Легочные объемы и емкости. Анатомическое мертвое пространство Функциональное мертвое пространство

Термин «физиологическое мертвое пространство» употребляется для обозначения всего воздуха в дыхательных путях, который не участвует в газообмене. Он включает анатомическое мертвое пространство плюс объем альвеол, в которых кровь не входит в соприкосновение с воздухом. Таким образом, эти альвеолы с неполным капиллярным кровоснабжением (например, при тромбозе легочных артерий) или растянутые и содержащие поэтому избыток воздуха (например, при эмфиземе) включаются в физиологическое мертвое пространство при условии, если они сохраняют вентиляцию при избыточной перфузии. Следует отметить, что буллы часто гиповентилируемы.

Анатомическое мертвое пространство определяется непрерывным анализом концентрации азота в выдыхаемом воздухе с одновременным измерением объемной скорости выдоха. Азот применяется потому, что он не участвует в газообмене. С помощью нитрометра регистрируются данные после одиночного вдоха чистого кислорода (рис. 5). Первая часть записи в начале выдоха относится к газу собственно мертвого пространства, в котором нет азота, затем следует короткая фаза быстрого повышения концентрации азота, которая относится к смешанному воздуху мертвого пространства и альвеол, и, наконец, данные о собственно альвеолах, которые отражают степень разведения альвеолярного азота кислородом. Если бы не происходило смешивания альвеолярного газа и газа мертвого пространства, то повышение концентрации азота возникало бы скачком, прямым фронтом, и объем анатомического мертвого пространства был бы равен объему, выдыхаемому до момента появления альвеолярного газа. Эта гипотетическая ситуация прямого фронта может быть оценена методом Fowler, при котором восходящий отрезок кривой делят на две равные части и получают анатомическое мертвое пространство.

Рис. 5. Определение мертвого пространства методом одиночного вдоха. Модифицирован Comroe и др.

Физиологическое мертвое пространство можно рассчитать по уравнению Bohr, основанному на том, что выдыхаемый газ является суммой газов в анатомическом мертвом пространстве и в альвеолах. Альвеолярный газ может исходить из альвеол с достаточной вентиляцией и перфузией, а также из тех, в которых соотношение вентиляция - перфузия нарушено:

где PaCO 2 - парциальное давление углекислоты в артериальной крови (предполагается, что оно равно «идеальному» альвеолярному давлению CO 2); РЕCO 2 - давление углекислоты в смешанном выдыхаемом воздухе; YT - дыхательный объем. Такой метод требует простого анализа выдыхаемого воздуха в артериальной крови. Он выражает отношение мертвого пространства (Vd) к дыхательному объему (Vt), как если бы легкое физиологически состояло из двух частей: одной, нормальной в отношении вентиляции и перфузии, и другой, с неопределенной вентиляцией и без перфузии.


Анатомическое мертвое пространство - это часть дыхательной системы, в которой нет значительного газообмена. Анатомическое мертвое пространство составляют воздухопроводящие пути, а именно носоглотка, трахея, бронхи и бронхиолы вплоть до их перехода в альвеолы. Заполняющий их объем воздуха называется объемом мертвого пространства ^Б). Объем мертвого пространства является величиной переменной и у взрослых составляет около 150200 мл (2 мл/кг массы тела). В этом пространстве не происходит га- зообмен, а указанные структуры выполняют вспомогательную роль по согреванию, увлажнению и очистке вдыхаемого воздуха.
Функгциональное мертвое пространство. Под функциональным (физиологическим) мертвым пространством понимают те участки легких, в которых не происходит газообмен. В отличие от анатомического, к функциональному мертвому пространству относятся также альвеолы, которые вентилируются, но не перфузируются кровью. Суммарно это называется альвеолярным мертвым пространством. В здоровых легких количество таких альвеол невелико, поэтому объемы мертвого анатомического и физиологического пространства отличаются мало. Однако при некоторых нарушениях функции легких, когда легкие вентилируются и перфузируются кровью неравномерно, объем функционального мертвого пространства может оказаться значительно больше анатомического. Таким образом, функциональное мертвое пространство представляет сумму анатомического и альвеолярного мертвого пространства: Тфунк. = Танат. + Тальвеол. Вентиляция увеличение без = функционального перфузии мертвого пространства
Соотношение объема мертвого пространства (VD). к дыхательному объему ^Т) - это коэффициент мертвого пространства (VD/VТ). В норме вентиляция мертвого пространства составляет 30% от дыхательного объема и альвеолярная вентиляция - около 70%. Таким образом, коэффициент мертвого пространства VD/VТ = = 0,3. При повышении коэффициента мертвого пространства до 0,70,8 длительное спонтанное дыхание невозможно, поскольку увеличивается дыхательная работа и СOJ накапливается в большем количестве, чем может быть удалено. Регистрируемое увеличение коэффициента мертвого пространства свидетельствует о том, что в отдельных участках легкого перфузия практически прекратилась, но этот участок по-прежнему вентилируется.
Вентиляция мертвого пространства оценивается за минуту и зависит от величины мертвого пространства (УЭ) и частоты дыхания, возрастая с ней линейно. Возрастание вентиляции мертвого пространства может компенсироваться увеличением дыхательного объема. Важным является результирующий объем альвеолярной вентиляции ^А), который фактически поступает в альвеолы за минуту и вовлекается в газообмен. Он может быть рассчитан следующим образом: VA = (VI - VD)F, где VA - объем альвеолярной вентиляции; VI - дыхательный объем; VD - объем мертвого пространства; F - частота дыхания.
Функциональное мертвое пространство может быть рассчитано по следующей формуле:
VDфунк. = VT(1 - РМТ С02/раС02), где VI - дыхательный объем; РМТ С02 - содержание С02 в выдыхаемом воздухе; раС02 - парциальное давление С02 в артериальной крови.
Для приблизительной оценки значения РМТ С02 может быть использовано парциальное давление С02 в выдыхаемой смеси вместо содержания С02 в выдыхаемом воздухе.
Тфунк. = VT(1 - рЕС02/раС02), где рЕС02 - парциальное давление С02 в конце выдоха.
Пример. Если у пациента с весом 75 кг частота дыхания 12 в минуту, дыхательный объем - 500 мл, то МОД составляет 6 л, из которых вентиляция мертвого пространства - 12 150 мл (2 мл/кг), т.е. 1800 мл. Коэффициент мертвого пространства составляет 0,3. Если у такого пациента частота дыхания будет 20 в минуту, а после-операционный ДО (VI) 300 мл, то минутный объем дыхания будет равен 6 л, при этом вентиляция мертвого пространства возрастет до 3 л (20 150 мл). Коэффициент мертвого пространства составит 0,5. При увеличении частоты дыхания и уменьшении ДО вентиляция мертвого пространства возрастает за счет уменьшения альвеолярной вентиляции. Если дыхательный объем не изменяется, то возрастание частоты дыхания приводит к увеличению дыхательной работы. После операции, особенно после лапаротомии или торакотомии, коэффициент мертвого пространства приблизительно составляет 0,5 и может возрастать до 0,55 в первые 24 часа.

Еще по теме Мертвое пространство вентиляции:

  1. Особенности вентиляции у новорожденных и детей раннего возраста Показания к вентиляционной поддержке и основные принципы механической вентиляции у новорожденных и детей

Страница 4 из 31

3 Оценка газообмена в лёгких у постели больного

ВЕНТИЛЯЦИОННО-ПЕРФУЗИОННЫЕ ОТНОШЕНИЯ

Альвеолярно-капиллярные единицы (рис. 3-1) используют для описания различных вариантов газообмена. Как известно, отношение альвеолярной вентиляции (V) к перфузии капилляров альвеол (Q) называется вентиляционно-перфузионным отношением (V/Q). Примеры газообмена, связанные с отношением V/Q, см. на рис. 3-1. В верхней его части (А) показано идеальное соотношение между вентиляцией и кровотоком и идеальное отношение V/Q в альвеолярно-капиллярной единице.

ВЕНТИЛЯЦИЯ МЕРТВОГО ПРОСТРАНСТВА

Воздух, находящийся в воздухоносных путях, не участвует в газообмене, а их вентиляция называется вентиляцией мёртвого пространства. Отношение V/Q в этом случае больше 1 (см. рис. 3-1, часть Б). Различают два типа мёртвого пространства.

Рис. 3-1.

Анатомическое мёртвое пространство - просвет воздухоносных путей. В норме его объём составляет около 150 мл, причём на гортань приходится примерно половина.

Физиологическое (функциональное) мёртвое пространство - все те участки дыхательной системы, в которых не происходит газообмена. К физиологическому мёртвому пространству относятся не только воздухоносные пути, но и альвеолы, которые вентилируются, но не перфузируются кровью (в таких альвеолах газообмен невозможен, хотя их вентиляция и происходит). Объём функционального мёртвого пространства (Vd) составляет у здоровых людей около 30% дыхательного объёма (т.е. Vd/Vt=0,3, где Vt - дыхательный объём) . Увеличение Vd ведёт к гипоксемии и гиперкапнии. Задержка СО 2 обычно отмечается при увеличении отношения Vd/Vt до 0,5 .

Мёртвое пространство увеличивается при перерастяжении альвеол или уменьшении воздушного потока. Первый вариант наблюдается при обструктивных лёгочных заболеваниях и искусственной вентиляции лёгких с сохранением положительного давления к концу выдоха, второй - при недостаточности сердца (правого или левого отдела), острой лёгочной эмболии и эмфиземе.

ФРАКЦИЯ ШУНТА

Часть сердечного выброса, которая не полностью уравновешивается с альвеолярным газом, называется фракцией шунта (Qs/Qt, где Qt - общий кровоток, Qs - кровоток через шунт). При этом отношение V/Q меньше 1 (см. часть В рис. 3-1). Различают два типа шунта.

Истинный шунт указывает на отсутствие газообмена между кровью и альвеолярным газом (отношение V/Q равно 0, т.е. лёгочная единица перфузируется, но не вентилируется), что эквивалентно наличию анатомического сосудистого шунта.

Венозное примешивание представлено кровью, которая не полностью уравновешивается с альвеолярным газом, т.е. не подвергается в лёгких полноценной оксигенации. При увеличении венозного примешивания этот шунт приближается к истинному шунту.

Влияние фракции шунта на парциальное давление O 2 и СО 2 в артериальной крови (соответственно pаO 2 PaCO 2) показано на рис. 3-2. В норме шунтовый кровоток составляет менее 10% общего (т.е. отношение Qs/Qt менее 0,1, или 10%), при этом около 90% сердечного выброса принимает участие в газообмене . При увеличении фракции шунта раО 2 прогрессивно снижается, а раСО 2 не повышается до тех пор, пока отношение Qs/Qt не достигнет 50% . У больных с внутрилёгочным шунтом в результате гипервентиляции (из-за патологии или вследствие гипоксемии) рaСО 2 часто бывает ниже нормы.

Фракция шунта определяет способность к повышению рaО 2 при вдыхании кислорода, как показано на рис. 3-3. При возрастании доли шунта (Qs/Qt) увеличение фракционной концентрации кислорода во вдыхаемом воздухе или газовой смеси (FiO 2) сопровождается меньшим повышением раО 2 . Когда отношение Qs/Qt достигает 50%, рaО 2 уже не реагирует на изменения FiO 2 ; . В таком случае внутрилёгочный шунт ведёт себя как истинный (анатомический). Исходя из изложенного, можно не применять токсических концентраций кислорода, если величина шунтового кровотока превышает 50%, т.е. FiO 2 можно уменьшить без значительного снижения р a О 2 . Это помогает уменьшить риск токсического действия кислорода.

Рис. 3-2. Влияние фракции шунта на рО 2 (Из D"Alonzo GE, Dantzger DR. Mechanisms of abnormal gas exchange. Med Clin North Am 1983;67:557-571). Рис. 3-3. Влияние фракции шунта на соотношение фракционной концентрации кислорода во вдыхаемом воздухе или газовой смеси (Из D"Alonzo GE, Dantzger DR. Mechanisms of abnormal gas exchange. Med Clin North Am 1983;67:557-571)

Этиологические факторы. Наиболее часто увеличение фракции шунта вызывают пневмония, отёк лёгких (кардиальной и некардиальной природы), тромбоэмболия лёгочной артерии (ТЛА). При отёке лёгких (преимущественно некардиогенном) и ТЛА нарушение газообмена в лёгких больше напоминает истинный шунт и PaО 2 слабее реагирует на изменения FiO 2 . Так, например, при ТЛА шунт является результатом переключения кровотока из эмболизированной области (где поступление крови через сосуды затруднено и перфузирование невозможно) в другие участки лёгкого с увеличением перфузии [З].

РАСЧЕТ ПОКАЗАТЕЛЕЙ ГАЗООБМЕНА

Уравнения, которые будут рассмотрены ниже, используют для количественного определения выраженности нарушений вентиляционно-перфузионных отношений. Эти уравнения применяют при исследовании функции лёгких, в частности, у больных с дыхательной недостаточностью.

ФИЗИОЛОГИЧЕСКОЕ МЁРТВОЕ ПРОСТРАНСТВО

Измерить объём физиологического мёртвого пространства можно методом Бора. Объём функционального мёртвого пространства рассчитывают на основании разницы между значениями pCO 2 в выдыхаемом альвеолярном воздухе и капиллярной (артериальной) крови (точнее, крови конечных отрезков лёгочных капилляров). У здоровых людей в лёгких капиллярная кровь полностью уравновешивается с альвеолярным газом и рСО 2 в выдыхаемом альвеолярном воздухе практически равно рСО 2 в артериальной крови. При увеличении физиологического мёртвого пространства (т.е. отношения Vd/Vt) pCO 2 в выдыхаемом воздухе (Р Е СО 2) будет ниже, чем pCO 2 в артериальной крови. На этом принципе основано уравнение Бора, применяемое для расчёта отношения Vd/Vt :

Vd/Vt = (РаСО 2 - реСО 2) / р а СО 2 . В норме отношение Vd/Vt = 0,3.

Для определения pаCO 2 выдыхаемый воздух собирают в большой мешок и с помощью инфракрасного СО 2 -анализатора измеряют среднее рСО 2 в воздухе. Это достаточно просто и обычно необходимо в отделении терапии респираторных расстройств.

ФРАКЦИЯ ШУНТА

Для определения фракции шунта (Qs/Qt) используют содержание кислорода в артериальной (СаО 2), смешанной венозной (СvО 2) и лёгочной капиллярной крови (CcO 2). Имеем уравнение шунта:

Q s /Q t = C c O 2 - C a O 2 / (C c О 2 - C v O 2).

В норме отношение Qs/Qt =0,1.

Так как СcО 2 непосредственно измерить невозможно, то рекомендуют дышать чистым кислородом, чтобы полностью насытить им гемоглобин крови лёгочных капилляров (ScO 2 = 100%). Однако в такой ситуации измеряют только истинный шунт. Дыхание 100% кислородом - очень чувствительный тест на наличие шунтов, поскольку когда PaО 2 высоко, небольшое снижение концентрации кислорода в артериальной крови может быть причиной значительного падения PaO 2 .

АЛЬВЕОЛЯРНО-АРТЕРИАЛЬНАЯ РАЗНИЦА ПО КИСЛОРОДУ (ГРАДИЕНТ А-а рО 2)

Разность между значениями рО 2 в альвеолярном газе и артериальной крови называют альвеолярно-артериальной разницей по рО 2 , или градиентом А-а рО 2 . Альвеолярный газ описывают с помощью следующего упрощённого уравнения:

Р A О 2 = р i О 2 - (p a CO 2 /RQ).

Это уравнение основано на том, что альвеолярное рО 2 (р A O 2) зависит, в частности, от парциального давления кислорода во вдыхаемом воздухе (p i O 2) и альвеолярного (артериального) pCO 2 x p i O 2 - функция от FiO 2 , барометрического давления (P B) и парциального давления водяных паров (pH 2 O) в увлажнённом воздухе (р i О 2 = FiO 2 (P B - рН 2 О). При нормальной температуре тела рН 2 О составляет 47 мм рт. ст. Дыхательный коэффициент (RQ) - отношение между продукцией СО 2 и потреблением O 2 , причём газообмен происходит между полостью альвеолы и просветом оплетающих её капилляров путём простой диффузии (RQ = VCO 2 /VO 2). У здоровых людей при дыхании комнатным воздухом при нормальном атмосферном давлении градиент А-а РO 2 рассчитывается с учётом перечисленных показателей (FiО 2 = 0,21, Р B = 760 мм рт.ст., р a O 2 = 90 мм рт.ст., p a CO 2 = 40 мм рт.ст., RQ = 0,8) следующим образом:

P a O 2 = FiO 2 (Р B - pH 2 O) - (paCO 2 /RQ) = 0,21 (760 - 47) - (40/0,8) = 100 мм рт.ст.

Нормальная величина градиента А-а pO 2 = 10-20 мм рт.ст.

В норме градиент А-а pO 2 изменяется с возрастом и с содержанием кислорода во вдыхаемом воздухе или газе. Изменение его с возрастом представлено в конце книги (см. Приложение), а влияние FiO 2 - на рис. 3-4 .

Обычное изменение градиента А-а рО 2 у здоровых взрослых людей при нормальном атмосферном давлении (вдыхание комнатного воздуха или чистого кислорода) показано ниже .

Рис. 3-4. Влияние FiO 2 ; на градиент А-а рО 2 и отношение а/А рО 2 у здоровых людей.

Отмечается увеличение градиента А-а рО 2 на 5-7 мм рт.ст. на каждое 10% возрастание FiO 2 . Влияние кислорода в высоких концентрациях на градиент А-а рО 2 объясняется устранением действия гипоксических стимулов, которые ведут к вазоконстрикции и изменению кровоснабжения плохо вентилируемых участков лёгких. Вследствие этого кровь возвращается в плохо вентилируемые сегменты, в результате чего может увеличиться фракция шунта.

Искусственная вентиляция лёгких. Так как нормальное атмосферное давление составляет около 760 мм рт.ст., то искусственная вентиляция лёгких с положительным давлением будет увеличивать p i O 2 . Среднее давление в дыхательных путях следует добавлять к атмосферному давлению, что повышает точность расчёта . Например, среднее давление в дыхательных путях, равное 30 см водяного столба (вод.ст.), может повысить градиент А-а рO 2 до 16 мм рт.ст., что соответствует 60% увеличению.

ОТНОШЕНИЕ а/А рО 2

Отношение а/А рО 2 практически не зависит от FiO 2 , что видно на рис. 3-4 . Это объясняет следующее уравнение:

а/А рO 2 = 1 - (А-а рО 2)/рaO 2

Наличие р A О 2 и в числителе, и знаменателе формулы исключает влияние FiO 2 через р A О 2 на отношение а/А рО 2 . Нормальные величины для отношения а/А рО 2 представлены ниже .

ОТНОШЕНИЕ р A O 2 /FiO 2

Вычисление отношения paO 2 /FiO 2 - простой способ расчёта показателя, который достаточно хорошо коррелирует с изменениями фракции шунта (Qs/Qt). Эта корреляция выглядит следующим образом :

PaO 2 /FiO 2

ПОДХОД К ГИПОКСЕМИИ

Подход к гипоксемии показан на рис. 3-5. Для установления причины гипоксемии необходимо наличие катетера в лёгочной артерии, что имеет место только у больных, находящихся в отделениях интенсивной терапии. Сначала следует рассчитать градиент А-а рO 2 для определения происхождения проблемы. Нормальное значение градиента свидетельствует об отсутствии патологии лёгких (например, мышечная слабость). Увеличение градиента указывает на нарушение вентиляционно-перфузионных отношений или низкое парциальное давление кислорода в смешанной венозной крови (p v O 2). Связь между р v О 2 и р a O 2 , объясняется в следующем разделе.

СМЕШАННАЯ ВЕНОЗНАЯ КРОВЬ И ОКСИГЕНАЦИЯ

Оксигенация артериальной крови происходит за счёт кислорода, содержащегося в смешанной венозной крови (лёгочная артерия), с добавлением кислорода из альвеолярного газа. При нормальной функции лёгких показатель р A O 2 в основном определяет величину р a О 2 .

Рис. 3-5. Подход к установлению причины гипоксемии. Объяснение в тексте.

При нарушении газообмена показатель р а О 2 вносит меньший вклад, а венозная оксигенация (т.е. показатель p v O 2) - напротив, больший в конечное значение р a О 2 , что и представлено на рис. 3-6 (горизонтальная ось на нём идёт вдоль капилляров, также показан транспорт кислорода из альвеол в капилляры). При снижении кислородного обмена (на рисунке это обозначено как шунт) р a О 2 уменьшается. Когда степень повышения p a O 2 постоянна, но p v O 2 снижено, конечное значение p a O 2 такое же, как и в описанной выше ситуации. Этот факт указывает на то, что лёгкие не всегда являются причиной гипоксемии .

Влияние р v О 2 на р a О 2 будет зависеть от фракции шунта. При нормальной величине шунтового кровотока р v О 2 оказывает незначительное влияние на p a O 2 . При увеличении фракции шунта р v О 2 , становится все более значимым фактором, который определяет p a O 2 . В крайнем случае возможен 100% шунт, когда p v O 2 может быть единственным показателем, определяющим р а O 2 . Следовательно, показатель p v O 2 будет играть важную роль только у больных с существующей лёгочной патологией.

ЗАДЕРЖКА УГЛЕКИСЛОГО ГАЗА

Парциальное давление (напряжение) СО 2 в артериальной крови определяется отношением между величиной метаболической продукции СО 2 и скоростью его выделения лёгкими:

p a СО 2 = К х (VСО 2 /Va),

где p a CО 2 - артериальное pCO 2 ; VCO 2 - скорость образования СО 2 ; V A - минутная альвеолярная вентиляция; К - константа . Альвеолярная вентиляция устанавливается хорошо известным соотношением , и тогда предыдущая формула приобретает следующий вид:

р a СO 2 = К х ,

где ve - выдыхаемый минутный объём (измеренная на выдохе минутная вентиляция). Из уравнения видно, что основными причинами задержки СО 2 являются следующие: 1.) повышение продукции СO 2 ; 2) снижение минутной вентиляции лёгких; 3) увеличение мёртвого пространства (рис. 3-7). Каждый из указанных факторов кратко рассмотрен ниже.

Рис. 3-6. Механизмы развития гипоксемии. Объяснение в тексте.

Рис. 3-7. Объяснение в тексте.

УВЕЛИЧЕНИЕ ПРОДУКЦИИ СО 2

Количество CO 2 может быть измерено у интубированных больных с помощью «метаболической тележки», которая применяется при непрямой калориметрии. Это устройство снабжено инфракрасным анализатором СО 2 , который измеряет его содержание в выдыхаемом воздухе (при каждом выдохе). Для определения скорости выделения СО 2 регистрируют частоту дыхания.

Дыхательный коэффициент. Величина продукции СО 2 определяется интенсивностью метаболических процессов и видом веществ (углеводы, жиры, белки), которые окисляются в организме. Нормальная скорость образования CO 2 (VCO 2) у здорового взрослого человека составляет 200 мл в 1 мин, т.е. около 80% скорости поглощения (потребления) кислорода (обычная величина VO 2 = 250 мл/мин). Отношение VCO 2 /VO 2 называют дыхательным (респираторным) коэффициентом (RQ), который широко используют в клинической практике. RQ различен при биологическом окислении углеводов, белков и жиров. Для углеводов он самый высокий (1,0), несколько меньше для белков (0,8) и самый маленький для жиров (0,7). При смешанной пище величина RQ определяется метаболизмом всех трёх названных видов питательных веществ. В норме RQ составляет 0,8 для среднего человека при диете, имеющей 70% общей калорийности за счёт углеводов и 30% за счёт жиров. Более детально RQ разбирается в главе 39.

Этиологические факторы. Обычно увеличение VCO 2 наблюдается при сепсисе, политравме, ожогах, повышении работы дыхания, усилении метаболизма углеводов, метаболическом ацидозе и в послеоперационном периоде. Предполагают, что сепсис является наиболее типичной причиной возрастания VCO 2 . Увеличение работы дыхательной системы может привести к задержке СО 2 во время отключения больного от аппарата искусственного дыхания, если элиминация CO 2 через лёгкие ухудшена. Чрезмерное потребление углеводов может повысить RQ до 1,0 или выше и вызвать задержку CO 2 , поэтому важно определять РаСO 2 , которое прямо зависит от VCO 2 , а не RQ. Действительно, VCO 2 может возрастать и при нормальном RQ (если VO 2 также увеличено). Рассмотрение только одного RQ может привести к заблуждению, следовательно, этот показатель нельзя интерпретировать изолированно от других параметров.

СИНДРОМ АЛЬВЕОЛЯРНОЙ ГИПОВЕНТИЛЯЦИИ

Гиповентиляция - снижение минутной вентиляции лёгких без существенного изменения их функции (сходное с задержкой дыхания). На рис. 3-7 показано, что важно измерять градиент А-а РО 2 для идентификации синдрома альвеолярной гиповентиляции. Градиент А-а PO 2 может быть в норме (или неизменным), если имеется альвеолярная гиповентиляция. В противоположность этому сердечно-лёгочная патология может сопровождаться увеличением градиента А-а РО 2 . Исключение - значительная задержка СО 2 при заболевании лёгких, когда величина градиента А-а рО 2 близка к нормальной. В такой ситуации повышение сопротивления дыхательных путей может быть так выражено, что воздух будет практически не способен достигать альвеол (сходно с задержкой дыхания). Основные причины синдрома альвеолярной гиповентиляции у больных, находящихся в отделениях интенсивной терапии, приведены в табл. 3-1. Если градиент А-а рО 2 нормальный или неизменный, то состояние дыхательной мускулатуры можно оценить, используя максимальное давление на вдохе, как описано ниже.

Слабость дыхательной мускулатуры. У больных, находящихся в отделениях интенсивной терапии, ряд заболеваний и патологических состояний может привести к слабости дыхательных мышц. Наиболее распространённые - сепсис, шок, нарушения электролитного баланса и последствия операций на сердце. При сепсисе и шоке наблюдается снижение кровотока в диафрагме . Повреждение диафрагмального нерва может отмечаться при хирургических вмешательствах в условиях искусственного кровообращения в связи с местным охлаждением поверхности сердца (см. главу 2).

Слабость дыхательной мускулатуры можно определить, измеряя максимальное давление на вдохе (Р мвд) непосредственно у постели больного . Для этого пациент после максимально глубокого выдоха (до остаточного объёма) должен сделать вдох с максимальным усилием через закрытый клапан. Р мвд зависит от возраста и пола (см. табл. 30-2) и колеблется от 80 до 130 см вод.ст. у большинства взрослых людей . Задержка CO 2 отмечается тогда, когда Р мвд падает до 30 см вод.ст. Следует помнить, что Р мвд измеряется при участии всех дыхательных мышц, исключая диафрагму. Следовательно, дисфункция только диафрагмы, в том числе повреждение диафрагмального нерва, может быть пропущена при определении Р мвд, потому что добавочные мышцы способны поддерживать Р мвд на желаемом уровне.

Таблица 3-1

Причины альвеолярной гиповентиляции в отделениях интенсивной терапии

Идиопатические синдромы. Классификация идиопатических гиповентиляционных синдромов связана с массой тела и временем дня (или ночи). Дневную гиповентиляцию у больных с ожирением называют тучно-гиповентиляционным синдромом (ТГС), аналогичную патологию у худых - первичной альвеолярной гиповентиляцией (ПАГ). Синдром апноэ во сне (ночное апноэ) характеризуется нарушением дыхания во время сна и никогда не сопровождается дневной гиповентиляцией . Состояние больных с ТГС и синдромом ночного апноэ во сне улучшается с уменьшением избыточной массы тела; кроме того, при ТГС может быть эффективен прогестерон (см. главу 26). Нарушение функции диафрагмального нерва способно ограничить успех при лечении ПАГ.

ЛИТЕРАТУРА

Forster RE, DuBois AB, Briscoe WA, Fisher A, eds. The lung. 3rd ed. Chicago: Year Book Medical Publishers, 1986.

Tisi GM. Pulmonary physiology in clinical medicine. Baltimore: Williams & Wilkins, 1980.

  1. Dantzger DR. Pulmonary gas exchange. In: Dantzger DR. ed. Cardiopulmonary critical care. Orlando: Grune & Stratton, 1986:25-46.
  2. D"Alonzo GE, Dantzger DR. Mechanisms of abnormal gas exchange. Med Clin North Am 1983; 67:557-571.
  3. Dantzger DR. Ventilation-perfusion inequality in lung disease. Chest 1987; 91:749-754.
  4. Dantzger DR. The influence of cardiovascular function on gas exchange. Clin Chest. Med 1983; 4:149-159.
  5. Shapiro В. Arterial blood gas monitoring. Crit Care Clin 1988; 4:479-492.
  6. ВЕНТИЛЯЦИОННО-ПЕРФУЗИОННЫЕ ОТНОШЕНИЯ И ИХ НАРУШЕНИЯ

  7. Buohuys A. Respiratory dead space. In: Fenn WO, Rahn H. eds. Handbook of physiology: Respiration. Bethesda: American Physiological Society, 1964:699-714.
  8. Dean JM, Wetzel RC, Rogers MC. Arterial blood gas derived variables as estimates of intrapulmonary shunt in critically ill children. Crit Care Med 1985; 13:1029-1033.
  9. Carroll GC. Misapplication of the alveolar gas equation. N Engi J Med 1985; 312:586.
  10. Gilbert R, Kreighley JF. The arterial/alveolar oxygen tension ratio. An index of gas exchange applicable to varying inspired oxygen concentrations. Am Rev Respir Dis 1974; 109:142-145.
  11. Harris EA, Kenyon AM, Nisbet HD, Seelye ER, Whitlock RML. The normal alveolar-arterial oxygen tension gradient in man. Clin Sci 1974; 46:89-104.
  12. Covelli HD, Nessan VJ, Tuttle WK. Oxygen derived variables in acute respiratory failure. Crit Care Med 1983; 31:646-649.
  13. СИНДРОМ АЛЬВЕОЛЯРНЫЙ ГИПОВЕНТИЛЯЦИИ

  14. Glauser FL, Fairman P, Bechard D. The causes and evaluation of chronic hvpercapnia. Chest 1987; 93.755-759,
  15. Praher MR, Irwin RS, Extrapulmonary causes of respiratory failure. J Intensive Care Med 1986; 3:197-217.
  16. Rochester D, Arora NS. Respiratory muscle failure. Med Clin North Am 1983; 67:573-598.

Весь сложный процесс можно подразделить на три основных этапа: внешнее дыхание; и внутреннее (тканевое) дыхание.

Внешнее дыхание — газообмен между организмом и окружающим его атмосферным воздухом. Внешнее дыхание включает обмен газов между атмосферным и альвеолярным воздухом, а также легочных капилляров и альвеолярным воздухом.

Это дыхание осуществляется в результате периодических изменений объема грудной полости. Увеличение ее объема обеспечивает вдох (инспирацию), уменьшение — выдох (экспирацию). Фазы вдоха и следующего за ним выдоха составляют . Во время вдоха атмосферный воздух через воздухоносные пути поступает в легкие, при выдохе часть воздуха покидает их.

Условия, необходимые для внешнего дыхания:

  • герметичность грудной клетки;
  • свободное сообщение легких с окружающей внешней средой;
  • эластичность легочной ткани.

Взрослый человек делает 15-20 дыханий в минуту. Дыхание физически тренированных людей более редкое (до 8-12 дыханий в минуту) и глубокое.

Наиболее распространенные методы исследования внешнего дыхания

Методы оценки дыхательной функции легких:

  • Пневмография
  • Спирометрия
  • Спирография
  • Пневмотахометрия
  • Рентгенография
  • Рентгеновская компьютерная томография
  • Ультразвуковое исследование
  • Магнитно-резонансная томография
  • Бронхография
  • Бронхоскопия
  • Радионуклидные методы
  • Метод разведения газов

Спирометрия — метод измерения объемов выдыхаемого воздуха с помощью прибора спирометра. Используются спирометры разного типа с турбиметрическим датчиком, а также водные, в которых выдыхаемый воздух собирается под колокол спирометра, помещенный в воду. По подъему колокола определяется объем выдыхаемого воздуха. В последнее время широко применяются датчики, чувствительные к изменению объемной скорости воздушного потока, подсоединенные к компьютерной системе. В частности, на этом принципе работает компьютерная система типа «Спирометр МАС-1» белорусского производства и др. Такие системы позволяют проводить не только спирометрию, но и спирографию, а также пневмотахографию).

Спирография - метод непрерывной регистрации объемов вдыхаемого и выдыхаемого воздуха. Получаемую при этом графическую кривую называют спирофаммой. По спирограмме можно определить жизненную емкость легких и дыхательные объемы, частоту дыхания и произвольную максимальную вентиляцию легких.

Пневмотахография - метод непрерывной регистрации объемной скорости потоков вдыхаемого и выдыхаемого воздуха.

Имеется много других методов исследования респираторной системы. Среди них плетизмография грудной клетки, прослушивание звуков, возникающих при прохождении воздуха через дыхательные пути и легкие, рентгеноскопия и рентгенография, определение содержания кислорода и углекислого газа в потоке выдыхаемого воздуха и др. Некоторые из этих методов рассматриваются ниже.

Объемные показатели внешнего дыхания

Соотношение величин легочных объемов и емкостей представлено на рис. 1.

При исследовании внешнего дыхания используются следующие показатели и их аббревиатура.

Общая емкость легких (ОЕЛ) — объем воздуха, находящийся в легких после максимально глубокого вдоха (4-9 л).

Рис. 1. Средние величины объемов и емкостей легких

Жизненная емкость легких

Жизненная емкость легких (ЖЕЛ) — объем воздуха, который может выдохнуть человек при максимально глубоком медленном выдохе, сделанном после максимального вдоха.

Величина жизненной емкости легких человека составляет 3-6 л. В последнее время в связи с внедрением пневмотахографической техники все чаще определяют так называемую форсированную жизненную емкость легких (ФЖЕЛ). При определении ФЖЕЛ испытуемый должен после максимально глубокого вдоха сделать максимально глубокий форсированный выдох. При этом выдох должен производиться с усилием, направленным на достижение максимальной объемной скорости выдыхаемого воздушного потока на протяжении всего выдоха. Компьютерный анализ такого форсированного выдоха позволяет рассчитать десятки показателей внешнего дыхания.

Индивидуальную нормальную величину ЖЕЛ называют должной жизненной емкостью легких (ДЖЕЛ). Ее рассчитывают в литрах по формулам и таблицам на основе учета роста, массы тела, возраста и пола. Для женщин 18-25-летнего возраста расчет можно вести по формуле

ДЖЕЛ = 3,8*Р + 0,029*В — 3,190; для мужчин того же возраста

Остаточный объем

ДЖЕЛ = 5,8*Р + 0,085*В — 6,908, где Р — рост; В — возраст (годы).

Величина измеренной ЖЕЛ считается пониженной, если это снижение составляет более 20% от уровня ДЖЕЛ.

Если для показателя внешнего дыхания применяют название «емкость», то это значит, что в состав такой емкости входят более мелкие подразделения, называемые объемами. Например, ОЕЛ состоит из четырех объемов, ЖЕЛ — из трех объемов.

Дыхательный объем (ДО) — это объем воздуха, поступающий в легкие и удаляемый из них за один дыхательный цикл. Этот показатель называют также глубиной дыхания. В состоянии покоя у взрослого человека ДО составляет 300-800 мл (15-20% от величины ЖЕЛ); месячного ребенка — 30 мл; годовалого — 70 мл; десятилетнего — 230 мл. Если глубина дыхания больше нормы, то такое дыхание называют гиперпноэ — избыточное, глубокое дыхание, если же ДО меньше нормы, то дыхание назвают олигопноэ — недостаточное, поверхностное дыхание. При нормальной глубине и частоте дыхания его называют эупноэ — нормальное, достаточное дыхание. Нормальная частота дыхания в покое у взрослых составляет 8-20 дыхательных циклов в минуту; месячного ребенка — около 50; годовалого — 35; десятилетнего — 20 циклов в минуту.

Резервный объем вдоха (РО вд) — объем воздуха, который человек может вдохнуть при максимально глубоком вдохе, сделанном после спокойного вдоха. Величина РО вд в норме составляет 50-60% от величины ЖЕЛ (2-3 л).

Резервный объем выдоха (РО выд) — объем воздуха, который человек может выдохнуть при максимально глубоком выдохе, сделанном после спокойного выдоха. В норме величина РО выд составляет 20-35% от ЖЕЛ (1-1,5 л).

Остаточный объем легких (ООЛ) — воздух, остающийся в дыхательных путях и легких после максимального глубокого выдоха. Его величина составляет 1-1,5 л (20-30% от ОЕЛ). В пожилом возрасте величина ООЛ нарастает из-за уменьшения эластической тяги легких, проходимости бронхов, снижения силы дыхательных мышц и подвижности грудной клетки. В возрасте 60 лет он уже составляет около 45% от ОЕЛ.

Функциональная остаточная емкость (ФОЕ) — воздух, остающийся в легких после спокойного выдоха. Эта емкость состоит из остаточного объема легких (ООЛ) и резервного объема выдоха (РО выд).

Не весь атмосферный воздух, поступающий в дыхательную систему при вдохе, принимает участие в газообмене, а лишь тот, который доходит до альвеол, имеющих достаточный уровень кровотока в окружающих их капиллярах. В связи с этим выделяют гак называемое мертвое пространство.

Анатомическое мертвое пространство (АМП) — это объем воздуха, находящийся в дыхательных путях до уровня респираторных бронхиол (на этих бронхиолах уже имеются альвеолы и возможен газообмен). Величина АМП составляет 140-260 мл и зависит от особенностей конституции человека (при решении задач, в которых необходимо учитывать АМП, а величина его не указана, объем АМП принимают равным 150 мл).

Физиологическое мертвое пространство (ФМП) — объем воздуха, поступающий в дыхательные пути и легкие и не принимающий участия в газообмене. ФМП больше анатомического мертвого пространства, так как включает его как составную часть. Кроме воздуха, находящегося в дыхательных путях, в состав ФМП входит воздух, поступающий в легочные альвеолы, но не обменивающийся газами с кровью из-за отсутствия или снижения кровотока в этих альвеолах (для этого воздуха иногда применяется название альвеолярное мертвое пространство). В норме величина функционального мертвого пространства составляет 20-35% от величины дыхательного объема. Возрастание этой величины свыше 35% может свидетельствовать о наличии некоторых заболеваний.

Таблица 1. Показатели легочной вентиляции

В медицинской практике важно учитывать фактор мертвого пространства при конструировании приборов для дыхания (высотные полеты, подводное плавание, противогазы), проведении ряда диагностических и реанимационных мероприятий. При дыхании через трубки, маски, шланги к дыхательной системе человека подсоединяется дополнительное мертвое пространство и, несмотря на возрастание глубины дыхания, вентиляция альвеол атмосферным воздухом может стать недостаточной.

Минутный объем дыхания

Минутный объем дыхания (МОД) — объем воздуха вентилируемый через легкие и дыхательные пути за 1 мин. Для определения МОД достаточно знать глубину, или дыхательный объем (ДО), и частоту дыхания (ЧД):

МОД = ДО * ЧД.

В покос МОД составляет 4-6 л/мин. Этот показатель часто называют также вентиляцией легких (отличать от альвеолярной вентиляции).

Альвеолярная вентиляция

Альвеолярная вентиляция легких (АВЛ) — объем атмосферного воздуха, проходящий через легочные альвеолы за 1 мин. Для расчета альвеолярной вентиляции надо знать величину АМП. Если она не определена экспериментально, то для расчета объем АМП берут равным 150 мл. Для расчета альвеолярной вентиляции можно пользоваться формулой

АВЛ = (ДО — АМП) . ЧД.

Например, если глубина дыхания у человека 650 мл, а частота дыхания 12, то АВЛ равно 6000 мл (650-150) . 12.

АВ = (ДО — ОМП) * ЧД = ДО альв * ЧД

  • АВ — альвеолярная вентиляция;
  • ДО альв — дыхательный объем альвеолярной вентиляции;
  • ЧД — частота дыхания

Максимальная вентиляция легких (МВЛ) — максимальный объем воздуха, который может быть провентилирован через легкие человека за 1 мин. МВЛ может быть определена при произвольной гипервентиляции в покое (дышать максимально глубоко и часто в покос допустимо не более 15 с). С помощью специальной техники МВЛ может быть определена во время выполнения человеком интенсивной физической работы. В зависимости от конституции и возраста человека норма МВЛ находится в границах 40-170 л/мин. У спортсменов МВЛ может достигать 200 л/мин.

Потоковые показатели внешнего дыхания

Кроме легочных объемов и емкостей для оценки состояния дыхательной системы используют так называемые потоковые показатели внешнего дыхания. Простейшим методом определения одного из них — пиковой объемной скорости выдоха — является пикфлоуметрия. Пикфлоуметры — простые и вполне доступные приборы для пользования в домашних условиях.

Пиковая объемная скорость выдоха (ПОС) — максимальная объемная скорость потока выдыхаемого воздуха, достигнутая в процессе форсированного выдоха.

С помощью прибора пневмотахометра можно определить не только пиковую объемную скорость выдоха, но и вдоха.

В условиях медицинского стационара все большее распространение получают приборы пневмотахографы с компьютерной обработкой получаемой информации. Приборы подобного типа позволяют на основе непрерывной регистрации объемной скорости воздушного потока, создаваемого в ходе выдоха форсированной жизненной емкости легких, рассчитать десятки показателей внешнего дыхания. Чаще всего определяются ПОС и максимальные (мгновенные) объемные скорости воздушного потока в момент выдоха 25, 50, 75% ФЖЕЛ. Их называют соответственно показателями МОС 25 , МОС 50 , МОС 75 . Популярно также определение ФЖЕЛ 1 — объема форсированного выдоха за время, равное 1 e. На основе этого показателя рассчитывается индекс (показатель) Тиффно — выраженное в процентах отношение ФЖЕЛ 1 к ФЖЕЛ. Регистрируется также кривая, отражающая изменение объемной скорости воздушного потока в процессе форсированного выдоха (рис. 2.4). При этом на вертикальной оси отображается объемная скорость (л/с), на горизонтальной — процент выдохнутой ФЖЕЛ.

На приведенном графике (рис. 2, верхняя кривая) вершина указывает величину ПОС, проекция момента выдоха 25% ФЖЕЛ на кривую характеризует МОС 25 , проекция 50% и 75% ФЖЕЛ соответствует величинам МОС 50 и МОС 75 . Диагностическую значимость имеют не только скорости потока в отдельных точках, но и весь ход кривой. Ее часть, соответствующая 0-25% выдыхаемой ФЖЕЛ, отражает проходимость для воздуха крупных бронхов, трахеи и , участок от 50 до 85% ФЖЕЛ — проходимость мелких бронхов и бронхиол. Прогиб на нисходящем участке нижней кривой в области выдоха 75-85% ФЖЕЛ указывает на снижение проходимости мелких бронхов и бронхиол.

Рис. 2. Потоковые показатели дыхания. Кривые ноток — объем здорового человека (верхняя), больного с обструктивнымн нарушениями проходимости мелких бронхов (нижняя)

Определение перечисленных объемных и потоковых показателей применяются в диагностике состояния системы внешнего дыхания. Для характеристики функции внешнего дыхания в клинике используются четыре варианта заключений: норма, обструктивные нарушения, рестриктивные нарушения, смешанные нарушения (сочетание обструктивных и рестриктивных нарушений).

Для большинства потоковых и объемных показателей внешнего дыхания выходящими за пределы нормы считаются отклонения их величины от должного (расчетного) значения более чем на 20%.

Обструктивные нарушения — это нарушения проходимости дыхательных путей, ведущие к увеличению их аэродинамического сопротивления. Такие нарушения могут развиваться в результате повышения тонуса гладких мышц нижних дыхательных путей, при гипертрофии или отеке слизистых оболочек (например, при острых респираторных вирусных инфекциях), скоплении слизи, гнойного отделяемого, при наличии опухоли или инородного тела, нарушении регуляции проходимости верхних дыхательных путей и других случаях.

О наличии обструктивных изменений дыхательных путей судят по снижению ПОС, ФЖЕЛ 1 , МОС 25 , МОС 50 , МОС 75 , МОС 25-75 , МОС 75-85 , величины индекса теста Тиффно и МВЛ. Показатель теста Тиффно в норме составляет 70-85%, снижение его до 60% расценивается как признак умеренного нарушения, а до 40% — резко выраженного нарушения проходимости бронхов. Кроме того, при обструктивных нарушениях увеличиваются такие показатели, как остаточный объем, функциональная остаточная емкость и общая емкость легких.

Рестриктивные нарушения — это уменьшение расправления легких при вдохе, снижение дыхательных экскурсий легких. Эти нарушения могут развиться из-за снижения растяжимости легких, при повреждениях грудной клетки, наличии спаек, скопления в плевральной полости жидкости, гнойного содержимого, крови, слабости дыхательных мышц, нарушении передачи возбуждения в нервно-мышечных синапсах и других причин.

Наличие рестриктивных изменений легких определяют по снижению ЖЕЛ (не менее 20% от должной величины) и уменьшению МВЛ (неспецифический показатель), а также снижению растяжимости легких и в ряде случаев по возрастанию показателя теста Тиффно (более 85%). При рестриктивных нарушениях уменьшаются общая емкость легких, функциональная остаточная емкость и остаточный объем.

Заключение о смешанных (обструктивных и рестриктивных) нарушениях системы внешнего дыхания делается при одновременном наличии изменений вышеперечисленных потоковых и объемных показателей.

Легочные объемы и емкости

Дыхательный объем - это объем воздуха, который вдыхает и выдыхает человек в спокойном состоянии; у взрослого человека он равен 500 мл.

Резервный объем вдоха — это максимальный объем воздуха, который может вдохнуть человек после спокойного вдоха; величина его равна 1,5-1,8 л.

Резервный объем выдоха - это максимальный объем воздуха, который может выдохнуть человек после спокойного выдоха; этот объем составляет 1-1,5 л.

Остаточный объем - это объем воздуха, который остается в легких после максимального выдоха; величина остаточного объема 1 -1,5 л.

Рис. 3. Изменение дыхательного объема, плеврального и альвеолярного давления при вентиляции легкого

Жизненная емкость легких (ЖЕЛ) — это максимальный объем воздуха, который может выдохнуть человек после самого глубокого вдоха. ЖЕЛ включает в себя резервный объем вдоха, дыхательный объем и резервный объем выдоха. Жизненная емкость легких определяется спирометром, а метод ее определения называют спирометрией. ЖЕЛ у мужчин 4-5,5 л, а у женщин — 3-4,5 л. Она больше в положении стоя, чем в положении сидя или лежа. Физическая тренировка приводит к увеличению ЖЕЛ (рис. 4).

Рис. 4. Спирограмма легочных объемов и емкостей

Функциональная остаточная емкость (ФОЕ) — объем воздуха в легких после спокойного выдоха. ФОЕ является суммой резервного объема выдоха и остаточного объема и равна 2,5 л.

Общая емкость легких (ОЕЛ) — объем воздуха в легких по окончании полного вдоха. ОЕЛ включает в себя остаточный объем и жизненную емкость легких.

Мертвое пространство образует воздух, который находится в воздухоносных путях и не участвует в газообмене. При вдохе последние порции атмосферного воздуха входят в мертвое пространство и, не изменив своего состава, покидают его при выдохе. Объем мертвого пространства около 150 мл, или примерно 1/3, дыхательного объема при спокойном дыхании. Значит, из 500 мл вдыхаемого воздуха в альвеолы поступает лишь 350 мл. В альвеолах к концу спокойного выдоха находится около 2500 мл воздуха (ФОЕ), поэтому при каждом спокойном вдохе обновляется лишь 1/7 часть альвеолярного воздуха.

Изучение мертвого пространства в дыхательном тракте человека связано со многими неясностями и противоречиями. Некоторые его аспекты не решены еще до настоящего времени.

Определение Vd возможно при помощи нескольких методов, но оно редко осуществимо в условиях подводного погружения. Наиболее широко используют метод как можно более точного вычисления Vd. В водолазной практике рассматривают два вида мертвого пространства: собственно индивидуальное мертвое пространство водолаза и мертвое пространство его дыхательного аппарата.

В настоящее время существует единое мнение в отношении вопроса об объемах дыхательного мертвого пространства у здоровых людей, находящихся в состоянии покоя. Величина их объемов зависит от размера тела водолаза. Radford в 1955 г. заметил, что у взрослых людей объем мертвого пространства (в миллилитрах), как правило, приблизительно равен массе тела человека, выраженной в фунтах. Множество разногласий среди ученых вызывает изменение мертвого пространства во время физической нагрузки, и они до сих пор еще полностью не решены.

Эти разногласия частично обусловлены тем, что некоторые авторы используют значение Ретсо2 (Рсо2 в конце дыхательного объема) вместо величины Расо2 в уравнении, предложенном Bohr. В действительности во время физической нагрузки РАСО2 может отличаться от Ретсо2. Возможно, что наиболее приемлемой является информация, полученная при обследовании здоровых молодых мужчин, проведенном в 1956 г. Asmussen, Nielsen. Эти авторы установили, что средние величины общего или физиологического мертвого пространства составляли от 170 мл (в состоянии покоя) до 350 мл во время тяжелой физической нагрузки.

Самая высокая из зарегистрированных величин составляла 450 мл. Увеличение объема мертвого пространства носило характер линейной зависимости от дыхательного объема, изменяющегося в пределах приблизительно 0,5-3,3 л на один акт дыхания.

Аналогичных измерений в водолазной практике еще не проводилось, поэтому приходится считать указанные величины приемлемыми для практики. Логично допустить, что величина индивидуального мертвого пространства у работающего водолаза составляет 0,3 л при BTPS.

Неожиданно большое значение VD недавно получено при расчете по уравнению, предложенному Bohr, у водолазов, находящихся в сухой камере под абсолютным давлением 46,7 кгс/см2. Позже такое же значение получили Salzano и соавт. (1981) в исследованиях, проводимых по программе «Atlantis» у водолазов, находящихся в сухой камере под более высоким давлением. Авторы полагают, что полученные результаты могли быть обусловлены крайне высокой плотностью дыхательных газовых смесей.

Применение дыхательного аппарата обусловливает значительное дополнение объема мертвого пространства водолаза. Любую часть аппарата, имеющую двусторонне направленную вентиляцию, следует считать «мертвой» до тех пор, пока не будет доказано противоположное. Вопрос ставится однозначно: будет ли во время выдоха эта часть аппарата содержать выдыхаемую двуокись углерода, которая затем возвращается в дыхательные пути водолаза при вдохе? Мертвое пространство почти неизбежно присутствует в конструкциях обычных соединенных с загубником легочных автоматов.

В таких случаях объем мертвого пространства , как правило, достигает 0,1 л и попытки его уменьшения значительно повышают риск чрезмерного сужения воздухоносных путей аппарата.

Величина явного объема мертвого пространства аппарата может быть определена либо с помощью заполнения его водой, либо расчетным путем. Иногда при осмотре нельзя с уверенностью определить является ли конкретный объем «функционально мертвым» или нет, или только отчасти таковым. В этих ситуациях следует использовать метод, при помощи которого определяют дыхательное мертвое пространство у человека. Водолазная маска, закрывающая все лицо, осложняет определение мертвого пространства. В случаях, когда объем мертвого пространства в отдельных образцах дыхательных аппаратов достигает 0,5 л, оно чаще представляет собой сплошной внутренний объем газа между маской и лицом, чем при использовании дыхательных аппаратов с надежным разделением между ротоносовой и глазной областями лица.
В этих случаях вдыхаемый и выдыхаемый газы могут не смешиваться в целом по всему объему, и мертвое пространство будет относительно небольшим.

Основное затруднение , связанное с наличием очень большого мертвого пространства, обусловленного дыхательным аппаратом, состоит не столько в повышении требования к вентиляции, сколько в невозможности для водолаза полностью компенсировать нужную вентиляцию легких, что приводит к росту РАсо2. В одном из исследований было установлено, что прибавление к объему подводной дыхательной системы 0,5 л мертвого пространства увеличивает среднее Расо2 (измеренное к концу дыхательного объема) на 6 мм рт. ст. Это существенное увеличение, особенно при уже высоком Расо2 .