Что такое лимитирующий фактор в экологии. Лимитирующие факторы. Закон минимума (закон Ю. Либиха), определение лимитирующего фактора

Доклад Нестеровой А.

Лимитирующие факторы и биоразнообразие. Классификации факторов. Ключевые и лимитирующие факторы в наземной и водной средах, их влияние на видовое разнообразие

Основные определения

Взаимоотношение особой или групп особей с условиями окружающей среды изучает аутэкология. Любой организм в среде своего обитания подвергается воздействию разнообразных климатических, эдафических и биотических факторов, поэтому существование любого организма или любой группы организмов зависит от комплекса определенных условий. Любое условие, приближающееся к пределу толерантности или превышающее его, называется лимитирующим условием, или экологическим фактором. По определению, экологический фактор – это любой нерасчленяемый далее элемент среды, способный оказывать косвенное или прямое влияние на живые организмы хотя бы на протяжении одной из фаз их индивидуального развития . Какими бы разными по природе не были экологические факторы, результаты их действия экологически сравнимы, так как они всегда влияют на жизнедеятельность организмов, и, следовательно, на численность популяций.

Первым, кто начал изучение влияния разнообразных факторов на рост растений был Ю. Либих. Он установил, что урожай культур часто лимитируется не теми элементами питания, которые требуются в больших количествах, такими, например, как CO 2 и вода (поскольку данные вещества обычно присутствуют в среде в избытке), а теми, которые требуются в ничтожных количествах и которых в почве очень мало (например, цинк (Zn). Таким образом, в 1840 году Ю. Либихом была сформулирована идея о том, что выносливость организма определяется самым слабым звеном в цепи его экологических потребностей. Данный вывод известен в науке как либиховский «закон минимума». Действие данного закона наглядно показано на рис.1 .

Рис.1. Модель, иллюстрирующая действие закона минимума

Высота клепок бочки соответствует напряженности экологических факторов, жидкость в бочке – «жизненной силе». Как видно, «жизненная сила» вытекает через самую низкую клепку, в месте, где значение экологического фактора минимально.

Ограничивающие факторы среды определяют географический ареал вида. Природа этих факторов может быть различной (рис. 2). Так, продвижение вида на север может лимитироваться недостатком тепла, в аридные районы – недостатком влаги или слишком высокими температурами. Ограничивающим распространение фактором могут служить и биотические отношения, например, занятость территории более сильным конкурентом или недостаток опылителей для растений. Так, опыление инжира всецело зависит от единственного вида насекомых – осы Blastophaga psenes. Родина этого дерева – Средиземноморье. Завезенный в Калифорнию инжир не плодоносил до тех пор, пока туда не завезли ос-опылителей. Распространение бобовых в Арктике ограничивается распределением опыляющих их шмелей. На острове Диксон, где нет шмелей, не встречаются и бобовые, хотя по температурным условиям существование там этих растений еще допустимо .

Рис.2. Глубокий снежный покров – лимитирующий фактор в распространении оленей

Последующие многочисленные исследования показали, что для успешного применения данного закона, необходимо его дополнить двумя вспомогательными принципами. Первый – ограничительный. Он указывает, что закон Либиха строго применим только в условиях стационарного состояния, когда входящие и выходящие потоки веществ и энергии в экосистеме находятся в равновесии. Только в данном случае скорость функционирования экосистем управляется законом минимума.

Второй вспомогательный принцип относится к взаимодействию различных факторов. Высокая концентрация или доступность одного вещества или действие другого (не минимального) фактора может изменять скорость потребления элемента питания, содержащегося в минимальном количестве. Иногда организм способен заменять дефицитный элемент хотя бы частично другим близкородственным элементом. Например, в местах, где много стронция (Sr), в раковинах моллюсков кальций (Ca) до некоторой степени заменяется стронцием. Также выявлено, что некоторым растениям требуется меньше Zn, если они растут не на ярком солнечном свету, а в тени. Следовательно, для данной группы растений концентрация Zn в тени является менее лимитирующим фактором, чем на свету .

Лимитирующим фактором может быть не только недостаток, но и избыток таких факторов, как свет, тепло, вода. Представление о лимитирующем влиянии экологического максимума связано с именем В. Шелфорда. Пределы выносливости живых организмов определяются значениями как экологического минимума, так и экологического максимума. Диапазон между двумя этими величинами принято называть пределом толерантности. В. Шелфордом был сформулирован «закон толерантности», который гласит: «лимитирующим может быть как минимальное, так и максимальное значение экологического фактора; диапазон между минимумом и максимумом определяет область выносливости (толерантности) организма к данному фактору» .

Модель толерантности, как правило, имеет вид купола (рис.3). Рассмотрение данного купола толерантности позволяет отметить следующие закономерности:

    При определенных значениях фактора, создаются наиболее благоприятные для жизнедеятельности организмов условия; эти условия называются оптимальными, а соответствующая им область на шкале факторов – оптимумом ;

    Чем больше отклоняются значения факторов от оптимума, тем сильнее угнетается жизнедеятельность особей, в связи с этим выделяется зона их нормальной жизнедеятельности ;

    Диапазон значений факторов, за которыми нормальная жизнедеятельность особей становится невозможной, называется пределом выносливости ;

    Максимально и минимально переносимые значения фактора – это критические точки , за пределами которых существование уже невозможно, наступает смерть.

Рис.3. Купол толерантности: существование вида определяется его выносливостью по отношению к воздействию абиотических факторов. Когда значение фактора слишком низкое или высокое, вид гибнет

Закон толерантности был дополнен в 1975г Ю.Одумом следующими постулатами:

Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон в отношении другого;

Организмы с широким диапазоном толерантности в отношении всех экологических факторов обычно наиболее распространены;

Если условия по одному экологическому фактору не оптимальны для вида, то диапазон толерантности может сузиться и в отношении других экологических факторов (например, если содержание азота в почве мало, то требуется больше воды для злаков);

Диапазоны толерантности к отдельным факторам и их комбинациям различны;

Период размножения является критическим для всех организмов, поэтому именно в этот период увеличивается число лимитирующих факторов.

Чтобы выразить степень толерантности организмов к различным факторам среды используют приставку «стено» (от греческого stenos - узкий) или «эври» (от греч. ευρί - «широкий»). Существуют стенобионтные и эврибионтные виды. Стенобионты живут в пределах узкого диапазона фактора, а эврибионты – в пределах широкого диапазона (рис.4).

Рис.4. Экологическая пластичность видов

Эврибионты являются широко распространенными, так как выдерживают значительные отклонения от оптимальных значений разных факторов, обладают широким диапазоном выносливости и живут в различных, порой резко отличающихся друг от друга условиях среды.Например, лисица относится к эврибионтным организмам, так как она обитает от лесотундры до степи, питаясь и животной, и растительной пищей.

Другой тип организмов - узко приспособленные, не переносящие резких колебаний температуры, влажности и т. д. Бегемот и буйвол – животные только районов высокой влажности и температуры. Таковы почти все растения влажных тропических лесов. Икра гольца развивается при температуре 0–12° С с оптимумом около 4° С, а икра лягушки развивается при температуре 0–30° С с оптимумом около 22° С. В первом случае можно говорить о стенотермности, а во втором случае – об эвритермности. Как видно, для каждого организма и в целом для вида есть свой оптимум условий. Он неодинаков не только для разных видов, находящихся в различных условиях, но и для отдельных стадий развития одного организма. Для каждого вида характерна своя степень выносливости, например, растения и животные умеренного пояса могут существовать в довольно широком температурном диапазоне, виды же тропического климата не выдерживают значительных её колебаний.

Классификация экологических факторов

Традиционно все экологические факторы делят на две основные группы: абиотические и биотические. Первая группа включает комплекс климатических факторов (свет, температура, влажность, давление и др.), а также физические свойства почвы и воды. Ко второй группе относятся факторы питания и различные формы взаимодействия особей и видов между собой.

В природе особи каждого вида участвуют одновременно в межвидовой и внутривидовой конкуренции. Межвидовая конкуренция способствует сужению диапазона используемых популяцией местообитаний и ресурсов, в то время как внутривидовая конкуренция, наоборот, расширяет пределы выносливости и уменьшает специализацию популяции.

Однако нельзя назвать представленную классификацию исчерпывающей, так как изменения микроклимата могут быть обусловлены как абиотическими факторами среды, так и биотическими факторами. Например, скопления многих животных часто приводят к росту температуры и относительной влажности.

В связи с недостаточной четкостью представленной классификации, был разработан ряд других, среди которых:

Все многообразие действующих в природе экологических факторов может быть обобщено в виде «синтетической системы», представленной в табл.1:

Классификация

Климатические факторы

Первичные периодические факторы

Температура, свет

Вторичные периодические факторы

влажность

Непериодические факторы

Внезапный шквальной ветер, значительная ионизация атмосферы, грозы, пожары

Физические неклиматические факторы

Факторы водной среды

Эдафические факторы

Водный режим, механический состав, гранулометрический состав, засоленность

Факторы питания

Количество пищи

Качество пищи

Биотические факторы

Внутривидовые взаимодействия

Межвидовые взаимодействия

Табл.1. «Синтетическая система» экологических факторов

К числу важнейших экологических факторов, определяющих зональные типы биомов, относятся температурный режим и количество атмосферных осадков. Диапазон этих факторов на Земле велик, и каждому градиенту тепла и влаги отвечает специфический набор видов (рис.5).

Рис.5. Зависимость зональных типов биомов от соотношения температурного режима и количества атмосферных осадков

В разных зонах можно выделить адаптивные группы видов, наиболее характерные для соответствующих типов биомов (тундровые, таежные, неморальные, степные, пустынные и т.п.) или группы видов, отражающих связь с конкретными местообитаниями: «луговые» и «болотные» и т.п. Все эти группы объединяются понятием жизненные формы (рис.6).

Рис.6. Растения тундры. 1. Голубика. 2. Брусника. 3. Вороника чёрная. 4. Морошка. 5. Ллойдия поздняя. 6. Лук скорода. 7. Княженика. 8. Пушица влагалищная. 9. Осока мечелистная. 10. Берёзка карликовая. 11. Ива клинолистная

Экологическая классификация жизненных форм выявляет возможные пути приспособления организмов к среде обитания. Остановимся подробнее на рассмотрении адаптации организмов к наземной и водной средам обитания.

Ключевые и лимитирующие факторы в водной среде

Как следует из самого названия, ключевые факторы отличаются от лимитирующих своей первостепенной важностью для жизнедеятельности организмов. К ключевым факторам как в наземной, так и в водной средах можно отнести температуру, свет, кислород и соленость. Водная среда является наиболее равномерной по всему объёму, основные проявления стратификации (слоистости) наблюдаются по температуре и солености.

Водную среду обитания образуют важнейшие компоненты гидросферы Земли, а именно: мировой океан, континентальные воды и подземные воды. К континентальным водам относятся реки, озера и ледники.

Большая часть поверхности Земли (около 366 из 510 млн. км 2 , или 72%) покрыта водой. Распространение и жизнедеятельность организмов в водной среде в значительной степени зависят от ее химического состава. Недостатка в воде как в химическом веществе в водных средах нет, за исключением случаев пересыхания водоемов. Тем не менее, проблемы, связанные с водой, возникают даже у водных организмов.

Особенности водной среды обитания и приспособленность организмов к специфическим экологическим факторам:

1. Низкое содержание растворенного кислорода. Содержание О 2 в атмосфере составляет 210 мл/л, растворимость О 2 в воде зависит от температуры: при 0°С составляет 10,3 мл/л, а при 20°С – 6,6 мл/л. Таким образом, содержание кислорода в воде примерно в 20–30 раз меньше, чем в атмосфере. При этом фактическое содержание кислорода может снижаться до 1 мл/л. Поэтому содержание кислорода является лимитирующим (ограничивающим) фактором для большинства гидробионтов.

Поверхностные слои воды содержат больше кислорода, а в глубинные слои кислород может поступать или путем диффузии (которая в воде протекает очень медленно), или за счет вертикального перемешивания водных масс.

2. Высокая теплоемкость и высокая теплопроводность воды обеспечивают выравнивание температур. По отношению к температурному фактору все организмы делятся на пойкилотермные (неспособные регулировать температуру тела) и гомойотермные (поддерживающие постоянную температуру тела).

Прямое влияние температуры на пойкилотермных гидробионтов заключается в изменении характера обмена веществ. Высокая теплопроводность воды приводит к появлению теплоизолирующих (жировых) слоев у гомейотермных (теплокровных) животных. Многие гидробионты защищаются от льдообразования в клетках, повышая внутриклеточное содержание антифризов (антифризы – вещества, снижающие температуру замерзания воды).

3. Сравнительно высокая вязкость воды. Оказывает наибольшее влияние на планктонные организмы (уменьшает скорость погружения и обеспечивает их парение в толще воды) и на нектонные организмы, передвигающиеся с большой скоростью (создает сопротивление). Для планктона характерно увеличение поверхности тела по сравнению с объемом тела, что облегчает парение. Для нектона характерна обтекаемая форма тела, что облегчает активное передвижение.

4. Высокая электропроводность воды делает возможным развитие электрических органов: высоковольтных (защита, нападение) и низковольтных (получение информации).

5. Интенсивное поглощение света в воде: красная часть спектра поглощается водой, а синяя часть – рассеивается; в итоге красные лучи доходят лишь до глубины 10 м, а сине-зеленые – до 160 м и более. По освещенности выделяют зоны:

Эуфотическая зона – благоприятные условия для фотосинтеза;

Дисфотическая, или сумеречная зона – неблагоприятные условия для фотосинтеза (здесь обитают, преимущественно, красные водоросли и цианобактерии);

Афотическая зона – фотосинтез невозможен.

6. Доступность водорастворимых веществ (ионы Na + , K + , Cl – , NH4 + , NO3 –) и недоступность водонерастворимых веществ (связанные ионы Ca 2+ , ионы тяжелых металлов, фосфаты). Доступность элементов оказывает наибольшее влияние на водные растения. Лимитирующими факторами для водорослей являются концентрации биогенов: фосфатов и нитратов. По содержанию биогенов различают:

Эутрофные воды – высокое содержание биогенов;

Мезотрофные воды – умеренное содержание биогенов; олиготрофные воды – низкое содержание биогенов;

Дистрофные воды – высокое содержание биогенов в связанном состоянии.

7. Общая соленость воды оказывает наибольшее влияние на животных.

В соленых водах (гипертоническая среда) возникает проблема сохранения воды в пределах организма. У Одноклеточных животных реже сокращаются сократительные вакуоли, у Многоклеточных – развиваются дистальные (всасывающие) части почечных канальцев, нефридиев и других органов выделения. У костистых рыб избыток солей выделяется через жабры.

В пресных водах (гипотоническая среда) возникает проблема удаления воды из организма. У одноклеточных животных чаще сокращаются сократительные вакуоли, у многоклеточных – развиваются почечные (мальпигиевы) клубочки, проксимальные части почечных канальцев, нефридиев и других органов выделения, обеспечивающие интенсивное образование разбавленной мочи.

В разных зонах Мирового океана существуют свои особенности действия экологических факторов. Рассмотрим данные зоны:

Литораль. В зоне литорали на морские организмы действуют экологические факторы, оказывающие на организмы благоприятное и неблагоприятное воздействие.

К благоприятным факторам в зоне литорали относятся: высокое содержание биогенов терригенного (материкового) происхождения; высокая аэрация воды вследствие прибоя; высокая освещенность.

Неблагоприятные (лимитирующие) факторы: периодическое обсыхание; разрушающее действие прибоя; перепады температур (температура воды и воздуха часто различаются); перепады солености (за счет стекания пресных вод и испарения морской воды в лужах); множество водных и наземных хищников.

Действие неблагоприятных (лимитирующих) факторов привело к развитию соответствующих адаптаций. Водоросли не высыхают, поскольку образуют густые скопления, сохраняющие влагу. Подвижные животные (черви, морские звезды, ракообразные, брюхоногие моллюски) скрываются в разнообразных укрытиях. Неподвижные животные обычно имеют раковины и панцири или же уменьшают поверхность испарения (актинии втягивают щупальца). Некоторые животные (крабы, рыбы–периофтальмусы) продолжают активный образ жизни во время отлива. На участках с очень сильным прибоем организмы или приобретают раковины (рачки–балянусы, мидии, морские блюдечки, некоторые морские ежи), или характеризуются сильно расчлененной формой тела (водоросли, кишечнополостные, морские лилии).

Коралловые рифы. Экосистемы коралловых рифов формируются на отмелях, образованных рифообразующими кораллами с известковым (реже – роговым) скелетом. Эти кишечнополостные требуют высокой температуры воды – не ниже 18°С (термофилы) – и высокой солености (галофилы). Кораллам необходимы симбиотические известковые водоросли (для образования известкового скелета и дополнительного питания), поэтому рифообразующие кораллы могут существовать только при высокой освещенности: на глубине не более 40…50 м. Освещенность зависит от прозрачности воды, поэтому кораллы обитают в чистой воде. Кораллы поглощают большое количество кислорода (а его содержание в теплой воде и так невысокое), поэтому наиболее интенсивно они развиваются в прибойных участках.

Коралловые рифы относятся к наиболее продуктивным экосистемам Мирового океана (чистая первичная продуктивность составляет 1000 мг углерода на 1 кв. м за сутки) и отличаются высоким уровнем видового разнообразия (известно свыше 2500 видов коралловых рыб). Это связано с исключительно благоприятными условиями, в которых обитают кораллы, а также с тем, что биогены слабо мигрируют за пределы рифов.

Экосистемы коралловых рифов крайне уязвимы. Ливневые дожди вызывают опреснение воды и гибель живых кораллов (при их гниении дополнительно снижается содержание кислорода). Тропические ураганы и землетрясения разрушают сами рифы. Антропогенное загрязнение океана ослабляет живые кораллы, и они становятся уязвимыми для морских звезд «терновый венец».

Эпипелагиаль. К благоприятным факторам эпипелагиали открытого океана относятся: достаточно высокая аэрация; высокая освещенность. Лимитирующим фактором является низкое содержание биогенов за счет их миграции в придонные воды. Однако концентрация биогенов может возрастать за счет апвеллинга – выноса глубинных вод на поверхность, например, в приполярных зонах.

Основными продуцентами эпипелагиали являются планктонные диатомовые водоросли и перидинеи (способные к миксотрофному питанию) – около 1000 видов. Из-за низкого содержания биогенов продуктивность открытого океана очень низкая: ≈ 50 мг углерода/1 м2∙сутки в тропической зоне и 150…200 мг углерода/1 м2∙сутки в высоких широтах.

Разнообразие планктона в открытом океане выше, чем на шельфе, поскольку многие виды стеногалинны и не переносят опреснения прибрежных вод.

Абиссаль и абиссопелагиаль. Благоприятным фактором абиссали и абиссопелагиали является стабильность условий обитания. К лимитирующим факторам относятся: отсутствие света и невозможность фотосинтеза; высокое давление.

При снижении освещенности органы зрения у животных гипертрофируются, но при полном отсутствии света происходит полная редукция органов зрения. Для обитателей глубин характерна люминесценция с участием симбиотических светящихся бактерий.

Из-за нехватки света отсутствуют фотосинтезирующие продуценты. Следовательно, глубоководные экосистемы являются зависимыми от экосистем эпипелагиали, и их собственная продуктивность стремится к нулю. При наличии неорганических окислителей (например, вблизи гидротермальных сульфатных источников) продуцентами являются десульфирующие и другие хемосинтезирующие бактерии. Они участвуют в образовании симбиотических систем с различными беспозвоночными.

Ключевые и лимитирующие факторы в наземной среде

Наземно-воздушная обитания – самая сложная по экологическим условиям. Выход в наземно-воздушную среду обитания у разных групп организмов оказался возможным благодаря появлению специфических адаптаций, в том числе, и ароморфного характера. Постоянные обитатели наземно-воздушной среды обитания называются аэробионты.

К особенностям наземно-воздушной среды обитания и приспособленности организмов к специфическим экологическим факторам относятся:

1. Недостаток воды часто является лимитирующим фактором для наземных организмов.

2. Низкая теплоемкость и низкая теплопроводность воздуха приводит к значительным перепадам температуры: при изменении прямой освещенности, суточные перепады, сезонные перепады (сезонность характерна для умеренных и высоких широт). В то же время, низкая теплоемкость и теплопроводность воздуха делают возможным развитие теплокровности у птиц и млекопитающих.

Впервые на значение лимитирующих факторов указал немецкий агрохимик Ю.Либих в середине XIX в. Он установил закон минимума: урожай (продукция) зависит от фактора, находящегося в минимуме. Если в почве полезные компоненты в целом представляют собой уравновешенную систему и только какое-то вещество, например фосфор , содержится в количествах, близких к минимуму, то это может снизить урожай. Но оказалось, что даже те же самые минеральные вещества, очень полезные при оптимальном содержании их в почве, снижают урожай, если они в избытке. Значит, факторы могут быть лимитирующими, находясь и в максимуме.

Таким образом, лимитирующими экологическими факторами следует называть такие факторы, которые ограничивают развитие организмов из-за недостатка или их избытка по сравнению с потребностью (оптимальным содержанием). Их иногда называют ограничивающими факторами.

Что касается закона минимума Ю.Либиха, то он имеет ограниченное действие и только на уровне химических веществ. Р.Митчерлих показал, что урожай зависит от совокупного действия всех факторов жизни растений, включая температуру, влажность, освещенность и т. д.

Различия в совокупном и изолированном действиях относятся и к другим факторам. Например, действие отрицательных температур усиливается ветром и высокой влажностью воздуха, но, с другой стороны, высокая влажность ослабляет действие высоких температур, и т.д. Но, несмотря на взаимовлияние факторов, все-таки они не могут заменить друг друга, что и нашло отражение в законе независимости факторов В. Р. Вильямса: условия жизни равнозначны, ни один из факторов жизни не может быть заменен другим. Например, нельзя действие влажности (воды) заменить действием углекислого газа или солнечного света, и т.д.

Наиболее полно и в наиболее общем виде всю сложность влияния экологических факторов на организм отражает закон толерантности (устойчивости) В.Шелфорда: любой живой организм имеет определенные, эволюционно унаследованные верхний и нижний пределы толерантности к любому экологическому фактору.

Относительно действия одного фактора можно проиллюстрировать этот закон так: некий организм способен существовать при температуре от -5 °С до 25 °С, т.е. диапазон его толерантности лежит в пределах этих температур. Организмы, для жизни которых требуются условия, ограниченные узким диапазоном толерантности по величине температуры, называют стенотермными («стено» - узкий), а способных жить в широком диапазоне температур - эвритермными («эври» - широкий).

Подобно температуре действуют и другие лимитирующие факторы, а организмы по отношению к характеру их воздействия называют, соответственно, стенобионтами и эврибионтами. Например, говорят: организм стенобионтен по отношению к влажности, или эврибионтен к климатическим факторам, и т.п. Организмы, эврибионтные к основным климатическим факторам, наиболее широко распространены на Земле.

Диапазон толерантности организма не остается постоянным - он, например, сужается, если какой-либо из факторов близок к какому-либо пределу, или при размножении организма, когда многие факторы становятся лимитирующими. Значит, и характер действия экологических факторов при определенных условиях может меняться, т.е. он может быть, а может и не быть лимитирующим. При этом нельзя забывать, что организмы и сами способны снизить лимитирующее действие факторов, создав, например, определенный микроклимат (микросреду). Здесь возникает своеобразная компенсация факторов, которая наиболее эффективна на уровне сообществ, реже - на видовом уровне.

Такая компенсация факторов обычно создает условия для физиологической акклиматизации вида — эврибионта, имеющего широкое распространение, который, акклиматизируясь в данном конкретном месте, создает своеобразную популяцию , экотип, пределы толерантности которой соответствуют местным условиям. При более глубоких адаптационных процессах здесь могут появиться и генетические расы.

Итак, в природных условиях организмы зависят от состояния критических физических факторов, от содержания необходимых веществ и от диапазона толерантности самих организмов к этим и другим компонентам среды.

Помимо климата на облик экосистем и биогеоценозов влияет целый ряд дополнительных факторов, некоторые из которых носят глобальный, а другие - сугубо локальный характер.

Атмосферные газы

Над большей частью поверхности Земли состав атмосферы почти постоянен, если не считать резких колебаний содержания водяных паров. Интересно, что концентрации двуокиси углерода (примерно 0,03 % по объему) и кислорода (21 % по объему) в современной атмосфере являются до какой-то степени лимитирующими для многих высших растений. Известно и легко объяснимо, что интенсивность фотосинтеза у многих растений повышается с ростом концентрации С0 2 , однако снижение концентрации кислорода также может приводить к увеличению фотосинтеза. В опытах на бобовых и многих других растениях показано, что понижение содержания кислорода в воздухе до 5 % повышает интенсивность фотосинтеза на 50 %, и, наоборот, рост концентрации 0 2 подавляет фотосинтез. У некоторых злаков, возделываемых в тропических районах, в том числе у кукурузы и сахарного тростника, подобного подавляющего действия кислорода на фотосинтез не отмечается; скорее всего, они используют несколько иной способ фиксации двуокиси углерода, чем бобовые. Быть может, это объясняется тем, что широколиственные растения появились и развились в то время, когда концентрация С0 2 в атмосфере была выше, а концентрация 0 2 - ниже, чем сейчас.

В более глубоких слоях почвы и отложений (а также в тканях и органах крупных животных, например в рубце жвачных, где существуют анаэробные условия) наблюдается повышенное содержание С0 2 , а кислород становится лимитирующим фактором для аэробных бактерий. В результате замедляется процесс разложения растительных остатков.

В водных местообитаниях количество кислорода, двуокиси углерода и других атмосферных газов, растворённых в воде и потому доступных организмам, сильно меняется во времени и в пространстве. В озёрах и в водоёмах с высоким содержанием органических веществ кислород является лимитирующим фактором первостепенной важности. Хотя кислород лучше растворяется в воде, чем азот, даже в самом благоприятном случае в воде содержится значительно меньше кислорода, чем в атмосферном воздухе. В 1 л воздуха содержится 210 см 3 кислорода, в воде же содержание кислорода не превышает 10 см 3 на 1 л. Количество растворённых солей и температура сильно влияют на способность воды удерживать кислород: растворимость кислорода повышается с понижением температуры и снижается с повышением солёности. Запас кислорода в воде пополняется главным образом из двух источников: путём диффузии из воздуха и благодаря фотосинтезу водных растений. Кислород диффундирует в воду очень медленно; диффузии способствуют ветер и движение воды; важнейшим фактором, обеспечивающим фотосинтез кислорода растениями, является свет, проникающий в толщу воды. Поэтому содержание кислорода в водных биотопах сильно меняется в зависимости от времени суток, времени года и географической широты.

Содержание диоксида углерода в воде также сильно варьирует, но по своему «поведению» он сильно отличается от кислорода. Хотя в воздухе содержание диоксида углерода невелико, он прекрасно растворяется в воде; кроме того, в воду поступает диоксид углерода, освобождающийся при дыхании и разложении, а также из почвы или подземных источников. Поэтому «минимальный предел» содержания С0 2 в воде не имеет такого значения, как в случае 0 2 . Рост содержания С0 2 в воде ускоряет фотосинтез и стимулирует развитие многих организмов. Следовательно, обогащение С0 2 может быть причиной зарастания водоёмов синезелёными водорослями. Высокие концентрации С0 2 определённо могут быть лимитирующим фактором для животных, особенно потому, что высокое содержание двуокиси углерода обычно связано с низким содержанием кислорода. Рыбы весьма чувствительны к повышению концентрации С0 2: при слишком высоком содержании свободного С0 2 в воде многие рыбы погибают.

Количество света и его спектральный состав сильно влияют на биоту. Поток световой энергии, приходящийся на единицу площади поверхности Земли, зависит от широты и времени года и тесно связан с температурой. Однако, для фотосинтеза важно получение именно «высококачественной» энергии квантов света, а не температура как таковая. Растение, лишенное света, погибнет даже при самом благоприятном сочетании других факторов. Роль спектрального состава в фотосинтезе сравнительно мало изучена. Скорее всего, более энергичные кванты синего и фиолетового света лучше для фотосинтеза.

В процессе эволюции различные виды растений приспособились к различной интенсивности света, причём эта адаптация может отличаться у организмов разного возраста. Например, молодые ели прекрасно себя чувствуют в тени старых деревьев и гибнут под прямыми солнечными лучами. Многие растения могут процветать только под густой сенью деревьев (например, ландыши и фиалки), поэтому так сильно отличается видовой состав травы и кустарников в густом лесу и, совсем рядом, на открытой поляне. Такие распространённые кустарники бореальных лесов как черника и брусника процветают в полутени соснового леса, но «не любят» луговых пространств. Таким образом, уровень освещённости у многих видов растений имеет достаточно явно выраженный оптимум, и диапазон толерантности к нему ограничен и сверху, и снизу.

С уровнем освещённости тесно связаны и жизненные циклы большинства животных, в том числе и человека. Наиболее ярко эта особенность выражена у птиц и насекомых.

В водных экосистемах свет оказывается одним из самых дефицитных и мощных лимитирующих факторов. Даже в очень чистых и прозрачных водах фотосинтез оказывается невозможен на глубине свыше 200 м именно из-за отсутствия света. Широко известен по существу варварский способ ночной ловли рыбы с фонарём. Свет привлекает рыбу не сам по себе, а как сигнал, говорящий о скоплении пищи.

Кислотность среды

Кислотность среды (обычно говорят о водных растворах, в том числе и о почвенной воде) определяется концентрацией свободных ионов водорода Н + . В химически чистой воде при 20 °С концентрация Н + составляет КГ 7 моль/л . В химии концентрацию Н + принято выражать в виде водородного показателя :

рН = -1 §10 С,

где С есть мольная концентрация водородных ионов и ^ |() - десятичный логарифм. Таким образом, для чистой («нейтральной») воды pH = 7. Если pH 7, то - щелочной. В природной среде всегда присутствует углекислый газ, образующий при растворении в воде слабую угольную кислоту Н 2 С0 3 , частично диссоциирующую в воде:

Н 2 С0 3 НС0 3 + Н + ; НС0 3 С0 3 " + Н + .

Вследствие этого для незагрязнённых осадков pH = 5,6, то есть чистые природные дожди имеют слабо кислотный характер. Поверхностные природные воды благодаря растворённым в них веществам, как правило, нейтральны или имеют слабо щелочную реакцию; в частности, для вод Мирового океана характерное значение pH *8,1. Реакцию, близкую к нейтральной, имеют и незагрязнённые почвы. Ионы НС0 3 и С0 3 “ всегда соединяются с катионом какого-либо металла или с катионом аммония 1ЧН4, образуя соли угольной кислоты - карбонаты. Концентрация водородных ионов во многом зависит от карбонатной системы; pH сравнительно легко измерить как в воде, так и в почве. В начале XX в. было установлено, что pH - мощный лимитирующий

фактор и очень важен для регуляции дыхания и ферментных систем организма, и что даже весьма незначительные колебания pH могут оказаться для организма критическими. Если величина pH не приближается к критическому значению, то обычно сообщества способны компенсировать изменения этого фактора. Однако, высокие уровни кислотности убийственны для многих организмов. Кроме того, в почвах и водах с низкими значениями pH (то есть в кислых) часто мало питательных веществ, и их продуктивность мала.

Биогенные соли: макроэлементы и микроэлементы

Растворённые соли, жизненно необходимые организмам, можно назвать биогенными солями. Действительно, впервые формулируя свой «закон минимума», Либих имел в виду главным образом лимитирующее действие жизненно важных веществ, присутствующих в среде в небольших и непостоянных количествах. Конечно, первостепенное значение имеют соли, содержащие фосфор и азот. Роль фосфора как лимитирующего фактора особенно велика, так как его содержание в организмах обычно гораздо выше, чем содержание в источниках, откуда организмы черпают необходимые им элементы. Таким образом, недостаток фосфора обычно в большей степени ограничивает продуктивность экосистемы, чем недостаток любого другого вещества, за исключением воды.

Значение калия, кальция, серы и магния немногим меньше значения азота и фосфора. Кальций потребляется в особенно больших количествах моллюсками и позвоночными, а магний - необходимая часть молекулы хлорофилла растений, без которого не может существовать никакая экосистема. Элементы и их соединения, требующиеся организмам в сравнительно больших количествах, часто называют макроэлементами (макротрофными биогенными веществами).

Хотя некоторые элементы и их соединения требуются в крайне малых количествах, они необходимы биологическим системам и часто входят в состав жизненно важных ферментов. Эти элементы называют обычно следовыми или микроэлементами (микротрофными биогенными веществами). При небольшой потребности в микроэлементах их обычно столь же мало (или даже ещё меньше) содержится в среде обитания, микроэлементы нередко бывают лимитирующими факторами (пример с телятами и медью обсуждался в главе первой).

Болезни, связанные с нехваткой следовых элементов, по крайней мере, внешние проявления этих болезней, известны людям издавна. Соответствующие патологические симптомы наблюдались у людей, лабораторных, домашних и диких животных и у растений. В природных условиях такие симптомы недостаточности иногда связаны с необычной геологической историей местности, а иногда с теми или иными нарушениями в окружающей среде, часто в результате необдуманной деятельности человека.

Можно указать как минимум следующие 10 микроэлементов, заведомо необходимых для растений: железо, марганец, медь, цинк, бор, кремний, молибден, хлор, ванадий и кобальт. С физиологической точки зрения их можно разделить на три группы:

  • необходимые для фотосинтеза - Мп, Бе, С1, Тп, V;
  • необходимые для азотистого обмена - Мо, В, Со, Бе;
  • необходимые для других метаболических функций - Мп, В, Со, Си и Бь

Большинство из них требуется также животным; некоторые другие элементы нужны лишь определённым животным, например, йод необходим позвоночным. Б1онятно, что между макро- и микроэлементами нельзя провести резкую границу; мало того, в потребностях разных групп организмов имеются весьма существенные различия. Например, натрия и хлора позвоночным требуется значительно больше, чем растениям; натрий часто вносят в список микроэлементов для растений. Многие из микроэлементов сходны с витаминами; подобно витаминам, они действуют как катализаторы. Следовые металлы часто входят в состав органических соединений; так кобальт - необходимая составная часть витамина В 12 . Как и в случае макроэлементов, излишек микроэлементов тоже может оказать лимитирующее действие.

Течения, ветер и давление

В атмосфере и гидросфере никогда не бывает полного покоя. В воде течения не только сильно влияют на концентрацию газов и питательных веществ, но и прямо действуют как лимитирующие факторы. Различия между сообществами реки и пруда во многом объясняются наличием и отсутствием течения. Многие речные растения и животные морфологически и физиологически особым образом приспособлены к сохранению своего положения в потоке: у них есть вполне определённые пределы толерантности к фактору течения. На суше аналогичное лимитирующее действие на активность и даже на распределение организмов оказывает ветер. Например, в ветреные дни многие птицы не покидают своих укрытий (следовательно, нет смысла проводить учёт популяции птиц в ветреный день). Ветер способен вызвать изменение морфологии растений, особенно при наличии других лимитирующих факторов, как, например, в альпийских зонах. Было экспериментально показано, что в горах ветер ограничивает рост растений; защитив растительность от ветра, удаётся добиться усиления роста. Большое значение имеют бури, хотя их действие сугубо локально. Ураганы (как и обычные ветры) способны переносить животных и растения на большие расстояния и таким образом изменять на много лет состав лесных сообществ. Энтомологи заметили, что там, где, казалось бы, возможности расселения вида по всем направлениям одинаковы, насекомые быстрее расселяются в направлении преобладающих ветров. В сухих районах ветер является важным лимитирующим фактором для растений, так как он увеличивает потери воды за счёт испарения.

Барометрическое давление, по-видимому, не является лимитирующим фактором непосредственного действия, хотя люди и некоторые животные, несомненно, реагируют на его изменение. Однако барометрическое давление имеет прямое отношение к погоде и климату, которые оказывают прямое лимитирующее действие на организм. В океане и глубоких озёрах (например, Байкале) гидростатическое давление имеет большое значение. С погружением в воду на Юм давление возрастает на 1000 гПа = 1 атм. В самой глубокой части океана давление достигает 1000 атм. Многие животные способны переносить резкие колебания давления, особенно если в их теле нет свободного воздуха или газа. В противном случае возможно развитие газовой эмболии. Высокие давления, характерные для больших глубин, как правило, угнетают процессы жизнедеятельности.

Для изучения влияния комбинаций физических и химических факторов на живые организмы применяются климатические камеры. Существуют разнообразные модели - от простых камер с регулируемой влажностью и температурой, какие есть во многих лабораториях, до больших оранжерей с управляемыми условиями, наподобие «фитотрона», в котором можно поддерживать любую желаемую комбинацию температуры, влажности и света. Эти камеры часто служат для создания контролируемых условий в генетических и физиологических исследованиях культурных растений или подопытных животных. Однако такие камеры можно использовать и для экологических исследований, особенно если конструкция позволяет воспроизводить естественные ритмы температуры и влажности. Подобные эксперименты позволяют выделить «функционально важные факторы», но надо учитывать, что многие существенные аспекты функционирования экосистем невозможно воспроизвести в лаборатории; для их понимания необходимы полевые исследования.

Почвы

В наземной среде отчётливо выражены два основных яруса, присущие любой полной экосистеме: автотрофный и гетеротрофный, а говоря обычным языком - это растительность и почва.

В определённом смысле целесообразно подразделять биосферу на атмосферу, гидросферу и педосферу, или почву. Свойства каждой из них во многом определяются экологическими реакциями и взаимодействием между организмами, а также взаимодействием экосистем с основными круговоротами веществ. Если бы на Земле не было жизни, то воздух, вода и особенно «почва» радикально отличались бы от тех, что существуют сейчас. Все слои биосферы состоят из живого и неживого компонентов, которые, впрочем, легче разграничить в теории, чем на практике. Наиболее тесно эти компоненты связаны в почве. Почва - не только «фактор» среды, окружающей организмы, но и продукт их жизнедеятельности, результат совместного действия климатических факторов и организмов, особенно растений, на материнскую породу. По определению почва является смесью частиц выветренных горных пород с живыми организмами и продуктами их разложения и жизнедеятельности. Пространство между частицами заполнено газами и водой. Структура и пористость почвы - чрезвычайно важные её характеристики; они во многом определяют доступность питательных веществ растениям и почвенным животным.

  • Моль - количество граммов вещества, численно равное его атомному весу. Для ионов водорода 1 моль « 1 г.

Действие лимитирующих факторов

Замечание 1

Впервые важность значения лимитирующих факторов было описано немецким агрохимиком Ю.Либихом в середине XIX века. В результате своих исследований он установил некую закономерность, впоследствии именуемую законом минимума. Данный закон отображал зависимость урожая (продукции) от некоторого фактора, находящегося в минимуме.

Позднее было установлено, что один и тот же фактор может быть лимитирующим, находясь как в минимуме, так и в максимуме (избыток и в то же время недостаток минеральных веществ в почве может пагубно отображаться на урожае).

В. Шелфордом в 1913 году было впервые предложено мнение о лимитирующем воздействии максимального значения фактора наравне с его минимальным значением, в результате чего был сформулирован биологический закон толерантности.Сущность данного закона заключается в наличии у любого живого организма определенных эволюционно унаследованных верхних и нижних пределов устойчивости к действию абсолютно любых экологических факторов.

Также В.Шелфордом была доказана тождественность понятия закона лимитирующего фактора и закона толерантности: даже наличие единственного фактора, находящегося за пределами зоны своего оптимума, способно привести к стрессовому состоянию организма и в пределе - к его гибели.

Наглядное изображение действия лимитирующих факторов или же закона толерантности представлено на рисунке:

Возможно проведение подобных и для проверки воздействия других факторов, причём графическое отображение результатов всегда будет одинаковым.

Определение 1

Таким образом, лимитирующими факторами являются факторы, ограничивающие развитие того или иного организма как из-за их избытка, так и из-за недостатка по сравнению с потребностью (оптимальным содержанием).

Закон минимума и закон компенсации факторов

В то же время, закон минимума, сформулированный Ю.Либихом, стал одним из важнейших законов экологии, являющийся справедливым для любых экологических факторов и организмов.Исходя из данного закона было установлено, что жизненные возможности организма лимитируют тот экологический фактор, количество которого близко к необходимому организму минимуму и снижение которого в дальнейшем ведет к гибели организма.

В 1930 году в развитие закона минимума Э.Рюбелем был предложен закон компенсации факторов, заключающийся в возможности одних факторов усиливать или смягчать действие других факторов.

В 1975 году Ю. Одумом было выдвинуто несколько положений, дополняющих закон толерантности и заключающихся в:

  1. возможности организмов обладать широким диапазоном толерантности относительно одного экологического фактора и узким - относительно другого;
  2. наибольшую распространенность получили организмы, обладающие широким диапазоном толерантности относительно всех факторов;
  3. возможности сужения диапазона толерантности относительно экологических факторов при условии отсутствия оптимальных условий хотя бы по одному из этих факторов;
  4. способности многих экологических факторов в критические периоды жизни организмов становиться лимитирующими.

В середине XIX в. немецкий ученый-агрохимик Ю. Либих изучал процессы питания растений и влияние разнообразных факторов и элементов питания на их рост. Он установил, что урожай культур зачастую ограничивается (лимитируется) не теми элементами питания, которые требуются в больших количествах, например углекислым газом и водой (обычно эти вещества присутствуют в среде в изобилии), а теми, которые необходимы в минимальных количествах, но которых и в почве очень мало (например, цинк). Либих писал: «Веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость последнего во времени».

В простейшем виде, применительно к конкретным опытам ученого, закон минимума Либиха гласит: рост растения зависит от того элемента питания, который присутствует в минимальном количестве (минимуме). В современной формулировке закон минимума звучит так: выносливость организма определяется самым слабым звеном в цепи его экологических потребностей .

Закон минимума Либиха можно пояснить на таком примере. Пусть в почве содержатся все элементы минерального питания, необходимые для данного вида растений, кроме одного из них, например бора или цинка. Рост растений на такой почве будет угнетен. Если добавить в почву нужное количество бора (цинка), то это приведет к увеличению урожая. Но если вносить любые другие химические соединения (например, азот, фосфор, калий) и даже удастся добиться того, что все они будут содержаться в оптимальных количествах, а бор (цинк) будет отсутствовать, это не даст никакого эффекта.

Изучая лимитирующее действие экологических факторов на насекомых, американский зоолог В. Шелфорд пришел к выводу, что лимитирующим фактором, ограничивающим развитие организма, может быть как минимум, так и максимум экологического воздействия. В экологии такое положение носит название закона толерантности Шелфорда, сформулированного им в 1913 г. Диапазон между минимумом и максимумом определяет величину выносливости организма, который можно характеризовать экологическим минимумом и экологическим максимумом (рис. 2). В этих пределах и может существовать данный организм.

Благоприятный диапазон действия экологического фактора называется зоной оптимума (нормальной жизнедеятельности). Чем значительнее отклонение действия фактора от оптимума, тем больше данный фактор угнетает жизнедеятельность популяции. Этот диапазон называется зоной угнетения. Максимально и минимально переносимые значения фактора — это критические точки, за пределами которых существование организма или популяции уже невозможно.

Рис. 2. Схема действия экологического фактора на растение: 1 — точка минимума; 2- точка оптимума; 3- точка максимума

Чтобы подчеркнуть отношение организма к конкретному фактору, используют термины, первая часть которых образована приставками стено- или эври-, а вторая содержит указание на конкретный фактор, например: эвритермные организмы — имеющие широкий температурный интервал (многие насекомые); стенотермные организмы — приспособившиеся к узкой амплитуде температур (для растений тропических лесов колебания температуры в пределах 5...8 °С могут быть губительными) (рис. 3).

Рис. 3. Диапазон активности эвритермных и стенотермных организмов

Смысл закона толерантности вполне понятен. Упрощенно он может быть сформулирован так: плохо как недокормить, так и перекормить растение либо животное. Из этого закона вытекает следствие: любой избыток вещества или энергии является загрязняющим среду компонентом. Например, в засушливых областях избыток воды вреден, и вода может рассматриваться как загрязнитель.

Итак, для каждого вида существуют пределы значений жизненно необходимых факторов абиотической среды, которые ограничивают зону его толерантности (устойчивости). Живой организм может существовать в определенном интервале значений факторов. Чем шире этот интервал, тем выше устойчивость организма. Закон толерантности является одним из основополагающих в современной экологии.