиков в область повреждения и устраняется в случае проведения блокады нейронов заднего рога спинного мозга.

Сенситизация нейронов задних рогов спинного мозга может быть вызвана различными видами повреждений: термическими, механическими, вследствие гипоксии, острого воспаления, электрической стимуляции С-афферентов. Большое значение в сенситизации ноцицептивных нейронов задних рогов придается возбуждающим аминокислотам и нейропептидам, которые высвобождаются из пресинаптических терминалей под действием ноцицептивных импульсов: нейромедиаторы - глутамат, аспартат; нейропептиды - субстанция Р, нейрокинин А, кальцитонин-ген-родстственный пептид и многие другие. В последнее время важное значение в механизмах сенситизации придается оксиду азота (NO), который в мозге выполняет роль нетипичного внесинаптического медиатора.

Возникшая, вследствие повреждения тканей, сенситизация ноцицептивных нейронов не нуждается в дополнительной подпитке импульсами из места повреждения и может сохраняться несколько часов или дней и после прекращения поступления ноцицептивных импульсов с периферии.

Повреждение тканей вызывает также повышение возбудимости и реактивности ноцицептивных нейронов и в вышележащих центрах, включая ядра таламуса и соматосенсорную кору больших полушарий. Таким образом, периферическое повреждение тканей запускает каскад патофизиологических и регуляторных процессов, затрагивающих всю ноцицептивную систему от тканевых рецепторов до корковых нейронов.

Наиболее важные звенья патогенеза соматогенных болевых синдромов :

  1. Раздражение ноцоцепторов при повреждении тканей.
  2. Выделение алгогенов и сенситизация ноцицепторов в области повреждения.
  3. Усиление ноцицептивного афферентного потока с периферии.
  4. С енситизация ноцицептивных нейронов на различных уровнях ЦНС.

В связи с этим, патогенетически обоснованным при соматогенных болевых синдромах считается применение средств, направленных на:

  1. подавление синтеза медиаторов воспаления - использование нестероидных и/или стероидных противовоспалительных препаратов (подавление синтеза алгогенов, снижение воспалительных реакций, уменьшение сенситизации ноцицепторов);
  2. ограничение поступления ноцицептивной импульсации из зоны повреждения в ЦНС - различные блокады местными анестетиками (предотвращают сенситизацию ноцицептивных нейронов, способствуют нормализации микроциркуляции в зоне повреждения);
  3. активацию структур антиноцицептивной системы - для этого в зависимости от клинических показаний может быть использован целый спектр средств, снижающих болевую чувствительность и негативное эмоциональное переживание:

1) медикаментозные средства - наркотические и ненаркотические анальгетики, бензодиазепины, агонисты альфа 2 -адренорецепторов (клофелин, гуанфацин) и другие;

2) немедикаментозные средства - чрезкожная электронейростимуляция, рефлексотерапия , физиотерапия.

Рис. 2. Схема проводящих нервных путей и некоторых нейротрансмиттеров, участвующих в ноцицепции

Патофизиологические механизмы нейрогенных болевых синдромов

Нейрогенные болевые синдромы возникают при повреждении структур, связанных с проведением ноцицептивных сигналов независимо от места повреждения боль проводящих путей. Доказательством этого являются клинические наблюдения. У пациентов после повреждения периферических нервов в области постоянной болезненности, помимо парестезии и дизестезии, отмечается повышение порогов на укол и болевой электрический стимул. У больных с рассеянным склерозом, страдающих также приступами болевых пароксизмов, склеротические бляшки обнаружены в афферентах спиноталамического тракта. У пациентов с таламическими болями, возникающими после цереброваскулярных нарушений, также отмечается снижение температурной и болевой чувствительности. При этом очаги повреждений, выявленные компьютерной томографией, соответствуют местам прохождения афферентов соматической чувствительности в стволе мозга, среднем мозге и таламусе. Спонтанные боли возникают у людей при повреждении соматосенсорной коры, являющейся конечным корковым пунктом восходящей ноцицептивной системы.

Симптомы, характерные для нейрогенного болевого синдрома

Постоянная, спонтанная или пароксизмальная боль, сенсорный дефицит в зоне болезнености, аллодиния (появление болевого ощущения при легком неповреждающем воздействии: например, механическое раздражение кисточкой определенных кожных участков), гипералгезия и гиперпатия.

Полиморфизм болевых ощущений у разных пациентов обусловлен характером, степенью и местом повреждения. При неполном, частичном повреждении ноцицептивных афферентов чаще возникает острая периодическая пароксизмальая боль, подобная удару электрического тока и длящаяся всего несколько секунд. В случае полной денервации боли чаще всего имеют постоянный характер.

В механизме аллодинии большое значение придается сенситизации нейронов широкого динамического диапазона (ШДД-нейроны), которые одновременно получают афферентные сигналы от низкопороговых «тактильных» альфа-бэта-волокон и высокопороговых «болевых» С-волокон.

При повреждении нерва возникает атрофия и гибель нервных волокон (преимущественно гибнут немиелинизированные С-афференты). Вслед за дегенеративными изменениями начинается регенерация нервных волокон, которая сопровождается образованием невром. Структура нерва становится неоднородной, что является причиной нарушения проведения возбуждения по нему.

Зоны демиенилизации и регенерации нерва, невромы, нервные клетки дорзальных ганглиев, связанные с поврежденными аксонами, являются источником эктопической активности. Эти локусы ненормальной активности получили название эктопических нейрональных пейсмекерных мест, обладающих самоподдерживающейся активностью. Спонтанная эктопическая активность вызвана нестабильностью мембранного потенциала вследствие увеличения на мембране количества натриевых каналов. Эктопическая активность имеет не только увеличенную амплитуду, но и большую продолжительность. В результате возникает перекрестное возбуждение волокон, что является основой для дизестезии и гиперпатии.

Изменение возбудимости нервных волокон при повреждении происходит в течение первых десяти часов и во многом зависит от аксонального транспорта. Блокада аксотока задерживает развитие механочувствительности нервных волокон.

Одновременно с увеличением нейрональной активности на уровне задних рогов спинного мозга в эксперименте регистрируется усиление активности нейронов в таламических ядрах - вентробазальном и парафасцикулярном комплексах, в соматосенсорной коре больших полушарий. Но изменения активности нейронов при нейрогенных болевых синдромах имеют ряд принципиальных отличий по сравнению с механизмами, приводящими к сенситизации ноцицептивных нейронов у пациентов с соматогенными болевыми синдромами.

Структурной основой нейрогенных болевых синдромов является агрегат взаимодействующих сенситизированных нейронов с нарушенными тормозными механизмами и повышенной возбудимостью. Такие агрегаты способны развивать длительную самоподдерживающуюся патологическую активность, для которой не обязательна афферентная стимуляция с периферии.

Формирование агрегатов гиперактивных нейронов осуществляется синаптическими и несинаптическими механизмами. Одним из условий образования агрегатов при повреждении нейрональных структур является возникновение устойчивой деполяризации нейронов, которая обусловлена:

Выделением возбуждающих аминокислот, нейрокининов и оксида азота;

Дегенерацией первичных терминалей и транссинаптической гибелью нейронов заднего рога с последующим их замещением глиальными клетками;

Дефицитом опиоидных рецепторов и их лигандов, контролирующих возбуждение ноцицептивных клеток;

Повышение чувствительности тахикининовых рецепторов к субстанции Р и нейрокинину А.

Большое значение в механизмах образования агрегатов гиперактивных нейронов в структурах ЦНС отводится подавлению тормозных реакций, которые опосредуются глицином и гаммааминомасляной кислотой. Дефицит спинального глицинергического и ГАМК-ергического торможения возникает при локальной ишемии спинного мозга, приводящей к развитию выраженной аллодинии и нейрональной гипервозбудимости.

При формировании нейрогенных болевых синдромов деятельность высших структур системы болевой чувствительности изменяется настолько, что электростимуляция центрального серого вещества (одна из важнейших структур антиноцицептивной системы), которая эффективно используется для купирования болей у онкологических больных, не приносит облегчения пациентам с нейрогенными болевыми синдромами (БС).

Таким образом, в основе развития нейрогенных БС лежат структурно-функциональные изменения в периферических и центральных отделах системы болевой чувствительности. Под влиянием повреждающих факторов возникает дефицит тормозных реакций, что приводит к развитию в первичном ноцицептивном реле агрегатов гиперактивных нейронов, которые продуцируют мощный афферентный поток импульсов, который сенситизирует супраспинальные ноцицептивные центры, дезинтегрирует их нормальную работу и вовлекает в патологические реакции.

Основные этапы патогенеза нейрогенных болевых синдромов:

Образование невром и участков демиенилизации в поврежденном нерве, являющихся периферическими пейсмекерными очагами патологического электрогенеза;

Возникновение механо- и хемочувствительности в нервных волокнах;

Появление перекрестного возбуждения в нейронах задних ганглиев;

Формирование агрегатов гиперактивных нейронов с самоподдерживающейся активностью в ноцицептивных структурах ЦНС;

Системные нарушения в работе структур, регулирующих болевую чувствительность.

Учитывая особенности патогенеза нейрогенных БС, оправданным при лечении данной патологии будет использование средств, подавляющих патологическую активность периферических пейсмекеров и агрегатов гипервозбудимых нейронов. Приоритетными в настоящее время считаются:

  • антиконвульсанты и препараты, усиливающие тормозные реакции в ЦНС-бензодиазепины;
  • агонисты рецепторов ГАМК (баклофен, фенибут, вальпроат натрия, габапентин (нейронтин);
  • блокаторы кальциевых каналов, антагонисты возбуждающих аминокислот (кетамин, фенцеклидин мидантан ламотриджин);
  • периферические и центральные блокаторы Nа-каналов.

Понятие и общая характеристика

Боль представляет собой сложное психо­эмоциональное неприятное ощущение, реа­лизующееся специальной системой болевой чувствительности и высшими отделами моз­га. Она сигнализирует о воздействиях, вы­зывающих повреждение ткани или об уже существующих повреждениях, возникших вследствие действия экзогенных факторов или развития патологических процессов. Сис­тему восприятия и передачи болевого сиг­нала называют также ноцицептивной сис­темой2. Болевые сигналы вызывают соот­ветствующий адаптивный эффект - реак­ции, направленные на устранение либо но-цицептивного воздействия, либо самой боли, если она чрезмерна. Поэтому в нормальных условиях боль играет роль важнейшего физиологического защитного механизма. Лю­ди с врожденной или приобретенной (на­пример, при травмах, инфекционных пора­жениях) патологией ноцицептивной системы, лишенные болевой чувствительности, не за­мечают повреждений, что может привести к тяжелым последствиям. Различные виды боли (острая, тупая, локализованная, диф фузная, соматическая, висцеральная и др.)-осуществляются различными структурами ноцицептивной системы.

Патологическая боль. Помимо описанной выше физиологической боли существует патологическая боль. Главным биологичес­ким признаком, отличающим патологичес­кую боль от физиологической, является её дизадаптивное или прямое патогенное зна­чение для организма. Она осуществляется той же ноцицептивной системой, но изме­ненной в условиях патологии и представ­ляет собой выражение нарушения меры процессов, реализующих физиологическую боль, превращение последней из защитного ,. в патологический механизм. Болевой син­дром является выражением соответствующей патологической (алгической) системы.

Патологическая боль обусловливает раз­витие структурно-функциональных изме­нений и повреждений в сердечно-сосудис­той системе и во внутренних органах, дистрофию тканей, нарушение вегетативных реакций, изменения деятельности нервной, эндокринной и иммунной систем, психо­эмоциональной сферы и поведения. Силь­нейшая и длительная боль может вызвать тяжелый шок, неукротимая хроническая боль может быть причиной инвалидизации. Па­тологическая боль становится эндогенным па­тогенным фактором развития новых патологических процессов и приобретает значение самостоятельного нейропатологического синдрома или даже болезни. Патологичес­кая боль плохо корригируется, и борьба с ней весьма затруднительна. Если патологи­ческая боль возникает вторично (при тяже­лых соматических болезнях, при злокачест­венных образованиях и др.), то нередко, доставляя мучительные страдания больному, она заслоняет собой основную болезнь и }, становится главным объектом лечебных вме­шательств, имеющих целью уменьшить стра-: дания больного.

Патологическая боль периферического происхождения

Этот вид патологической боли возни-v кает при хроническом раздражении рецеп-.,. торов боли (ноцицепторов), при повреж­дении ноцицептивных волокон, спинномозго­вых ганглиев и задних корешков. Ука­занные структуры становятся источником интенсивной и нередко постоянной ноцицеп-тивной стимуляции. Ноцицепторы могут усиленно и длительно активироваться при хро-, нических воспалительных процессах (на-~ пример, при артритах), при действии про­дуктов распада тканей (например, при опухолях) и др. Хронически повреждаемые (например, при сдавливании рубцов, раз­росшейся костной тканью и пр.) и регене­рирующие чувствительные нервы, дегенеративно измененные (при действии различных вредностей, при эндокринопатиях), и демие-линизированные волокна весьма чувстви­тельны к различным гуморальным воздей­ствиям, даже к тем, на которые они не реагируют в нормальных условиях (напри­мер, к действию адреналина, ионов К+ и др.). Участки таких волокон становятся эктопи-ческим источником постоянной и значитель­ной ноцицептивной стимуляции.

Особенно значительную роль подобного источника играет неврома - образование из хаотически разросшихся, переплетенных чувствительных нервных волокон, которое возникает при их неупорядоченной и затруд­ненной регенерации. Эти окончания весьма чувствительны к различным механическим, температурным, химическим и эндогенным воздействиям (например, к тем же кате-холаминам). Поэтому приступы боли (кау-залгии) при невромах, а также при повреж­дениях нервов могут быть спровоцированы разными" факторами и изменениями состоя­ния организма (например, при эмоциональ­ном стрессе).

Ноцицептивная стимуляция с периферии может вызвать приступ боли в том случае, если она преодолевает так называемый «воротный контроль» в задних рогах (Мелзак, Уолл), состоящий из аппарата тормозных нейронов (важную роль в нем играют ней­роны желатинозной субстанции), который ре­гулирует поток проходящей и восходящей ноцицептивной стимуляции. Такой эффект может иметь место при интенсивной сти­муляции либо при недостаточности тормоз­ных механизмов «воротного контроля».

Патологическая боль центрального происхождения

Этот вид патологической боли связан с гиперактивацией ноцицептивных нейронов" на спинальном и супраспинальном уровнях. Такие нейроны образуют агрегаты, которые представляют собой генераторы патологичес­ки усиленного возбуждения. Согласно теории генераторных механизмов боли (Г. Н. Кры-жановский) ГПУВ является основным и уни­версальным патогенетическим механизмом патологической боли. Он может образовы­ваться в различных отделах ноцицептивной системы, обусловливая возникновение раз­ных болевых синдромов. При образовании ГПУВ в задних рогах спинного мозга воз­никает болевой синдром спинального проис­хождения (рис. 118), в ядрах тройнич­ного нерва - тригеминальная невралгия (рис. 119), в ядрах таламуса - таламичес-кий болевой синдром. Клиническая картина центральных болевых синдромов и характер их протекания зависят от структурно-функциональных особенностей тех отделов ноцицептивной системы, в которых возник ГПУВ, и от особенностей деятельности ГПУВ.

В соответствии со стадиями развития и механизмами активации ГПУВ на ранних этапах патологического процесса приступ боли, обусловленный активацией ГПУВ, про­воцируется ноцицептивными стимулами с определенного, непосредственно связанного с ГПУВ рецептивного поля (зона проекции боли) (см. рис. 118, 119), на поздних ста­диях приступ провоцируется стимулами раз­личной интенсивности и разной модальности, с разных рецепторных полей, а также мо­жет возникать спонтанно. Особенность при­ступа боли (пароксизмальный, непрерывный, кратковременный, продолжительный и пр.) зависит от особенностей функционирования ГПУВ. Характер" же самой боли (тупая, острая, локализованная, диффузная и др.) определяется тем, какие образования ноци-цептивной системы, реализующие соответ­ствующие виды болевой чувствительности, стали частями патологической (алгической) системы, лежащей в основе данного боле­вого синдрома. Роль патологической детерминанты, формирующей патологическую сис­тему данного синдрома, играет гиперактив­ное образование ноцицептивной системы, в которой возник первичный ГПУВ. Например, при болевом синдроме спинального проис­хождения роль патологической детерминан­ты играет система гиперактивных ноцицеп-тивных нейронов заднего рога (I-III или/и V слоя).

ГПУВ в центральном аппарате ноцицеп­тивной системы формируется под влиянием различных факторов. Он может возникать при длительной ноцицептивной стимуляции с периферии. В этих условиях боль перво­начально периферического происхождения приобретает центральный компонент и стано­вится болевым синдромом спинального про­исхождения. Такая ситуация имеет место при хронических невромах и повреждениях аф­ферентных нервов, при невралгиях, в част­ности при невралгии тройничного нерва.

ГПУВ в центральном ноцицептивном ап­парате может возникнуть также при деафферентации, в связи с повышением чув­ствительности деафференцированных ноци-цептивных нейронов и нарушением тормоз­ного контроля. Деафферентационные бо­левые синдромы могут появляться после ампутации конечностей, перерезки нервов и задних корешков, после перерыва или пере­резки спинного мозга. При этом больной может ощущать боль в лишенной чув­ствительности или в несуществующей части тела (например, в несуществующей конеч­ности, в частях тела ниже перерезки спин­ного мозга). Такого типа патологическая боль получила название фантомной (от фантом - призрак). Она обусловлена дея­тельностью центрального ГПУВ, активность которого уже не зависит от ноцицептивной стимуляции с периферии.

ГПУВ в центральных отделах ноцицеп­тивной системы может возникать при ин­фекционных повреждениях этих отделов (герпетические и сифилитические поврежде­ния, при травмах, токсических воздействиях). В эксперименте такие ГПУВ и соответ­ствующие болевые синдромы воспроизводят­ся путем введения в соответствующие от­делы ноцицептивной системы веществ, либо вызывающих нарушение тормозных меха­низмов, либо непосредственно активирующих ноцицептивные нейроны (столбнячный ток­син, пенициллин, ионы К+ и пр.).

В центральном аппарате ноцицептивной системы могут образовываться вторичные ГПУВ. Так, после образования ГПУВ в задних рогах спинного мозга через продол­жительное время может возникнуть вторич­ный ГПУВ в таламусе. В этих условиях первичный ГПУВ может даже исчезнуть, однако при этом проекция боли на перифе­рию может оставаться прежней, так как в процесс вовлечены структуры той же ноци­цептивной системы. Нередко при локализа­ции первичного ГПУВ в спинном мозге с целью предотвращения поступления из него импульсации в головной мозг производят частичную (перерыв восходящих трактов) или даже полную перерезку спинного мозга. Эта операция, однако, не дает эффекта либо вызывает лишь кратковременное облегчение страданий больного.

Технологическая карта для самостоятельного изучения теоретического материала

Тема: «Патофизиология боли»

1.Основные вопросы для изучения:


  1. Патофизиология боли.



  2. Понятие об антиноцицептивной системе.

  3. Патофизиологические основы обезболивания

^ 2.Целевая установка. Изучить основные механизмы развития патологической боли и основы обезболивания.

3.Формулируемые понятия.

Боль это интегративная функция, которая мобилизует самые разнообразные функциональные системы для защиты организма от воздействия повреждающего фактора и включает такие компоненты, как сознание, ощущение, память, мотивации, вегетативные, соматические и поведенческие реакции, а также эмоции (П.К. Анохин, И.В. Орлов). Классификация боли важна для диагностики многих заболеваний. Локализация, интенсивность, периодичность боли в совокупности с другими симптомами нередко позволяет поставить точный диагноз. Несмотря на практическую значимость, общепринятые принципы классификации боли все еще не составляют стройной системы. В основе лежат жалобы больного, которые включают дополнительные характеристики боли: тянущая, рвущая, стреляющая, ноющая и др. . Английский невролог Гед в аутоэксперименте с перерезкой нерва обнаружил определенную последовательность восстановления чувствительности. Сначала возникала тупая, сильная, плохо локализованная боль, которая оставалась после прекращения действия раздражителя и была названа протопатической . При окончательной консолидации нерва появилась острая, локализованная и быстро проходящая эпикритическая боль . Эта классификация общепринята и имеет значение как для понимания механизмов болевого возбуждения, так и для диагностики некоторых заболеваний. Выделяют также соматическую и висцеральную боль . Соматическую боль подразделяют на поверхностную и глубокую. Поверхностная соматическая боль возникает на раздражение кожи, например укол, и состоит из первичного и вторичного ощущений. Глубокую боль формируют рецепторы сухожилий, мышц и суставов. Висцеральная боль связана с заболеваниями внутренних органов и, как правило, имеет свойства протопатической боли.При ряде патологических состояний возникает боль, не связанная с действительным повреждением. Одна формируется на основе прошлой, тяжелой боли (фантомная боль ), другая имеет психогенную природу (эмоциональный конфликт, истерическая реакция, составляющая часть галлюцинаций или депрессивного состояния). Последнюю называют психогенной болью . Кроме того, учитывая патогенез боли, выделяют соматогенную боль , связанную с травмой, воспалением, ишемией и другими, и отдельно нейрогенную, или нейропатическую, боль , обусловленную повреждением структур центральной или периферической нервной системы (невралгия, аллодиния, каузалгия, таламический синдром и др.). Существует понятие отраженная боль , которая возникает в достаточно отдаленной от зоны поражения области. В ряде случаев она создают специфический симптомокомплекс, характерный для конкретных форм патологии. В основе ее лежит иррадиация возбуждения в ЦНС. Для понимания механизма отраженной соматогенной и нейрогенной боли следует учитывать классические представления о зонах Захарьина-Геда.Чарлз Шеррингтон ввел понятие ноцицептия - универсальное для животных и человека чувство повреждения тканей. Однако термин «ноцицептивная реакция» целесообразно применять для пациентов, когда их сознание значительно нарушено. Международным комитетом экспертов рекомендовано определять боль как «неприятное сенсорное и эмоциональное переживание, связанное с истинным пли потенциальным повреждением ткани». Это определение подчеркивает сигнальное значение боли - симптома возможного начала болезни.
Болевые ощущения воспринимаются специфическими болевыми рецепторами - ноцицепторами, которые представляют собой свободные неинкапсулированные нервные окончания древовидно-разветвленных афферентных волокон, расположенных в коже, мышцах, суставных капсулах, надкостнице, внутренних органах. Известны эндогенные вещества, которые воздействуя на эти рецепторы, способны вызывать болевые ощущения. Выделяют три типа таких веществ: тканевые (серотонин, гистамин, ацетилхолин, простагландины, например Е2, ионы калия и водорода); плазменные (брадикинин, каллидин) и выделяющиеся из нервных окончаний (субстанция Р).Повреждение тканей означает прежде всего нарушение целостности клеточных мембран, что сопровождается выбросом эндогенных алгогенов (ионы калия, субстанция Р, простагландины, брадикинин и др.). Все они активируют или сенсибилизируют хемоноцицепторы. Некоторые исследователи полагают, что метаболические факторы гипоксии являются универсальными алгогенами. Кроме того, при воспалительных процессах помимо разрушения ткани возникает отек, ведущий к перерастяжению капсулы внутренних органов или механическому воздействию на афферентные нервы. Некоторые ткани (роговица глаза, пульпа зуба) содержат только такие афферентные структуры, и любое воздействие определенной интенсивности вызывает исключительно чувство боли. Выделяют механо-, хемо- и термоноцицепторы. Эти рецепторы содержатся в кожных покровах, которые выполняют функцию первой линии защиты и реагируют на любой вид угрозы или реального разрушения. Кожные рецепторы достаточно быстро адаптируются.Внутренние органы снабжены преимущественно механо- и хемоноцицепторами. Термоноцицепторы имеются в ротовой полости, пищеводе, желудке, прямой кишке. Болевые рецепторы не всегда узко специализированы по отношению к виду физического воздействия. В коже содержатся нервные окончания, которые наряду с болью формируют ощущение нагрева или охлаждения. Механоноцицепторы внутренних органов содержатся в их капсулах, а также в сухожилиях мышц и суставных сумках. Хемоноцицепторы расположены в наружных покровах и внутренних органах (слизистые оболочки и сосуды). Паренхима внутренних органов не имеет болевых рецепторов. В настоящее время общепризнано, что основными проводниками импульсов болевой чувствительности являются миелинизированные А-дельта-волокна и немиелинизированные С-волокна, рецепторные зоны которых представлены свободными нервными окончаниями и гломерулярными тельцами. А-дельта-волокна обеспечивают главным образом эпикритическую чувствительность, а С-волокна - протопатическую.
Перемещающиеся в центростремительном направлении по тонким А-дельта и С-волокнам болевые импульсы достигают сначала расположенные в спинномозговых ганглиях первые чувствительные нейроны, а затем достигают тел вторых нейронов, т. е. Т-клеток, расположенных в задних рогах спинного мозга. Кроме того, от аксонов первого чувствительного нейрона отходят коллатерали, которые оканчиваются на клетках желатинозной субстанции, аксоны которых также оканчиваются на Т-клетках. Нервные импульсы, поступающие по коллатералям тонких миелинизированных А-дельта-волокон оказывают тормозное действие на Т-клетки, в тоже время импульсация, приходящая в спинной мозг по немиелинизированным С-волокнам, нейтрализует это тормозное воздействие на Т-клетки, вызывая их стойкое возбуждение (стойкое болевое ощущение). Мелзаком и Уоллом в 1965 году было высказано предположение, что усиление импульсации по толстым волокнам (А-альфа) может затормозить это стойкое возбуждение и привести к облегчению боли. Таким образом, первым центральным звеном, воспринимающим афферентную информацию, является нейрональная система заднего рога спинного мозга.
Отсюда возбуждение распространяется по ряду путей, один из них - восходящие афферентные тракты (неоспинноталамический путь и палеоспинноталамический путь). Они проводят возбуждение к вышележащим отделам: ретикулярной формации, гипоталамусу, таламусу, к базальным ганглиям, лимбической системе и коре больших полушарий.
Функционирование нейронов задних рогов спинного мозга регулируется супраспинальной антиноцицептивной системой, которая представлена комплексом структур, оказывающих нисходящее тормозящее влияние на передачу болевых импульсов с первичных афферентных волокон на вставочные нейроны. К этим структурам относятся ядра среднего мозга (околоводопроводное серое вещество), продолговатого мозга (большое ядро шва, крупноклеточное, гигантоклеточное, парагигантоклеточное и латеральное ретикулярное ядра; голубое пятно). Данная система имеет сложное строение и гетерогенна по своим механизмам. В настоящее время наиболее изучены три ее механизма: опиоидный, серотонинергический и адренергический, каждый из которых имеет свои морфологические и физиологические особенности.
Основными медиаторами антиноцицептивной системы являются опиатоподобные нейропептиды - энкефалины и эндорфины. Структуры антиноцицептивной системы содержат большое количество опиатных рецепторов, которые воспринимают не только адекватные эндогенные медиаторы, но и имеющие с ними химическое сходство болеутоляющие наркотические препараты. При этом наркотические анальгетики активируют богатую опиатными рецепторами антиноцицептивную систему, способствуя таким образом подавлению чувства боли. В процессе изучения эндогенных опиатоподобных нейропептидов уточнялось их строение. Это позволило создать препараты, являющиеся их антогонистами (налоксон, налтраксон).
Другим классом нейромедиаторов, обнаруженных в структурах антиноцицептивной системы, оказались биогенные амины, влияющие на восприятие боли. Их продуцируют серотонинергические и норадреналинергические нейроны, в частности клетки lokus coeruleus. Идущие от них импульсы направляются к Т-клеткам задних рогов, имеющим альфа-адренергические рецепторы. В настоящее время признано, что кора больших полушарий участвует не только в осуществлении пространственно-временного анализа и мотивационно-аффективной оценки боли и сенсорной памяти, но также принимает участие в формировании нисходящей ингибирующей, антиноцицептивной системы, контролирующей поступающую с периферии болевую импульсацию. Антиноцицептивную (анальгетическую) систему головного мозга составляют те его зоны, электрическая стимуляция которых может обусловить обезболивание.
С биологической точки зрения следует различать физиологическую и патологическую боль . Физиологическая боль имеет значение адаптивного, защитного механизма. Она сигнализирует о действиях повреждающих агентов, об уже возникших повреждениях и о развитии патологических процессов в тканях.
^ Патологическая боль имеет дезадаптивное и патогенное значение для организма. Она вызывает расстройство функций ЦНС, психические и эмоциональные нарушения.
Различают периферическую и центральную патологическую боль.
Центральная боль , по определению Международной ассоциации по изучению боли (IASP), характеризуется как боль, обусловленная поражением ЦНС. Однако в отличие от ноцицептивной (физиологической) боли, связанной с постоянной трансмиссией болевой импульсации по неповрежденным болевым структурам или с недостаточностью антиноцицептивных влияний, центральная боль возникает в результате структурных нарушений в системе, обеспечивающей порождение болевого ощущения. Источником центральной боли может быть любой процесс, приводящий к поражению соматосенсорных структур, участвующих в проведении афферентной импульсации, а также образований головного мозга, контролирующих поступающую сенсорную информацию. Таламус является центральным звеном болевой интеграции, объединяет все виды ноцицептивной импульсации и имеет многочисленные связи с ростральными образованиями. Повреждения и вмешательства на уровне таламуса наиболее резко сказываются на восприятии боли. С этой структурой связывают формирование таламического болевого синдрома и фантомной боли.

К основным проявлениям патологической хронической боли относятся:
- Каузалгия (интенсивная, жгучая, непереносимая боль).
- Гиперпатия (сохранение сильной боли после прекращения провоцирующей стимуляции).
- Гипералгезия (интенсивная боль при легком ноцицептивном раздражении зоны повреждения или отдаленных областей).
- Аллодиния (провокация боли при действии неноцицептивных, различных по модальности раздражений, возникновение приступов боли при действии дистантных раздражителей (например, сильного звука).
- Отраженные боли.
- Постоянная, непроходящая боль.
- Спонтанные приступы боли без провокации и некоторые другие проявления.
^ Теории формирования болевых синдромов.
До настоящего времени единой теории боли, объясняющей различные ее проявления, не существует. Наиболее важное значение для понимания механизмов формирования болевых ощущений имеют следующие современные теории боли:
- Теория «воротного контроля» Р. Мелзака и П.Д. Уолла.
- Теория генераторных и системных механизмов Г.Н. Крыжановского.
- Теории, рассматривающие нейрональные и нейрохимические аспекты формирования боли.
Согласно теории «воротного контроля» , в системе афферентного входа в спинном мозге действует механизм контроля за прохождением ноцицептивной импульсации с периферии. Такой контроль осуществляется тормозными нейронами желатинозной субстанции, которые активируются импульсацией с периферии по толстым волокнам, а также нисходящими влияниями со стороны супраспинальных отделов, в том числе коры головного мозга. Этот контроль представляет собой, образно говоря, «ворота», которые регулируют поток ноцицептивной импульсации.
Патологическая боль, с позиций данной теории, возникает при недостаточности тормозных механизмов Т-нейронов, которые растормаживаясь и активируясь различными стимулами с периферии и из других источников, посылают интенсивную восходящую импульсацию.
В настоящее время гипотеза о системе «воротного контроля» пополнилась многими деталями, при этом важная для клинициста сущность заложенной в этой гипотезе идеи сохраняется и имеет широкое признание. Однако теория «воротного контроля», по признанию самих авторов, не может объяснить патогенез боли центрального происхождения.
Наиболее приемлемой для понимания механизмов центральной боли является теория генераторных и системных механизмов боли, развитая Г.Н. Крыжановским, который считает, что сильная ноцицептивная стимуляция, поступающая с периферии, вызывает в клетках задних рогов спинного мозга каскад процессов, которые запускаются возбуждающими аминокислотами (в частности, глутамином) и пептидами (в частности, субстанцией Р). Кроме того, болевые синдромы могут возникать вследствие деятельности в системе болевой чувствительности новых патологических интеграции - агрегата гиперактивных нейронов, который является генератором патологически усиленного возбуждения и патологической алгической системы, представляющей собой новую структурно-функциональную организацию, состоящую из первично и вторично измененных ноцицептивных нейронов, и являющуюся патогенетической основой болевого синдрома.
Каждый центральный болевой синдром имеет свою алгическую систему, в структуру которой обычно включается поражение трех уровней ЦНС: нижний ствол, промежуточный мозг (таламус, сочетанное поражение таламуса, базальных ганглиев и внутренней капсулы), кора и прилежащее белое вещество мозга. Характер болевого синдрома, его клинические особенности определяются структурно-функциональной организацией патологической алгической системы, а течение болевого синдрома и характер приступов боли зависят от особенностей ее активации и деятельности. Сформированная под влиянием болевой импульсации эта система сама, без дополнительной специальной стимуляции способна развивать и усиливать свою активность, приобретая устойчивость к влияниям со стороны антиноцицептивной системы и к восприятию общего интегративного контроля ЦНС.
Развитие и стабилизация патологической алгической системы, а также формирование генераторов объясняют тот факт, что хирургическая ликвидация первичного источника боли далеко не всегда эффективна, а иногда приводит лишь к кратковременному уменьшению выраженности боли. В последнем случае через некоторое время активность патологической алгической системы восстанавливается и возникает рецидив болевого синдрома.

Среди возможных механизмов возникновения центральной боли наиболее важное значение имеют:
- утрата центрального ингибирующего влияния на миелинизированные первичные афференты;
- реорганизация связей в области афферентных структур;
- спонтанная активность в спинальных нейронах болевой чувствительности;
- дефицитарность (возможно генетическая) эндогенных антиноцицептивных структур (снижение уровня энкефалиновых и серотониновых метаболитов в цереброспинальной
жидкости).
Существующие патофизиологические и биохимические теории дополняют друг друга и создают цельное представление о центральных патогенетических механизмах боли. Так, например, помимо опиоидных имеются и другие нейромедиаторные механизмы подавления боли. Наиболее мощным из них является серотонинергический, связанный с дополнительной активацией других структур мозга (большое ядро шва и др.). Стимуляция этих структур вызывает аналитический эффект, а антагонисты серотонина его устраняют. В основе антиноцицептивного действия лежит прямое, нисходящее, тормозное влияние этих структур на спинной мозг. Есть данные, что обезболивающее действие акупунктуры реализуется через опиатные и, частично, серотонинергические механизмы.

Существует также норадренергический механизм антиноцицепции, опосредованный эмоциогенными зонами гипоталамуса и ретикулярной формации среднего мозга. Положительные и отрицательные эмоции способны усиливать или подавлять боль. Крайние границы эмоционального напряжения (стресс) обычно ведут к подавлению чувства боли. Отрицательные эмоции (страх, гнев) блокируют боль, что позволяет активно бороться за сохранение жизни, несмотря на возможную травму. Этот вид нормальной стрессаналгезии иногда воспроизводится на фоне патологического аффективного состояния. Анальгетический эффект стимуляции эмоциогенных зон у животных не блокируется антагонистами опиоидов и серотонина, но подавляется адренолитическими средствами и облегчается адреномиметиками. Препараты этого класса, в частности клофелин и его аналоги, применяют для лечения определенного вида боли.

Ряд неопиодных пептидов (нейротензин, ангиотензин II, кальцитонин, бомбезин, холецистотонин), помимо своих специфических гормональных влияний, способны оказывать анальгетическое действие, обнаруживая при этом определенную избирательность по отношению к соматической и висцеральной боли.

Отдельные структуры мозга, участвующие в проведении болевого возбуждения и формирующие определенные компоненты болевой реакции, обладают повышенной чувствительностью к определенным веществам и препаратам. Применение таких средств может избирательно регулировать те или иные проявления боли.

^ Лечение боли направлено прежде всего на лечение основного заболевания. В каждом случае необходимо учитывать патофизиологические механизмы боли. Существуют ситуации, когда боль является не столько симптомом, сколько самостоятельной болезнью, сопровождающейся страданием или создающей угрозу для жизни (приступ стенокардии, инфаркт миокарда, болевой шок и др.).

^ Принципы устранения боли.

Хирургические методы . В основе лежит принцип прерывания восходящего ноцицептивного возбуждения на различных уровнях или разрушение структур мозга, имеющих прямое отношение к восприятию боли. К недостаткам метода следует отнести сопутствующие нарушения других функций и возможное возвращение боли в разные сроки после операции.

^ Физиотерапевтические процедуры. К ним относятся различные варианты теплового местного и общего воздействия, массаж, грязелечение и др. Показания к применению отдельных методов и механизмы болеутоления могут быть различны. Тепловые процедуры способствуют улучшению микроциркуляции, что ведет к вымыванию алгогенных субстратов и оказывает противовоспалительное действие. Электростимуляция активирует механизм «воротного» контроля боли. Акупунктура, наряду с вышеупомянутым механизмом, стимулирует опиатный компонент антиноцицептивной системы.

^ Фармакологические средства являются основными среди других методов лечения боли. Среди них выделяют наркотические, не наркотические анальгетики и другие средства. Условно можно выделить две группы препаратов, анальгетический эффект которых обусловлен преимущественно центральным или периферическим действием.

К первой группе относятся прежде всего наркотические анальгетики. Механизм действия наркотических анальгетиков и опиатного звена антиноцицептивной системы составляет единое целое. В состав первой группы входят и неопиатные препараты с выраженным седативным эффектом и сопутствующим свойством подавления эмоционально-аффективного компонента боли. К ним относятся нейролептики с широким спектром влияния на нейромедиаторные механизмы (адрен-, холин-, дофамин-, серотонин-, ГАМК-ергические и пептидные).

Вторая группа препаратов - транквилизаторы, подавляют эмоционально-аффективный и мотивационный компоненты болевой реакции, а их центральное миорелаксирующее действие ослабляет двигательные проявления. Транквилизаторы обладают дополнительными свойствами: усиливают действие многих обезболивающих средств и проявляют противосудорожную активность. Противосудорожные препараты, к которым относятся транквилизаторы и многие другие средства, предпочтительны для лечения тригеминальной невралгии, мигрени, диабетической полинейропатии и ряда хронических болевых синдромов. При хронической боли с успехом применяют препараты из группы амантадинов, блокирующих NMDA-рецепторы, которые участвуют в трансмиссии ноцицептивных возбуждений.

К третьей группе препаратов с ярко выраженным периферическим типом действия относятся некоторые местные анестетики, которые при наружном применении проникают через кожные покровы и блокируют ноцицепторы (лидокаин и др.). Наибольшее распространение получили ненаркотические анальгетики, родоначальником которых является ацетилсалициловая кислота. С тех пор синтезировано множество соединений различной химической природы, которые не изменяют сознания и не воздействуют на психические функции. Препараты этого ряда обладают противовоспалительной и жаропонижающей активностью (например, анальгин). Болеутоляющее действие обусловлено угнетением фермента циклоксигеназы, который способствует синтезу простагландинов - ведущих медиаторов воспаления и боли. Кроме того, нарушается синтез другого алгогена - брадикинина.

При боли ишемического происхождения (гипоксия тканей) или длительном спазме гладкой мускулатуры сосудов и внутренних органов (почечная колика, спазм мускулатуры желудка, желчных и мочевых путей, сосудов сердца и головного мозга) целесообразно применение спазмолитиков.

Это далеко не полный перечень методов и средств, подавляющих те или иные компоненты болевой реакции. Анальгетическое действие многих препаратов обусловлено их центральным влиянием на различные нейрохимические механизмы ноцицептивной и антиноцицептивной эндогенной системы организма, которые в настоящее время интенсивно исследуют. Анальгетический эффект препаратов центрального действия нередко сочетается с влиянием на другие интегративные функции мозга, что связано с участием одних и тех же медиаторов в различных процессах.


  1. ^ Значение изучаемого материала для последующего использования.
    Медицинские аспекты
    . Знания о патогенезе болевых синдромов и основах обезболивания необходимы для работы стоматолога

  2. Вопросы, подлежащие проверке при промежуточной и экзаменационной аттестации.

  1. Биологическое значение боли как сигнала опасности и повреждения. Вегетативные компоненты болевых реакций.

  2. Понятие о «физиологи­ческой» и «патологической» боли.

  3. Генераторные механизмы болевых синдромов периферического и центрального происхождения.

  4. Болевые синдромы в стоматологии (тригеминальная, темпоромандибулярная и миофасциальная боль) .


  1. Литература
а) основная литература

  1. Литвицкий П. Ф. Патофизиология: учебник для мед. вузов / Литвицкий П. Ф. . - 4-е изд., испр. и доп. - М. : ГЭОТАР-Медиа, 2007 . - 493 с. : ил.. – Режим доступа: ЭБС «Консультант студента»

  2. Практикум по патологической физиологии: учеб. пособие: для спец.: 06010165 - Леч. дело; 06010365 - Педиатрия; 06010565 - Стоматология / [сост.: Л. Н. Рогова, Е. И. Губанова, И. А. Фастова, Т. В. Замечник, Р. К. Агаева, В. Н. Поветкина, Н. И. Шумакова, Т. Ю. Каланчина, Н. В. Чемордакова]; Минздравсоцразвития РФ, ВолгГМУ. - Волгоград: Изд-во ВолгГМУ, 2011 . - 140 с.

  3. Новицкий В. В. Патофизиология: рук. к практ. занятиям / Новицкий В. В., Уразова О. И., Агафонов В. И. и др. ; под ред. В. В. Новицкого, О. И. Уразовой. - М. : ГЭОТАР-Медиа, 2011 . - 333, с. : ил. – Режим доступа: ЭБС «Консультант студента»
б) дополнительная литература:

  1. Патофизиология: учебник для студ., обучающихся по спец.: "Леч. дело", "Педиатрия", Медико-профилакт. дело", "Стоматология", "Сестр. дело", "Мед. биохимия", "Мед. биофизика", "Мед. кибернетика" / [авт. кол.: А. И. Воложин, Г. В. Порядин и др.] . - 3-е изд., стер. . - М. : Академия, 2010 . - 304 с.: ил. . - Высшее профессиональное образование.

  2. Патологическая физиология: учеб. пособие для студ. мед. вузов / ГОУ ВПО СаратГМУ ФА по здрав. и соц. развитию; под общ. ред. В. В. Моррисона, Н. П. Чесноковой; [сост.: Г. Е. Брель, В. В. Моррисон, Е. В. Понукалина и др.; рец. В. Б. Мандриков] . - Саратов: Изд-во Сарат. мед. ун-та, 2007 . - 664 с.: ил.

  3. Тель Л. З. Патологическая физиология: интерактив. курс лекций / Тель Л. З., Лысенков С. П., Шастун С. А. . - М. : МИА, 2007 . - 659 с.

  4. Прощаев К. И. Боль. Молекулярная нейроиммуноэндокринология и клиническая патофизиология / Прощаев К. И., Ильницкий А. Н., Князькин И. В. и др. . - СПб. : Изд-во ДЕАН, 2006 . - 304 с. . - Науч. сер. Молекулярная нейроиммуноэндокринология

  5. Подчуфарова Е.В. Боль: современные средства помощи /Подчуфарова Е.В. // Новая Аптека (Аптечный Ассортимент) . - 2008 . - № 12. - С.65-70

  6. Милешина С.Е. Боль в мышцах /Милешина С.Е. // Вестник семейной медицины. - 2008 . - № 1. - С.28-32

  7. Боль при диабетической нейропатии - психосоматические аспекты // Пробл. эндокринологии. - 2007 . - № 6. - С.43-48

  8. Голубев В.Л. Боль - междисциплинарная проблема /Голубев В.Л. // Рус. мед. журн. . - 2008 . - Болевой синдром (Спецвыпуск). - С.3-7

  9. Парфенов А. И. Боль в животе в практике терапевта /Парфенов А. И. // Терапевтический архив. - 2008 . - Том 80. - № 8. - С. 38-42

  10. Шахова Е. Г. Боль в горле: современные аспекты этиологии, диагностики и лечения /Шахова Е. Г. // Фарматека. - 2011 . - №5. - С. 62-66

  11. Стояновский Д.Н. Боль в области спины и шеи. / Стояновский Д.Н. . - Киев: Здоров"я, 2002 . - 392с.:ил.
в)методические пособия:

  1. Тестовые задания по курсу патологической физиологии с патофизиологией челюстно-лицевой области (для стоматологического факультета): Учебное пособие/ Сост. Л.Н.Рогова, Е.И.Губанова, И.Ф.Ярошенко идр..- Волгоград: Изд-во ВлогГМУ,2010.-128 с.

  2. Тезисы лекций по патологической физиологии. Учебное пособие/ Авторы Е.И. Губанова, И.А. Фастова.-Волгоград: ВолгГМУ, 2011.-76 с.

  3. Неспецифические механизмы развития болезней: Учебное пособие/Сост. Е.И.Губанова, Л.Н.Рогова, Н.Ю.Дзюбенко; под ред. Е.И.Губановой.-Волгоград: Изд-во ВолгГМУ, 2011 – 76 с.
г) программное обеспечение и Интернет-ресурсы:

  • программное обеспечение:
Общая патофизиология. Электронный курс. В.А.Фролов, Д.П. Билибин. - М. 2006., 172с.

  • базы данных, информационно-справочные и поисковые системы медицинские поисковые системы :
www.spsl.nsc.ru/win/navigatrn.html (“Навигатор по информационно-библиотечным ресурсам Интернет” на сайте ГПТНБ Сибирского отделения РАН. Является общим метаресурсом, интегрирующим ссылки на другие библиотеки.)

it2med.ru/mir.html (“МИР - Медицинские интернет-ресурсы” на сайте “МедИнформКонсалтинга” (Москва). Является специализированным метаресурсом, интегрирующим ссылки на медицинские библиотеки и другие медицинские ресурсы.)

www.scsml.rssi.ru/ (Центральная научная медицинская библиотека (ЦНМб) ММА им. И. М. Сеченова), база данных “Российская медицина” - содержит информацию о первоисточниках, поступивших в ЦНМб после 1988 г. по разделам)

www.webmedinfo.ru/index.php (WEBmedINFO.RU - книги (по многим медицинским специальностям), программное обеспечение, справочники, атласы, тесты, рефераты, истории болезни статьи, поиск лекарств в аптеках разных городов.)

medlib.ws/ (Medlib.ws - новый проект (открыт 1 августа 2008 г.), предлагающий книги и статьи по многим медицинским специальностям, по народной медицине и здоровому образу жизни. Кроме того, на сайте размещены электронные справочники, тесты и видеоматериалы).

ucm.sibtechcenter.ru/ (“Сводный каталог периодики и аналитики по медицине” - реализуется с марта 2003 г. и объединяет 12 медицинских библиотек России различной ведомственной принадлежности. Основная цель проекта - создание сводного каталога периодики и аналитической росписи по медицине. В качестве лингвистического обеспечения ресурса выступают тезаурус MeSH и база данных “ Медики России” .)


  1. Вопросы для самоконтроля.

  1. Современные представления ноцицептивной системе. Антиноцицептивная система.

  2. Биологическое значение боли как сигнала опасности и повреждения. Вегетативные компоненты болевых реакций.

  3. Понятие о «физиологи­ческой» и «патологической» боли.

  4. Генераторные механизмы болевых синдромов периферического и центрального происхождения.

  5. Болевые синдромы в стоматологии.

  6. Патофизиологические основы обезболивания в стоматологии.

Зав.кафедрой Рогова Л.Н.


Для цитирования: Решетняк В.К., Кукушкин М.Л. Патофизиология боли при воспалении // РМЖ. 2004. №22. С. 1239

Слово боль объединяет в себе два противоречивых понятия. С одной стороны, по крылатому выражению древнеримских медиков: «боль - это сторожевой пес здоровья», а с другой стороны боль наряду с полезной, сигнальной функцией, предупреждающей организм об опасности, вызывает ряд патологических эффектов, таких как тягостное переживание, ограничение подвижности, нарушение микроциркуляции, снижение иммунной защиты, дизрегуляция функций органов и систем. Боль может приводить к выраженной дизрегуляционной патологии и может стать причиной шока и смерти [Кукушкин М.Л., Решетняк В.К., 2002]. Боль является наиболее распространенным признаком многих заболеваний. Эксперты ВОЗ считают, что 90% всех заболеваний связано с болью. Пациенты с хронической болью в пять раз чаще обращаются за медицинской помощью, по сравнению с остальными людьми в популяции. Не случайно первый раздел фундаментального 10-томного руководства по внутренним болезням, изданного под редакцией Т.Р. Харрисона (1993), посвящен описанию патофизиологических аспектов боли. Боль всегда субъективна, и ее восприятие зависит от интенсивности, характера и локализации повреждения, от природы повреждающего фактора, от обстоятельств, при которых произошло повреждение, от психологического состояния человека, его индивидуального жизненного опыта и социального статуса. Боль принято подразделять на пять компонентов: 1. Перцептуальный компонент, позволяющий определить место повреждения. 2. Эмоционально-аффективный компонент, формирующий неприятное психоэмоциональное переживание. 3. Вегетативный компонент, отражающий рефлекторные изменения работы внутренних органов и тонуса симпато-адреналовой системы. 4. Двигательный компонент, направленный на устранение действия повреждающих стимулов. 5. Когнитивный компонент, формирующий субъективное отношение к испытываемой в данной момент боли на основе накопленного опыта [Вальдман А.В, Игнатов Ю.Д.,1976]. Основными факторами, влияющими на восприятие боли, являются: 1. Пол. 2. Возраст. 3. Конституция. 4. Воспитание. 5. Предшествующий опыт. 6. Настроение. 7. Ожидание боли. 8. Страх. 9. Расса. 10. Национальность [МелзакР., 1991]. Прежде всего восприятие боли зависит от половой принадлежности индивидуума. При предъявлении одинаковых по интенсивности болевых раздражителей у женщин объективный показатель боли (расширение зрачка) выражен сильнее. При использовании позитронной эмиссионной томографии было выявлено, что у женщин во время болевого раздражения отмечается значительно более выраженная активация структур мозга. Специальное исследование, проведенное на новорожденных, показало, что девочки проявляют более выраженную мимическую реакцию в ответ на болевое раздражение, чем мальчики. Возраст также имеет существенное значение для восприятия боли. Клинические наблюдения в большинстве случаев свидетельствуют о том, что интенсивность болевого восприятия снижается с возрастом. Например, число случаев безболевых инфарктов увеличивается у пациентов старше 65 лет, увеличивается также число случаев безболевой язвы желудка. Однако эти феномены могут объясняться различными особенностями проявления патологических процессов в пожилом возрасте, а не снижением болевого восприятия как такового. При моделировании патологической боли аппликацией капсаицина на кожу у молодых и престарелых людей возникала боль и гипералгезия одинаковой интенсивности. Однако у престарелых отмечался удлиненный латентный период до начала болевых ощущений и до развития максимальной интенсивности боли. У престарелых людей ощущение боли и гипералгезия длятся дольше, чем у молодых. Был сделан вывод, что у престарелых пациентов снижена пластичность ЦНС при длительном болевом раздражении. В клинических условиях это проявляется более медленным восстановлением и длительной повышенной болевой чувствительностью после повреждения тканей [Решетняк В.К., Кукушкин М.Л., 2003]. Известно также, что этнические группы, проживающие в северных регионах планеты, легче переносят боль по сравнению с южанами [Мелзак Р., 1981]. Как уже было сказано выше, боль является многокомпонентным феноменом и ее восприятие зависит и от многих факторов. Поэтому дать четкое, всеобъемлющее определение боли довольно затруднительно. Наиболее популярным определением принято считать формулировку, предложенную группой экспертов Международной Ассоциации по изучению боли: «Боль - это неприятное ощущение и эмоциональное переживание, связанное с реальным или потенциальным повреждением тканей или описываемое в терминах такого повреждения». Данное определение свидетельствует о том, что ощущение боли может возникать не только при повреждении ткани или в условиях риска повреждения ткани, но даже при отсутствии какого-либо повреждения. В последнем случае определяющим механизмом возникновения боли является психоэмоциональное состояние человека (наличие депрессии, истерии или психоза). Иными словами, интерпретация человеком болевого ощущения, его эмоциональная реакция и поведение могут не коррелировать с тяжестью повреждения . Боль может быть разделена: на соматическую поверхностную (в случае повреждения кожных покровов), соматическую глубокую (при повреждении костно-мышечной системы) и висцеральную. Боль может возникать при повреждении структур периферической и/или центральной нервных систем, участвующих в проведении и анализе болевых сигналов. Нейропатической болью называют боль, возникающую при повреждении периферических нервов, а при повреждении структур ЦНС - центральной болью [Решетняк В.К., 1985]. Особую группу составляют психогенные боли, которые возникают вне зависимости от соматических, висцеральных или нейрональных повреждений и определяются психологическими и социальными факторами. По временным параметрам выделяют острую и хроническую боль. Острая боль - это новая, недавняя боль, неразрывно связанная с вызвавшим ее повреждением и, как правило, является симптомом какого-либо заболевания. Такая боль исчезает при устранении повреждения [Калюжный Л.В., 1984]. Хроническая боль часто приобретает статус самостоятельной болезни, продолжается длительный период времени и причина, вызвавшая эту боль в ряде случаев может не определяться. Международная ассоциация по изучению боли определяет ее как «боль, которая продолжается сверх нормального периода заживления». Главным отличием хронической боли от остройявляется не временной фактор, а качественно иные нейрофизиологические, биохимические, психологические и клинические соотношения. Формирование хронической боли существенно зависит от комплекса психологических факторов. Хроническая боль является излюбленной маской скрытой депрессии. Тесная связь депрессии с хронической болью объясняется общими биохимическими механизмами [Филатова Е.Г., Вейн А.М., 1999]. Восприятие боли обеспечивается сложноорганизованной ноцицептивной системой, включающей в себя особую группу периферических рецепторов и центральных нейронов, расположенных во многих структурах центральной нервной системы и реагирующих на повреждающее воздействие. Иерархическая, многоуровневая организация ноцицептивной системы соответствует нейропсихологическим представлениям о динамической локализации мозговых функций и отвергает представления о «болевом центре», как конкретной морфологической структуре, удаление которой способствовало бы устранению болевого синдрома. Данное утверждение подтверждается многочисленными клиническими наблюдениями, свидетельствующими о том, что нейрохирургическое разрушение какой-либо из ноцицептивных структур у больных, страдающих хроническими болевыми синдромами, приносит только временное облегчение. Болевые синдромы, возникающие вследствие активации ноцицептивных рецепторов при травме, воспалении, ишемии, растяжении тканей, относят к соматогенным болевым синдромам. Клинически соматогенные болевые синдромы проявляются наличием постоянной болезненности и/или повышением болевой чувствительности в зоне повреждения или воспаления. Пациенты, как правило, легко локализуют такие боли, четко определяют их интенсивность и характер. Со временем зона повышенной болевой чувствительности может расширяться и выходить за пределы поврежденных тканей. Участки с повышенной болевой чувствительностью к повреждающим стимулам называют зонами гипералгезии. Выделяют первичную и вторичную гипералгезию. Первичная гипералгезия охватывает поврежденные ткани, вторичная гипералгезия локализуется вне зоны повреждения. Психофизически области первичной кожной гипералгезии характеризуются снижением болевых порогов и болевой толерантности к повреждающим механическим и термическимстимулам. Зоны вторичной гипералгезии имеют нормальный болевой порог и сниженную болевую толерантность только к механическим раздражителям. Патофизиологической основой первичной гипералгезии является сенситизация (повышение чувствительности) ноцицепторов - А- ? и С-волокон к действию повреждающих стимулов. Сенситизация ноцицепторов проявляется снижением порога их активации, расширением их рецептивных полей, увеличением частоты и длительности разрядов в нервных волокнах, что приводит к усилению афферентного ноцицептивного потока [ Wall P . D ., Melzack R ., 1994]. Экзогенное или эндогенное повреждение запускает целый каскад патофизиологических процессов, затрагивающих всю ноцицептивную систему (от тканевых рецепторов до корковых нейронов), а также целый ряд других регуляторных систем организма. Экзогенное или эндогенное повреждение приводит к выбросу вазонейроактивных веществ, ведущих к развитию воспаления. Эти вазонейроактивные вещества или так называемые медиаторы воспаления вызывают не только типовые проявления воспаления, в том числе и выраженную болевую реакцию, но и повышают чувствительность ноцицепторов к последующим раздражениям. Различают несколько типов медиаторов воспаления. I. Плазменные медиаторы воспаления 1. Калликриин-кининовая ситема: брадикинин, каллидин 2. Компоненты комплимента: С2-С4, С3а, С5 - анафилотоксины, С3в - опсонин, С5-С9 - комплекс мембранной атаки 3. Система гемостаза и фибринолиза: XII фактор (фактор Хагемана), тромбин, фибриноген, фибринопептиды, плазмин и др. II. Клеточные медиаторы воспаления 1. Биогенные амины: гистамин, серотонин, катехоламины 2. Производные арахидоновой кислоты: - простагландины (ПГЕ1, ПГЕ2, ПГF2 ? , тромбоксан А2, простациклин I2), - лейкотриены (ЛТВ4, МРС (А) - медленно реагирующая субстанция анафилаксии), - хемотаксические липиды 3. Гранулоцитарные факторы: катионные белки, нейтральные и кислые протеазы, лизосомальные ферменты 4. Факторы хемотаксиса: нейтрофильный хемотаксический фактор, хемотаксический фактор эозинофилов и др. 5. Кислородные радикалы: О2-супероксид, Н2О2, NO, ОН-гидроксильная группа 6. Адгезивные молекулы: селектины, интегрины 7. Цитокины: ИЛ-1, ИЛ-6, фактор некроза опухоли, хемокины, интерфероны, колониестимулирующий фактор и др. 8. Нуклеотиды и нуклеозиды: АТФ, АДФ, аденозин 9. Нейромедиаторы и нейропептиды: субстанция Р, кальцитонин ген-родственный пептид, нейрокинин А, глутамат, аспартат, норадреналин, ацетилхолин. В настоящее время выделяют более 30 нейрохимических соединений, участвующих в механизмах возбуждения и торможения ноцицептивных нейронов в центральной нервной системе. Среди многочисленной группы нейромедиаторов, нейрогормонов и нейромодуляторов, опосредующих проведение ноцицептивных сигналов, существуют как простые молекулы - возбуждающие аминокислоты - ВАК (глутамат, аспартат), так и сложные высокомолекулярные соединения (субстанция Р, нейрокинин А, кальцитонин ген-родственный пептид и др.). ВАК играют важную роль в механизмах ноцицепции. Глутамат содержится более чем в половине нейронов дорзальных ганглиев и высвобождается под действием ноцицептивных импульсов. ВАК взаимодействуют с несколькими подтипами глутаматных рецепторов. Это прежде всего ионотропные рецепторы: NMDA-рецепторы (N-метил-D-аспартат) и АМРА-рецепторы (? -амино-3-гидрокси-5-метил-4- изоксазол-пропионовой кислоты), а также металоболотропные глутаматные рецепторы . При активации этих рецепторов происходит интенсивное поступление ионов Са 2+ в клетку и изменение ее функциональной активности. Формируется стойкая гипервозбудимость нейронов и возникает гипералгезия. Необходимо подчеркнуть, что возникшая вследствие повреждения тканей сенситизация ноцицептивных нейронов может несколько часов или дней сохраняться и после прекращения поступления ноцицептивных импульсов с периферии. Иными словами, если уже произошла гиперактивация ноцицептивных нейронов, то она не нуждается в дополнительной подпитке импульсами из места повреждения. Долговременное повышение возбудимости ноцицептивных нейронов связывают с активацией их генетического аппарата - экспрессией ранних, немедленно реагирующих генов, таких как c-fos, c-jun, junB и другие. В частности, продемонстрирована положительная корреляция между количеством fos -позитивных нейронов и степенью боли. В механизмах активации протоонкогенов важная роль отводится ионам Са 2+ . При повышении концентрации ионов Са 2+ в цитозоле, вследствие усиленного их входа через регулируемые NMDA-рецепторами Са-каналы, происходит экспрессия с-fos, с-jun , белковые продукты которых участвуют в регуляции долговременной возбудимости мембраны клетки . В последнее время важное значение в механизмах сенситизации ноцицептивных нейронов придается оксиду азота (NO), который в мозге выполняет роль нетипичного внесинаптического медиатора. Малые размеры и отсутствие заряда позволяют NO проникать через плазматическую мембрану и участвовать в межклеточной передаче сигнала, функционально соединяя пост- и пресинаптические нейроны. NO образуется из L-аргинина в нейронах, содержащих фермент NO-синтетазу. NO выделяется из клеток при NMDA-индуцируемом возбуждении и взаимодействует с пресинаптическими терминалями С-афферентов, усиливая выброс из них возбуждающей аминокислоты глутамата и нейрокининов [Кукушкин М.Л. и др., 2002; Шуматов В.Б. и др., 2002]. Оксид азота играет ключевую роль в воспалительных процессах. Локальное введение ингибиторов NО синтазы в сустав эффективно блокирует ноцицептивную передачу и воспаление. Все это свидетельствует, что оксид азота образуется в воспаленных суставах [ Lawand N . B . et al ., 2000]. Кинины являются одними из наиболее мощных алгогенных модуляторов. Они быстро образуются при повреждении ткани и вызывают большинство эффектов, наблюдаемых при воспалении: вазодилатацию, увеличение сосудистой проницаемости, экстравазацию плазмы, миграцию клеток, боль и гипералгезию. Они активируют С-волокна, что приводит к нейрогенному воспалению за счет выброса из нервных терминалей субстанции Р, кальцитонин ген-родственного пептида и других нейромедиаторов. Прямой возбуждающий эффект брадикинина на чувствительные нервные окончания опосредуется B2-рецепторами и связан с активацией мембранной фосфолипазы С. Непрямое возбуждающее действие брадикинина на окончания нервных афферентов обусловлено его воздействием на различные тканевые элементы (эндотелиальные клетки, фибробласты, тучные клетки, макрофаги и нейтрофилы) и стимулированием образования в них медиаторов воспаления, которые, взаимодействуя с соответствующими рецепторами на нервных окончаниях, активируют мембранную аденилатциклазу. В свою очередь, аденилатциклаза и фосфолипаза С стимулируют образование ферментов, фосфорилирующих белки ионных каналов. Результатом фосфорилирования белков ионных каналов является изменение проницаемости мембраны для ионов, что отражается на возбудимости нервных окончаний и способности генерировать нервные импульсы. Брадикинин, действуя через В2-рецепторы, стимулирует образование арахидоновой кислоты с последующим образованием простагландинов, простациклинов, тромбоксанов и лейкотриенов. Эти вещества, обладая выраженным самостоятельным алгогенным действием, в свою очередь, потенциируют способность гистамина, серотонина и брадикинина сенситизировать нервные окончания. В результате этого из немиелинизированных С-афферентов усиливается выброс тахикининов (субстанции Р и нейрокинина А), которые, увеличивая сосудистую проницаемость, еще больше повышают локальную концентрацию медиаторов воспаления [Решетняк В.К., Кукушкин М.Л., 2001]. Применение глюкокортикоидов препятствует образованию арахидоновой кислоты за счет подавления активности фосфолипазы А2. В свою очередь, нестероидные противовоспалительные препараты (НПВП) препятствуют образованию циклических эндопероксидов, в частности, простагландинов. Под общим названием НПВП объединяются различные по химическому строению вещества, оказывающие ингибирующее влияние на циклооксигеназу. Все НПВП в той или иной степени обладают противовоспалительным, жаропонижающим и анальгетическим эффектом. К сожалению, практически все НПВП при длительном применении обладают выраженным побочным действием. Они вызывают диспепсию, пептические язвы и желудочно-кишечные кровотечения. Может возникать также необратимое снижение клубочковой фильтрации, ведущее к интерстициальному нефриту и острой почечной недостаточности. НПВП оказывают отрицательное действие на микроциркуляцию, могут вызывать бронхоспазм [Филатова Е.Г., Вейн А.М., 1999; Чичасова Н.В., 2001; Насонов Е.Л., 2001]. В настоящее время известно, что существует две разновидности циклооксигеназ. Циклооксигеназа-1 (ЦОГ-1) образуется в условиях нормы, а циклооксигеназа-2 (ЦОГ-2) образуется в процессе воспаления. В настоящее время разработка эффективных НПВП направлена на создание избирательных ингибиторов ЦОГ-2, которые в отличие от неселективных ингибиторов обладают значительно менее выраженным побочным действием. Вместе с тем имеются сведения о том, что препараты со «сбалансированной» ингибирующей активностью по отношению к ЦОГ-1 и ЦОГ-2 могут обладать более выраженной противовоспалительной и анальгетической активностью по сравнению со специфическими ингибиторами ЦОГ-2 [Насонов Е.Л., 2001]. Наряду с разработкой препаратов, ингибирующих ЦОГ-1 и ЦОГ-2, ведутся поиски принципиально новых анальгетических препаратов. Предполагается, что за хроническое воспаление ответственны В1-рецепторы. Антагонисты этих рецепторов значительно снижают проявления воспаления. Кроме того брадикинин участвует в выработке диацилглицерола и активирует протеинкиназу С, что, в свою очередь, усиливает сенситизацию нервных клеток. Протеинкиназа С играет очень важную роль в ноцицепции, и сейчас проводятся поиски препаратов, способных подавлять ее активность [ Calixto J . B . et al ., 2000]. Помимо синтеза и выброса медиаторов воспаления, гипервозбудимости спинальных ноцицептивных нейронов и усиления афферентного потока, идущего в центральные структуры мозга, определенную роль играет активность симпатической нервной системы. Установлено, что повышение чувствительности терминалей ноцицептивных афферентов при активации постганглионарных симпатических волокон опосредуется двумя путями. Во-первых, за счет повышения сосудистой проницаемости в зоне повреждения и увеличения концентрации медиаторов воспаления (непрямой путь) и, во-вторых, за счет прямого воздействия нейротрансмиттеров симпатической нервной системы - норадреналина и адреналина на? 2-адренорецепторы, расположенные на мембране ноцицепторов. При воспалении происходит активация так называемых «молчащих» ноцицептивных нейронов, которые в отсутствие воспаления не отвечают на различного рода ноцицептивные раздражения. Наряду с усилением афферентного ноцицептивного потока при воспалении отмечается усиление нисходящего контроля . Это происходит в результате активации антиноцицептивной системы. Она активируется, когда болевой сигнал достигает антиноцицептивных структур ствола мозга, таламуса и коры больших полушарий мозга [Решетняк В.К., Кукушкин М.Л., 2001]. Активация околоводопроводного серого вещества и большого ядра шва вызывает высвобождение эндорфинов и энкефалинов, которые связываются с рецепторами, запуская серию физико-химических изменений, уменьшающих боль. Существуют три основных типа опиатных рецепторов: µ -, ? - и? -рецепторы. Наибольшее число используемых анальгетиков оказывают свое действие благодаря взаимодействию с µ -рецепторами. До недавнего времени было принято считать, что опиоиды действуют исключительно на нервную систему и вызывают анальгетический эффект за счет взаимодействия с опиоидными рецепторами, локализованными в головном и спинном мозге. Однако опиатные рецепторы и их лиганды обнаружены на иммунных клетках , в периферических нервах , в воспаленных тканях . В настоящее время известно, что 70% рецепторов к эндорфину и энкефалинам расположены в пресинаптической мембране ноцицепторов и чаще всего болевой сигнал подавляется (перед тем как достигнуть задних рогов спинного мозга). Динорфин активирует? -рецепторы и ингибирует вставочные нейроны, что приводит к высвобождению ГАМК, которая вызывает гиперполяризацию клеток заднего рога и ингибирует дальнейшую передачу сигнала [Игнатов Ю.Д., Зайцев А.А., 2001]. Опиоидные рецепторы располагаются в спинном мозге главным образом вокруг терминалей С-волокон в I пластине дорзальных рогов . Они синтезируются в телах малых клеток дорзальных ганглиев и транспортируются проксимально и дистально по аксонам . Опиоидные рецепторы неактивны в невоспаленных тканях, после начала воспаления эти рецепторы активируются в течение нескольких часов . Синтез опиатных рецепторов в нейронах ганглиев дорзальных рогов также увеличивается при воспалении, но этот процесс, включая время транспортировки по аксонам, составляет несколько дней [ Schafer M . et al ., 1995]. В клинических исследованиях установлено, что инъекция 1 мг морфина в коленный сустав после удаления мениска дает выраженный продолжительный анальгетический эффект . В дальнейшем было показано наличие опиатных рецепторов в воспаленной синовиальной ткани . Следует отметить, что способность опиатов вызывать местный анальгетический эффект при их аппликации на ткани была описана еще в XVIII веке. Так, английский врач Хеберден (Heberden) в 1774 году опубликовал работу, в которой описал положительный эффект аппликации экстракта опия при лечении геморроидальных болей . Показан хороший анальгетический эффект диаморфина при его локальной аппликации на места пролежней и на малигнизированные участки кожи [ Back L . N . and Finlay I ., 1995; Krainik M . and Zylicz Z ., 1997], при удалении зубов в условиях выраженного воспаления окружающей ткани . Антиноцицептивные эффекты (возникающие в течение нескольких минут после аппликации опиоидов) зависят прежде всего от блокады распространения потенциалов действия, а также от уменьшения выброса возбуждающих медиаторов, в частности, субстанции Р из нервных окончаний . Морфин плохо абсорбируется через нормальную кожу и хорошо всасывается через воспаленную. Поэтому аппликация морфина на кожу дает только локальный анальгетический эффект и не действует системно. В последние годы все большее число авторов начинают говорить о целесообразности применения сбалансированной аналгезии, т.е. сочетанном применении НПВП и опиатных анальгетиков, что дает возможность снизить дозы и соответственно побочные эффекты как первых, так и вторых [Игнатов Ю.Д., Зайцев А.А., 2001; Осипова Н.А., 1994; Филатова Е.Г., Вейн А.М., 1999; Насонов Е.Л., 2001]. Опиоиды все чаще начинают применяться при артритических болях [Игнатов Ю.Д., Зайцев А.А., 2001]. В частности, в настоящее время с этой целью используется болюсная форма трамадола. Этот препарат является агонистом-антагонистом [Машковский М.Д., 1993], и поэтому вероятность возникновения физической зависимости при использовании адекватных доз невелика. Известно, что опиоиды, относящиеся к группе агонистов-антагонистов, в значительно меньшей степени вызывают физическую зависимость по сравнению с истинными опиатами [Филатова Е.Г., Вейн А.М., 1999]. Существует мнение, что опиоиды, используемые в корректных дозах, более безопасны, чем традиционные НПВС [Игнатов Ю.Д., Зайцев А.А., 2001]. Одним из важнейших факторов хронизации боли является присоединение депрессии. По мнению некоторых авторов, при лечении хронической боли необходимо всегда использовать антидепрессанты, независимо от ее патогенеза [Филатова Е.Г., Вейн А.М., 1999]. Противоболевой эффект акнтидепрессантов достигается за счет трех механизмов. Первый - уменьшение депрессивной симптоматики. Второй - антидепрессанты активируют серотонические и норадренэргические антиноцицептивные системы. Третий механизм заключается в том, что амитриптилин и другие трициклические антидепрессанты действуют как антагонисты NMDA-рецепторов и взаимодействуют с эндогенной аденозиновой системой. Таким образом, в патогенезе болевых синдромов, возникающих при воспалении, участвует большое число различных нейрофизиологических и нейрохимических механизмов, которые неизбежно приводят к изменениям в психофизиологическом статусе пациента. Поэтому наряду с противовоспалительными и анальгетическими препаратами для проведения комплексной патогенетически обоснованной терапии, как правило, необходимо назначать и антидепрессанты.

Литература
1. Вальдман А.В., Игнатов Ю.Д. Центральные механизмы боли. - Л.: Нау-
ка, 1976. 191.
2. Внутренние болезни. В 10 книгах. Книга 1. Пер с англ. Под ред. Е.
Браунвальда, К.Дж. Иссельбахера, Р.Г. Петерсдорфа и др. - М.: Меди-
цина, 1993, 560.
3. Игнатов Ю.Д., Зайцев А.А. Современные аспекты терапии боли: опи-
аты. Качественная клиническая практика. 2001, 2, 2-13.
4. Калюжный Л.В. Физиологические механизмы регуляции болевой чувст-
вительности. М.: Медицина, 1984, 215.
5. Кукушкин М.Л. Графова В.Н., Смирнова В.И. и др. Роль оксида азо-
та в механизмах развития болевого синдрома // Анестезиол. и реани-
матол., 2002, 4, 4-6.
6. Кукушкин М.Л., Решетняк В.К. Дизрегуляционные механизмы патологи-
ческой боли. В Кн: Дизрегуляционная патология. (под ред. Г.Н. Кры-
жановского) М.: Медицина, 2002. 616 -634.
7. Машковский М.Д. Лекарственные средства. 1993, М. Медицина, 763.
8. Мелзак Р. Загадка боли. Пер. с англ. М.: Медицина, 1981, 231 с.
9. Насонов Е.Л. Аналгетические эффекты нестероидных противовоспалительных препаратов при заболеваниях опорно-двигательного аппарата: баланс эффективности и безопасности. Consilium medicum, 2001, 5, 209-215.
10. Осипова Н.А. Современные принципы клинического применения анальгетиков центрального действия. Анест. и реаниматол. 1994, 4, 16-20.
11. Решетняк В.К. Нейрофизиологические основы боли и рефлекторного
обезболивания. Итоги науки и техники. ВИНИТИ. Физиол. человека и жи-
вотных, 1985. 29. 39-103.
12. Решетняк В.К., Кукушкин М.Л. Боль: физиологические и патофизио-
логические аспекты. В Кн: Актуальные проблемы патофизиологии (из-
бранные лекции). Под ред. Б.Б. Мороза. М.: Медицина, 2001, 354-389.
13. Решетняк В.К., Кукушкин М.Л. Возрастные и половые различия вос-
приятия боли // Клиническая геронтология, 2003, Т 9, №6, 34-38.
14. Филатова Е.Г., Вейн А.М. Фармакология боли. Русский медицинский
журнал, 1999, 9, 410- 418.
15. Чичасова Н.В. Локальное применение анальгетических средств при
заболеваниях суставов и позвоночника. Consilium medicum, 2001, 5,
215-217.
16. Шуматов В.Б., Шуматова Т.А., Балашова Т.В. Влияние эпидуральной
анальгезии морфином на NO- образующую активность ноцицептивных нейронов спинальных ганглиев и спинного мозга. Анестезиол. и реанима-
тол., 2002, 4, 6-8.
17. Back L.N., Finlay I. Analgesic effect of topical opioids on
painful skin ulcers. // J. Pain Symptom Manage, 1995, 10, 493.
18. Cabot P.J., Cramond T., Smith M.T. Quantitative autoradiography
of peripheral opioid binding sites in rat lung. Eur. J. Pharmacol.,
1996, 310, 47-53.
19. Calixto J.B., Cabrini D.A., Ferreria J.,Kinins in pain and
inflammation. Pain, 2000, 87, 1-5
20. Coderre T.J., Katz J., Vaccarino A.L., Melzack R. Contribution
of central neuroplasticity to pathological pain: review of clinical
and experimental evidence. Pain, 1993, 52, 259-285.
21. Dickenson A.H. Where and how do opioids act. Proceedings of the
7th World Congress on Pain, Progress in Pain Research and Management,
edited by G.F. Gebhart, D.L. Hammond and T.S. Jensen, IASP Press,
Seattle, 1994, 2, 525-552.
22. Dickenson A.H. Pharmacology of pain transmission and control.
Pain, 1996. An Updated Review Refresher Course Syllabus (8th World
Congress on Pain), IASP Press, Seattle, WA, 1996, 113-121.
23. Hassan A.H.S., Ableitner A., Stein C., Herz A. inflamation of
the rat paw enhances axonal transport of opioid receptors in the sciatic
nerve and increases their density in the inflamed tissue.//
Neurosci.., 1993, 55, P.185-195.
24. Krainik M., Zylicz Z. Topical morphine for malignant cutaneouspain. Palliative. Med., 1997, 11, 325.
25. Krajnik M., Zylicz Z., Finlay I. et al. Potential uses of topical
opioids in palliative care-report of 6 cases. Pain, 1999, 80,
121-125.
26. Lawand N.B., McNearney T., Wtstlund N. Amino acid release into
the knee joint: key role in nociception and inflammation, Pain, 2000,
86, 69-74.
27. Lawrence A.J., Joshi G.P., Michalkiewicz A. et al. Evidence for
analgesia mediated by peripheral opioid receptors in inflamed synovial
tissue.// Eur. J. Clin. Pharmacol., 1992, 43, P. 351-355.
28. Likar R., Sittl R., Gragger K. et al. Peripheral morphine analgesia
in dental surgery. Pain, 1998, 76, 145-150.
29. Likar R., Sittl R., Gragger K. et al. Opiate receptors. Its
demonstration in nervous tissue.Science, 1973, 179, 1011-1014.
30. Przewlocki R., Hassan A.H.S., Lason W. et al. Gene expression
and localization of opioid peptides in immune cells of inflamed tissue:
functional role in antinociception. Neurosci., 1992, 48,
491-500.
31. Ren K., Dubner R. Enhanced descending modulation of nociception
in rats with persistent hindpaw inflammation. J. neurophysiol, 1996,
76, 3025-3037.
32. Schafer M., Imai Y., Uhl G.R., Stein C. Inflammation enhances
peripheral mu-opioid receptor-mediated analgesia, but not m-opioid
receptor transcription in dorsal root ganglia.// Eur. J. Pharmacol.,
1995, 279, 165-169.
33. Stein C., Comisel K., Haimerl E. et al. Analgesic effect of
intraarticular morphine after arthroscopic knee surgery. // N. Engl.
Med., 1991; 325: p. 1123-1126.
34. Torebjork E., Nociceptor dynamics in humans, In: G.F. Gebhart,
D.L. Hammond and T.S. Jensen (Eds.), Proceedings of the 7th World
Congress on Pain. Progress in Pain Research and Management, IASP
Press, Seattle, WA, 1994, 2, pp. 277-284.
35. Wall P.D., Melzack R. (Eds) Textbook of pain, 3rd ed.,Churchill
Livingstone, Edinbugh, 1994.
36. Wei F., Dubner R., Ren K. Nucleus reticularis gigantocellularis
and nucleus raphe magnus in the brain stem exert opposite effects on
behavioral hyperalgesia and spinal Fos protein expression after
peripheral inflammation. Pain, 1999, 80, 127-141.
37. Wei R., Ren K., Dubner R. Inflammation-induced Fos protein
expression in the rat spinal cord is enhanced following dorsolateral
or ventrolateral funiculus lesions. Brain Res., 1998, 782,
116-141.
38. Wilcax G.L. IASP Refresher Courses on Pain Management, 1999,
573-591.
39. Willis W.D. Signal transduction mechanisms. Pain 1996 - An
Updated Review. Refresher Course Syllabus (8th World Congress on
Pain), IASP Press, Seattle, WA, 1996, 527-531.
40. Zimlichman R., Gefel D., Eliahou H. et al. Expression of opioid
receptors during heart ontogeny in normotensive and hypertensive
rats. // Circulation, 1996; 93: p. 1020-1025.