Физические основы применения ультразвука в хирургии. Использование высоких энергий ультразвука, лазера, плазмы в хирургии. Новые направления лечебного использования ультразвука

5623 0

Хирурги всегда стремились к быстрому удалению некротизированных тканей при лечении инфицированных и гнойных ран. Если при лечении инфицированных ран в большинстве случаев это профилактическое мероприятие применяется как средство, предупреждающее нагноение ран, то при гнойных ранах это один из важных (если не основной) методов лечения.

В естественных условиях некролиз предшествует репаративной регенерации ран и до его завершения восстановительные процессы в ране ограничены, а восстановление тканей в полном объеме невозможно. Для удаления некротизированных тканей предложено множество методов. Виды некрэктомии разделяются по характеру действия и имеют определенные противопоказания.

Различают механическую, физическую, химическую некрэктомию. К механической относят первичную и вторичную хирургическую обработку, вакуумирование ран, использование пульсирующей струи; к физической — ультразвуковую кавитацию, лазерное выпаривание некротизированных тканей, энергию плазмы, криовоздействие; к химической — использование препаратов некролитического действия.

Некрэктомия может быть одномоментной, этапной и пролонгированной или комбинированной, с использованием средств с различной направленностью действия (сочетание механического, физического и химического воздействия на некротизированные ткани).

Дополнение первичной хирургической обработки инфицированных ран ультразвуковой кавитацией значительно повышает ее эффективность.

Во время ранней хирургической обработки наиболее инфицированных ран (размозженных, рваных, ушибленных, скальпированных) комбинированная интраоперационная некрэктомия уменьшает число воспалительных раневых осложнений в 2 раза, а при открытых переломах число нагноений ран, некрозов кожи уменьшается почти в 3 раза.

Отсроченная хирургическая обработка инфицированных ран (через 12-48 ч после травмы) с выраженными явлениями воспаления в ране при комбинированной механической, физической и химической некрэктомии позволяет уменьшить число раневых осложнений до 12 %.

Дополнение хирургической обработки гнойных ран ультразвуковой кавитацией позволяет у каждого 3-го больного закончить операцию наложением первичного шва с дренированием раны, а в 69 % случаев использовать ультразвуковую кавитацию как некрэктомию в послеоперационном периоде во время ежедневных перевязок. После 3—5 кавитаций раны с использованием химических антисептиков у половины больных создаются условия для наложения ранних вторичных швов.

Ультразвуковую обработку гнойных ран проводят с помощью отечественной медицинской установки УРСК-7Н, предназначенной для различных хирургических операций на мягких тканях, костях и внутренних органах.

Обработку осуществляют в режиме «скальпель» с резонансной частотой 26,9 кГц, амплитудой продольных колебаний инструмента 0,060 мм, мощностью 0,2 Вт/см2 и настройкой на частоту рабочего резонанса при силе тока 4-12 мА. Для ультразвуковой обработки применяют 0,5 % раствор хлоргексидина, который подают на раневую поверхность шприцем, омывая торец излучателя.

При этом расстояние между торцом излучателя и поверхностью раны составляет 3-5 мм, а направление инструмента перпендикулярно обрабатываемой поверхности. В ходе ультразвуковой обработки воздействию подвергается вся раневая поверхность, начиная каждый раз от дна и кончая кожей вокруг раны, скорость перемещения излучателя должна быть не менее 1 см/с, что в сочетании с постоянной подачей раствора предохраняет ткани от термического повреждения.

При обработке активно удаляются гной, некротические массы, инородные частицы, из жизнеспособных тканей появляется капиллярное кровотечение, что позволяет более четко дифференцировать нежизнеспособные ткани, имеющие после ультразвуковой обработки тусклый темно-синюшный цвет, и произвести дополнительно их иссечение. В зависимости от размеров очага обработка длится 3-8 мин. Процедуры проводят ежедневно, всего 3—5. При появлении грануляций обработку производят с настройкой в резонанс при силе тока 6—8 мА, чтобы предотвратить повреждение формирующейся грануляционной ткани.

У больных с трофическими язвами ультразвуковую обработку осуществляют с настройкой в резонанс при силе тока 4—6 мА в течение 3—6 мин. Появление активной краевой эпителизации служит показанием к окончанию курса (всего 4—8 сеансов).

Сочетанное применение низкочастотного ультразвука с антисептиками — эффективный способ подготовки гнойных ран и трофических язв к пластическим операциям, что позволяет значительно улучшить результаты и сократить сроки лечения больных.

Ультразвуковая кавитация ран является эффективным средством борьбы с микробной флорой. Эффект ультразвуковой обработки в большой степени зависит от среды озвучивания. При кавитации ран через обычные традиционные растворы антисептиков (фурацилин, этакридина лактат) или же изотонический раствор хлорида натрия обсемененность ран снижается незначительно и составляет в среднем 5,5 х 104. При добавлении в озвучиваемый раствор антибиотиков целенаправленного воздействия (левомицетин, карбенициллин и др.), а также при озвучивании через диоксидин, метронидазол число микроорганизмов уменьшалось в среднем до 1,4 х 10 2 , а в 39 % случаев было ниже 1,0 х 10 2 .

Комплексное лечение гнойных ран мягких тканей и трофических язв низкочастотным ультразвуком с использованием пластических операций значительно улучшает косметические и функциональные результаты и сокращает сроки пребывания больных в стационаре.

Ультразвуковая обработка является эффективным дополнением к хирургической обработке гнойных ран, позволяет шире и с благоприятными исходами использовать первичные швы. Резкое сокращение фазы воспаления позволяет эффективно применять ранние вторичные швы для закрытия раневого дефекта. Активная краевая эпителизация является показанием к окончанию курса ультразвуковой обработки гнойных ран и трофических язв.

Лазерное излучение предусматривает как лазерную некрэктомию, так и стимулирующее влияние расфокусированного лазерного луча. Основой лазерной некрэктомии является выпаривание некротизированных тканей сфокусированным лучом углекислотного лазера.

Для лазерной некрэктомии без повреждения подлежащих здоровых тканей достаточно обработать раневую поверхность сфокусированным лучом при удельной дозе 150-200 Дж/см2. Образующаяся на поверхности раны после такой обработки коагуляционная пленка не замедляет регенерацию. Облучение раневой поверхности расфокусированным лучом при разовой экспозиционной дозе 3,0—4,5 Дж и плотности мощности излучения 0,1—0,5 Вт/см2 значительно стимулирует процессы репаративной регенерации.

Использование углекислотного лазера при лечении гнойных ран способствует одномоментному удалению некротических тканей, ликвидирует бактериальную обсемененность, ускоряет некролиз, появление грануляций и эпителизацию, что приводит к быстрому заживлению и сокращению сроков пребывания больных в стационаре.

При лечении гнойных ран гелий-неоновым, гелий-кадмиевым лазерным излучением наиболее эффективны интенсивность мощности излучения 0,3-0,8 мВт/см2, разовая плотность энергии излучения 0,3-0,45 Дж/см2, курсовая (суммарная) плотность излучения не более 4-5 Дж/см2. Облучение большей суммарной плотностью энергии излучения вызывает угнетение регенеративных процессов, о чем свидетельствует прекращение контракции и эпителизации раны.

Излучение гелий-кадмиевого лазера в большей степени купирует воспаление, нормализует микроциркуляцию, стимулирует пролиферативные процессы, но меньше влияет на эпителизацию раны.

Излучение гелий-неонового лазера больше, чем излучение гелий-кадмиевого лазера, ускоряет контракцию и эпителизацию ран. Лечение гнойных ран наиболее эффективно при применении в фазе воспаления гелий-кадмиевого, а в фазе заживления — гелий-неонового лазерного излучения.

Низкоэнергетическое лазерное излучение купирует воспалительный процесс, нормализует микроциркуляцию, уменьшает микробную обсемененность, ускоряет некролиз, регенерацию и заживление гнойных ран.

Использование энергии плазмы в лечении гнойных ран предусматривает обработку плазменным потоком в режимах «щадящей коагуляции» и «NO-терапию». Содержащий оксид азота газовый поток получается с помощью аппарата «Плазон».

Технические возможности аппарата «Плазон» позволяют обрабатывать раневую поверхность в режиме контактного высокотемпературного воздействия — режим «щадящей коагуляции». Обработку выполняют путем кратковременного однократного контакта высокотемпературного плазменного факела с раневой поверхностью до образования тонкой коагуляционной пленки. NO-терапия предполагает обработку раны охлажденным до +41-43 0 С газовым потоком, содержащим оксид азота. Экспозиция составляет 15—20 с на 10 см2 раневой поверхности в первую фазу раневого процесса и 5—10 с на аналогичную площадь во вторую фазу. NO-терапию проводят ежедневно во время перевязок, процедура не требует дополнительного обезболивания.

Обработка раны предусматривает механическую, хирургическую некрэктомию и затем физическую — с использованием воздушно-плазменного потока в режиме «щадящей коагуляции». На поверхности раны образуется тонкая блестящая коагуляционная пленка. Происходит остановка кровотечения только из самых мелких сосудов. Через сутки после операции экссудация в ране менее выражена, пленка сохраняется. NO-терапия способствует уменьшению раневой экссудации. Выраженные экссудативные явления могут быть обусловлены сохраняющимися некротическими изменениями в тканях, что требует проведения этапной некрэктомии.

Важным клиническим симптомом в первой фазе раневого процесса помимо выраженности экссудации и скорости очищения раны можно считать уменьшение перифокальной воспалительной реакции. Ко 2—3-м суткам после хирургической и физической некрэктомии снижается перифокальное воспаление: почти полностью исчезает гиперемия кожи вокруг раны с умеренно выраженной инфильтрацией кожи и подкожной клетчатки у краев раны.

К 7—8-м суткам полностью стихают перифокальные воспалительные изменения, значительно уменьшается экссудация, отсутствуют гной, фибрин, появляется грануляционная ткань. К 10—14-м суткам рана полностью очищается, ее дно покрыто яркой мелкозернистой грануляционной тканью. Указанные изменения в ране свидетельствуют о переходе раневого процесса во вторую фазу и соответствуют клиническим критериям готовности раны к хирургическому закрытию.

Физическая некрэктомия с использованием NO-потока приводит к десятикратному снижению бактериальной обсемененности ран, уменьшая при этом воспалительную реакцию в целом. В то же время NO-терапия ускоряет пролиферацию сосудов и клеточных элементов, создавая благоприятные условия для формирования и созревания грануляционной ткани, сокращает сроки лечения или подготовки ран к хирургическому закрытию.

Основой патогенетического лечения хронического остеомиелита является радикальная хирургическая операция — удаление патологического очага. Это иссечение свищей с окружающими их рубцами и грануляциями, удаление секвестров, неотторгшейся мертвой костной ткани, вскрытие костных полостей и т.д. Сущность операции не меняется, хотя ее названия могут быть различны: некрэктомия, некрсеквестрэктомия, фистулосеквестрнекрэктомия, радикальная хирургическая обработка остеомиелитического очага и др.

Если вопрос о радикальности операции как этапа хирургического лечения хронического остеомиелита принципиально решен, то варианты некрэктомии, санации кости и мягких тканей обсуждаются до настоящего времени.

Для снижения бактериальной обсемененности костной и мягких тканей ниже критической с целью обеспечения санации послеоперационного костного дефекта и раны мягких тканей при хроническом остеомиелите используют сочетание механической обработки и применения химических антисептиков с ультразвуковой кавитацией или С02-лазерным излучением углекислотного лазера.

Во время операции для санации костной полости и раны мягких тканей используют аппарат УРСК-7Н в режиме «сварка» или «скальпель», рабочая частота 25,5 +7,5 кГц, амплитуда колебания 0,04—0,08 мк при экспозиции 5—10 мин в соответствии с методическими рекомендациями ЦИТО. После механической обработки костной полости фрезами, долотом, обильного промывания раствором антисептика (фурагин калия, хлоргексидин, гипохлорит натрия) рану заполняют раствором антисептика или антибиотика, как правило, с учетом данных микробиологического исследования отделяемого из свищей до операции, и в течение 7—10 мин проводят последовательную ультразвуковую обработку стенок операционной раны кости и мягких тканей.

Ось волновода располагают под углом 90° к обрабатываемой поверхности, не касаясь ее. Из-за нагревания растворы приходится менять каждые 2-3 мин. Обычно используют 2-3 антисептика. Озвучивание проводят в режиме резонанса волновода и аппарата, контроль за резонансной настройкой ведут визуально, по максимуму «вскипания» антисептического раствора во время воздействия ультразвука.

Под воздействием ультразвуковой кавитации, дополняющей механическую и химическую обработку раны, бактериальная обсемененность значительно уменьшается. Роста микрофлоры не отмечено в мягких тканях в 62,2 % наблюдений и в костной в 75 %. Ни в одном наблюдении обсемененность тканей не достигала критического уровня.

В биоптатах мягких тканей отмечается уменьшение микробных ассоциаций, не определяются бактерии рода Proteus и Ps. aeruginosa. В костной ткани прослеживались более выраженные изменения — уменьшение выделения стафилококков в 2 раза, а также бактерий рода Proteus и стрептококков — в 4 раза. Ps. Aeruginosa отсутствует.

Для физической некрэктомии и санации мягких тканей и костной полости используют отечественную лазерную хирургическую установку «Скальпель» на основе углекислотного лазера типа ЛГ-25, генерирующего излучение в инфракрасном диапазоне с длиной волны 10600 нм и выходной мощностью 40 Вт. Облучение послеоперационного костного дефекта и раны мягких тканей проводят расфокусированным лучом с диаметром пятна 8—16 мм и плотностью мощности излучения 300-400 Дж/см2 в течение 15—30 с с движением луча лазера из глубины раны к ее поверхности.

Применение углекислотного лазера с целью санации послеоперационного костного дефекта и раны мягких тканей позволяет добиться снижения бактериальной обсемененности тканей по сравнению с традиционными методами санации.

Роста микрофлоры не было выявлено в мягких тканях у 56,9 %, в костной ткани — у 58,1 % больных. Бактериальная обсемененность мягкой и костной тканей сохранялась выше критического уровня у 8,5 и 2,5 % больных.

Санационный эффект ультразвуковой кавитации выше, чем лазерной обработки костной полости и раны мягких тканей.

В торакальной хирургии при выполнении плеврэктомии рубцово измененную плевру отделяют от грудной стенки в экстраплевральном слое с рассечением складки в месте перехода париетальной плевры в висцеральную. Висцеральную стенку эмпиемного мешка отделяют от легкого непосредственно через плевру в слое между внутренней эластической мембраной, покрывающей легкое, и наружным слоем плевры вместе со швартой. Обязательным условием плеврэктомии является полный пневмолиз, включая и междолевые щели, без этого полное расправление легкого невозможно.

Резко утолщенная, иногда до 2-3 см, париетальная плевра с выраженными грубыми Рубцовыми изменениями требует больших усилий при плеврэктомии и становится источником выраженного кровотечения. Выделение плевры в области купола средостения чревато повреждением сосудов и органов. Ультразвуковые инструменты позволяют легко рассекать рубцово измененные ткани в соответствующем слое, в том числе при выделении висцерального листка плевры. Специальные ультразвуковые инструменты с гибким волноводом позволяют рассекать ткани в труднодоступном месте грудной полости.

Хирургический доступ выполняют обычным скальпелем в зависимости от локализации эмпиемы. При необходимости торакотомию выполняют через ложе резецированного ребра. Ультразвуковым скальпелем постепенно отделяют париетальную плевру от грудной стенки по всему периметру торакотомной раны и вводят ранорасширитель. Рану расширяют по ходу операции и продолжают выделение плевры в подплевральном слое по направлению к позвоночнику и корню легкого до переходной складки.

Плевру широко отделяют в средних отделах легкого, что позволяет затем отделить плевру в области купола и синусов. Аналогичным образом отделяют висцеральную плевру. При работе ультразвуковым скальпелем следует выполнять препаровку короткими движениями, т.к. длительное соприкосновение волновода с тканями гасит колебания.

При случайном или преднамеренном вскрытии эмпиемного мешка полость эмпиемы осушают, проводят ультразвуковую кавитацию с раствором антисептика. Операцию заканчивают ультразвуковой кавитацией полости, образовавшейся после удаления мешка эмпиемы. Использование ультразвукового скальпеля не сокращает время операции, но делает ее более щадящей, уменьшает кровопотерю более чем в 2 раза в результате уменьшения повреждения легкого и тканей грудной стенки.

Использование скальпеля на основе квантовых генераторов основано на коагуляции и бактерицидном действии лазерного луча. Экспериментальные морфологические исследования, проведенные А.Н. Кабановым (1985), по воздействию лазерного луча на легочную ткань выявили определенные специфические изменения. Подтвержден гемостатический эффект лазерного луча. В легочной ткани в месте рассечения лучом выявляют 3 зоны морфологических изменений: зону поверхностного коагуляционного некроза с выпадением тонкого слоя фибрина; зону отека и кровоизлияний с умеренной клеточной инфильтрацией и зону дистрофических изменений в легочной ткани, с ограниченным тромбозом в мелких сосудах.

Все эти изменения выявляются на небольшом протяжении непосредственно вдоль линии разреза ткани. Обработка ткани расфокусированным лучом углекислотного лазера вызывает коагуляционную пленку на поверхности поврежденной легочной ткани с выраженным аэростазом, если поврежденные бронхи диаметром не более 1 мм. Гемостатический эффект, надежный аэростаз играют важную роль при декортикации легкого и плеврэктомии лазерным скальпелем.

При применении лазерного скальпеля высокая температура луча обусловливает выпаривание тканей по линии прохождения. Торакотомию выполняют обычным или лазерным скальпелем, а затем в слое подплевральной клетчатки отслаивают с помощью тупфера париетальную плевру, а фиброзные сращения плевры с мышцами грудной стенки бескровно пересекают лазерным лучом. Таким образом отделяют плевру от переходной складки. Кровотечение из легочной ткани останавливают расфокусированным лазерным лучом, а кровотечение из более крупных сосудов — прошиванием тканей или тампонадой.

Декортикацию легкого А. Н. Кабанов и Л.А. Ситко (1985) выполняют следующим образом. Захватывая и оттягивая щипцами утолщенную плевру, лазерным лучом медленно отделяют висцеральную плевру от легочной ткани. Направление световода устанавливают под острым углом к поверхности легкого. Такими порциями отделяют плевру сфокусированным лучом. Как правило, при этом не нарушается герметизм легочной ткани.

Если все же просачивается воздух, это место облучают расфокусированным лазерным лучом в течение 5—10 с. Коагуляционная пленка, образующаяся на поверхности легкого, обеспечивает хороший аэростаз. Авторы не считают необходимым удалять фиброзную ткань с поверхности легкого при ее глубоком врастании. В этих случаях оставленные участки плевры рассекают в виде сетки (скрайбирование), под ними хорошо расправляются участки легкого.

Использование лазерного луча для плеврэктомии и декортикации легкого наиболее целесообразно при удалении висцеральной плевры, проведении лазерного аэростаза и скрайбирования висцеральной плевры. Применение ультразвуковой и лазерной технологий при плеврэктомии, декортикации легкого при эмпиеме плевры расширяют возможности восстановительных операций.

Бактерицидный эффект при обработке плевры, в том числе и гемоторакса, после резекции легкого получают облучением поверхностных тканей аргоновой плазмой (Котов И.И., 2000). Прямое облучение в течение 3 мин приводит к полной стерильности раны. Бактерицидное действие распространяется на все виды микрофлоры. Применение биомедицинских установок СУПР-М, «Плазма-3», представляющих собой плазмотрон малой мощности, возможно при пневмолизе, плеврэктомии. Факелом плазмотрона пересекают крупные шварты, останавливают кровотечение из мелких сосудов грудной стенки.

Там, где участки эмпиемного мешка удалить невозможно, испаряют пиогенный слой. Кроме плазменного скальпеля, во время операций по поводу гнойных заболеваний легких и плевры используют бактерицидный эффект плазмы: проводят обработку нежизнеспособных тканей, обсемененных микрофлорой из вскрывшихся гнойных очагов, или поверхности париетальной плевры после декортикации легкого. Поверхность обрабатывают лучом плазмы с расстояния 6—8 см сканирующими движениями в течение 2—3 мин на 1 дм2.

Точно также обрабатывают поверхность торакотомной раны перед ее ушиванием. При наложении торакостомы при эмпиеме плевры плазменный скальпель используют для гемостаза и некрэктомии, а в последующем — для этапных некрэктомии, удаления фибринозно-гнойных наложений. Облучение грануляций недопустимо, так как образование на грануляционной поверхности коагуляционного струпа нарушает формирование соединительной ткани.

Фотодинамическая терапия на основе низкоэнергетического лазерного излучения имеет достаточную перспективу в лечении онкологических заболеваний, а в борьбе с бактериальной инфекцией находит все более широкое применение (Странадко Е.Ф., Толстых П.И., Карлоев У.М., 1999; В.П. Жаров и др., 1999), в том числе для профилактики острой послеоперационной эмпиемы плевры (Павлов Ю.В. и др., 2001).

Бактерицидный эффект фотодинамической терапии основан на тропности фотосенсибилизаторов к цитоплазматической мембране и различным внутриклеточным структурам. Бактериальные клетки довольно быстро захватывают и удерживают фотосенсибилизатор. Облученный лазерным лучом, фотосенсибилизатор, захваченный микробной клеткой, приводит к образованию синглетного кислорода и свободных радикалов — высокоактивных биологических окислителей, которые вызывают гибель микроорганизмов.

Такое прямое действие фотодинамической терапии проявляется в отношении грамположительной флоры, грамотрицательные микроорганизмы имеют мощную наружную мембрану, препятствующую проникновению фотомодулятора. Для увеличения проницаемости оболочки микробной клетки проводят предварительную обработку ультразвуковой кавитацией.

После основного этапа операции (лоб-, билоб-, пульмонэктомия, декортикация легкого, плеврэктомия) плевру обрабатывают низкочастотным ультразвуком в сочетании с воздействием фотосенсибилизатора на патогенную микрофлору.

В качестве фотосенсибилизатора используют сульфированный фталоцианин алюминия (ALPcS, фотосене). Для ультразвукового воздействия применяют аппараты УРСК-7Н или УРСК-7Н-22, для лазерного облучения — аппарат КАМИН-ВИДЕО.

После завершения основного этапа операции плевральную полость заполняют раствором антисептика (фурацилин 1:5000, хлоргексидин 0,02 %) до краев раны, вводят 5 мл (10 мг) фотомодулятора и озвучивают полость волноводом ультразвукового аппарата, удерживая волновод на расстоянии 1 см от грудной стенки. После озвучивания антисептик удаляют и поверхность облучают красным светом от установки КАМИН-ВИДЕО в течение 10 мин.

Такая санация с целью профилактики послеоперационной эмпиемы плевры показана больным острыми и хроническими гнойными заболеваниями легких, эмпиемой плевры, у которых риск развития послеоперационной эмпиемы чрезвычайно высок.

Эндобронхиальная фотодинамическая терапия в предоперационном периоде у больных гнойными заболеваниями легких дает противовоспалительный и антибактериальный эффект, ограничивая условия для возникновения гнойно-воспалительных послеоперационных осложнений (гнойный бронхит, пневмонии, несостоятельность культи бронха, плеврит).

Через бронхоскоп бронхи орошают 4-8 мг (2 мг/мл) раствора препарата фотосене, или препарат вводят в аэрозоле (6—8 мг) за сутки до облучения. При бронхоскопии к устью долевых бронхов подводят световод и с помощью аппарата для фотодинамической терапии ЛД-680-2000 (полупроводниковый лазер с длиной волны 0,680 мкм и максимальной мощностью на выходе 2 Вт) проводят облучение по 5 мин правой и левой половины бронхиального дерева с плотностью мощности 0,085 Вт/см2. Сеанс облучения повторяют на следующий день. Оперативное лечение выполняют на 4-7-е сутки после облучения.

На эффективность фотодинамической терапии указывают улучшение проходимости бронхов (противовоспалительное и противоотечное действие), увеличение функциональных показателей (ЖЕЛ). Антибактериальный эффект выражается в достижении стерильности или снижении бактериальной обсемененности бронхов на 3 порядка и более.

Противовоспалительный эффект фотодинамической терапии выражается в снижении активности воспаления — уменьшении гиперемии, отека слизистой оболочки бронхов, уменьшении количества бронхиального секрета. Положительное действие проявляется больше при выраженных исходных признаках воспаления и сопровождается активизацией неспецифического местного иммунитета в виде миграции форменных элементов крови (лимфоцитов, нейтрофилов, плазматических клеток) в толщу слизистой оболочки бронхов. Об активации репаративных процессов в бронхах свидетельствует изменение уровня маркеров пролиферации в слизистой оболочке бронхов.

Фотодинамическая терапия позволяет уменьшить число санационных бронхоскопий при предоперационной подготовке больных.

В хирургии всегда существовал ряд вопросов и задач, которые нужно было решить. Это снижение травматичности операций, уменьшение кровопотерь, ускорение заживление, разработка новых, более прогрессивных методов и др. Во многом решить эти задачи помог ультразвуковой метод.

Существует две основные области использования ультразвука в хирургии:

  • Инструментальная хирургия. Наложение ультразвука на операционные инструменты (пилы, лезвия и др.)
  • Локальные разрушения. Фокусированный ультразвук способен проникать глубоко в ткани, уничтожая различные образования.

Инструментальная хирургия

На рабочую поверхность инструмента (например, скальпель), которая соединена с преобразователем волноводом, накладывается ультразвук . Амплитуда колебаний волн на режущей части инструмента может составлять от 1 до 365 мкм (в зависимости от конкретного назначения инструмента и потребностей операции), частота - от 20 до 100 кГц. Ультразвуковые колебания уменьшают трение между тканями и лезвием, благодаря чему специалист-хирург затрачивает меньше усилий, а операция проходит более быстро и гладко.

Как правило, при рассечении мягких тканей с ними взаимодействует только кромка режущей части - происходит, так называемое, микрорезание. Также от кромки выделяется тепло, создающее гемостатический эффект. Это все способно во многом облегчить процесс оперирования, что и обуславливает распространение ультразвуковых инструментов в хирургии.

Ультразвуковые инструменты отличаются по своему назначению, амплитуде колебаний волн и другим характеристикам. Основными считаются:

  1. Скальпель (хирургический нож) . Он помогает расслаивать мягкие ткани, отделяя патологические образования и структуры от нормальных. Как правило, это инструмент применяется при:
    • Пластических операциях
    • Удалении различных опухолей
    • Иссечении рубцов
    • Вскрытии очагов воспаления

      Это очень эффективный инструмент, позволяющий осуществлять вышеперечисленные действия с минимальным стрессом для пациента и с применение минимальных усилий со стороны врача.

  2. Пила . Этот инструмент имеет режущую кромку, на которой располагаются зубья (шаг - 1 мм). Пила используется для:
    • Рассечения костей, особенно расположенных в труднодоступных для хирурга местах, рядом с кровеносными сосудами и нервами
    • Трепанации черепа
    • Ламинэктомии
    • Рассечения костей ребер, грудины, ключиц, стоп кистей, лицевого отдела черепа

      Ультразвуковая пила не повреждает оставшиеся части тканей, не нагревает, не прижигает и не разминает их. После использования этого инструмента перестройка костных трансплантатов и образование костной мозоли осуществляются в разы быстрее, чем после использования обычных приборов. Использование ультразвуковых пил обеспечивает очень высокую точность моделирования трансплантатов.

  3. Ультразвуковой аппарат для "сварки" костей . Этот аппарат позволяет:
    • Очень быстро и точно соединять стромы фрагментов
    • Осуществлять процессы "сваривания" коллагеновых волокон различных фрагментов
    • В очень короткие сроки полимеризировать мономеры
    • Осуществлять практически мгновенную диффузию мономеров

      Аппарат, с наложенным на него ультразвуком, позволяет хирургам осуществлять все вышеперечисленные процессы во много раз быстрее, что сокращает расходы на операции, минимизирует труд медиков, уменьшает сроки выздоровления пациентов.

Помимо этих трех инструментов существуют целые хирургические комплексы. Они позволяют воздействовать только на твердые ткани, оставляя мягкие нетронутыми и, соответственно, не нанося им никаких повреждений.

Также с помощью аппаратов, с наложенным на них ультразвуком, можно "склеивать" сосуды, удалять тромбы, удалять катаракту глаза и производить другие оперативные действия.

Вызов локальных разрушений

Открытие этого способа применения ультразвука в хирургии позволило проводить некоторые операции без единого нарушения целостности живых тканей. Волны фокусируются в одном месте (например, на опухоли), постепенно уничтожая патологическое образование. Процесс удаления выводится на изображение томографа, что позволяет врачу полностью следить за операцией.

Такие операции полностью исключают повреждение живых тканей, образование костных сколов/обломков, уничтожение кровеносных сосудов и повреждение нервов. Ультразвук позволяет в разы снижать травматичность хирургических процедур. При этом время, затраченное на операцию и восстановление, сокращается.

Сегодня ультразвук применяется не только в диагностике. Открытие возможности применение этого явления в других областях медицины позволило существенно продвинуть вперед хирургию и решить многие ее вопросы.

Давно известно, что ультразвук, действуя на ткани, вызывает в них биологические изменения . Интерес к изучению этой проблемы обусловлен, с одной стороны, естественным опасением, связанным с возможным риском применения ультразвуковых диагностических систем для визуализации, а с другой - возможностью вызвать изменения в тканях для достижения терапевтического эффекта.

По ультразвуковой терапии существует обширная литература, хотя, к сожалению, большинство работ не отличается высоким качеством и содержит мало строгой научной информации. В этой главе обсуждение ограничено работами, имеющими прочную научную основу.

Терапевтический ультразвук может быть условно разделен на ультразвук низких и высоких интенсивностей. Основная задача применения ультразвука низких интенсивностей неповреждающий нагрев или какие-либо нетепловые эффекты, а также стимуляция и ускорение нормальных физиологических реакций при лечении повреждений. При более высоких интенсивностях основная цель - вызвать управляемое избирательное разрушение в тканях.

Первое направление включает в себя большинство применений ультразвука в физиотерапии и некоторые виды терапии рака, второе - ультразвуковую хирургию.

Поиск и разработка методов снижения травматичности, кровопотери и болевых ощущений при хирургических операциях, методов, позволяющих ускорить заживление послеоперационных ран и рассасывание рубцов, а также методов, облегчающих труд хирурга-оператора, - важные задачи современной хирургии, решению которых способствует применение ультразвука.

Можно выделить две основные области использования ультразвука в оперативной хирургии. Это инструментальная ультразвуковая хирургия и локальные разрушения в глубине тканей с помощью фокусированного ультразвука.

ИНСТРУМЕНТАЛЬНАЯ УЛЬТРАЗВУКОВАЯ ХИРУРГИЯ

За последние годы в практику стали широко внедряться физические методы хирургического воздействия с применением электрокоа- гуляционной, лазерной, криогенной и ультразвуковой техники.

Принцип действия ультразвуковых инструментов

Рабочая часть ультразвукового хирургического ножа имеет традиционную форму лезвия скальпеля, соединенного волноводом с магни- тострикционным или пьезокерамическим преобразователем. Рабочая часть может иметь и другую форму в соответствии с требованиями выполняемой операции. Амплитуда колебаний режущей кромки в зависимости от поставленной задачи может быть изменена от 1 до 350 мкм, а частота выбирается в диапазоне от 20 до 100 кГц. Как известно, трение покоя больше, чем трение скольжения, поэтому трение между двумя поверхностями уменьшается, если одна из них совершает колебательные движения. Именно поэтому работа с ультразвуковыми инструментами требует от хирурга меньших усилий.

Характер разрушения тканей под действием ультразвукового хирургического инструмента зависит от строения его рабочей части, амплитуды и направления колебаний. Зависит он и от вязкоупругих свойств и однородности ткани.

При рассечении мягких тканей ультразвуковым ножом, лезвие которого совершает продольные ультразвуковые колебания, взаимодействует с тканью лишь кромка лезвия, обеспечивая процесс микрорезания, существенно усиливающего режущие свойства инструмента. Кроме того, у кромки лезвия колеблющегося инструмента выделяется теплота, локально повышающая температуру ткани и обусловливающая гемостатический эффект в результате термокоагуляции крови.

Так, применение ультразвукового скальпеля, амплитуда колебаний кромки которого лежит в интервале 15...20 мкм при частоте 44 кГц, в 6-8 раз уменьшает кровотечение из мелких и средних сосудов, в 4-6 раз снижает усилие резания, а также существенно облегчает строго послойное разделение кожи, подкожной жировой клетчатки и рубцовоизмененного хряща. Очевидно, что если на инструмент наложены лишь продольные колебания, то его воздействие на стенки раневого канала минимально.

Для разрушения некоторых патологических образований используют специальные волноводы - дезинтеграторы, рабочий конец которых помимо продольных совершает и поперечные колебания. Такие инструменты оказывают существенное влияние на окружающие ткани и по мере введения инструмента разрушают их.

Ультразвуковые инструменты обладают явными преимуществами перед электро- или криохирургическими, так как не прилипают к ткани и поверхности раневого канала и не испытывают дополнительных травм. Ультразвуковой скальпель не уступает в ряде случаев и лазерному хирургическому инструменту, так как, ощущая сопротивление ткани при операции, хирург лучше контролирует процесс ее рассечения.

В зависимости от поставленной задачи ультразвуковые инструменты могут иметь самые разные размеры и форму.

Следует отметить, что при использовании ультразвукового хирургического инструмента наряду с гемостатическим эффектом наблюдаются также анальгетический и бактерицидный и/или бактериостатический эффекты.

Бактерицидный эффект позволяет использовать простую и оригинальную методику самостерилизации хирургического инструмента. Рабочую часть инструмента опускают в раствор дезинфектанта и включают генератор. Ультразвуковые колебания вызывают интенсивные микротечения жидкости вблизи инструмента, очищающие его поверхность. Кроме того, увеличивая проницаемость мембран клеток болезнетворных бактерий по отношению к дезинфицирующему веществу, ультразвук повышает эффективность его действия, что позволяет в 10-100 раз снизить концентрацию этого вещества в растворе. Если, например, лезвие ультразвукового скальпеля погрузить в бульон со стандартной культурой гемолитического плазмокоагулирующего стафилококка, после этого включенный инструмент подвергнуть двухминутной самостерилизации в разбавленном (0,025...0,5 %) растворе диоцида, выключить его и привести в соприкосновение с поверхностью кровяного агара, то число выросших микробных колоний окажется тем меньшим, чем выше была амплитуда колебаний инструмента (табл. 4.1).

Таблица 4.1

Число микробных колоний на агаре через 24 ч после соприкосновения с ультразвуковым инструментом, прошедшим двухмииутную обработку в 0,05%-ном растворе диоцида

Контрольный смыв водой с ультразвукового лезвия, кантамини- рованного Е. coli, уже через 3 ч инкубации дает в питательной среде бурный рост культуры.

Если же загрязненный Е. coli нож, колеблющийся с ультразвуковой частотой и амплитудой 20...30 мкм, поместить на 1...2 мин хотя бы в дистиллированную воду, то последующий смыв с него не даст заметного роста культуры в течение 6...Э ч.

Чем выше амплитуда колебаний, тем более выражен эффект задержки роста культуры. Обработка вибрирующего с амплитудой 30 мкм лезвия в растворе диоцида (0,025 %) в течение 1,5 мин приводит к стерилизации инструмента.

Аналогичные данные были получены при стерилизации в растворе диоцида ультразвуковых инструментов, загрязненных средой, содержащей Вас. micoides.

На практике для стерилизации ультразвуковой инструмент, колеблющийся с максимальной амплитудой, опускают на несколько секунд в сосуд с любым дезинфицирующим раствором, например перекиси водорода.

Ультразвук, применяемый в медицине, может быть условно разделен на ультразвук низких и высоких интенсивностей. Основная задача применения ультразвука низких интенсивностей (0,125 - 3,0 Вт/см2) - неповреждающий нагрев или какие-либо нетепловые эффекты, а также стимуляция и ускорение нормальных физиологических реакций при лечении повреждений. При более высоких интенсивностях (> 5 Вт/см2) основная цель - вызвать управляемое избирательное разрушение в тканях. Первое направление включает в себя большинство применений ультразвука в физиотерапии и некоторые виды терапии рака, второе - ультразвуковую хирургию.

Применение ультразвука в хирургии.

Существуют две основные области применения ультразвука в хирургии. В первой из них используется способность сильно фокусированного пучка ультразвука вызывать локальные разрушения в тканях, а во второй механические колебания ультразвуковой частоты накладываются на хирургические инструменты типа лезвий, пил, механических наконечников.

Хирургия с помощью фокусированного ультразвука.

Хирургическая техника должна обеспечивать управляемость разрушения тканей, воздействовать только на четко ограниченную область, быть быстродействующей, вызывать минимальные потери крови. Мощный фокусированный ультразвук обладает большинством из этих качеств. Возможность использования фокусированного ультразвука для создания зон поражения в глубине органа без разрушения вышележащих тканей изучено в основном в операциях на мозге. Позже операции проводились на печени, спинном мозге, почках и глазе.

Применение ультразвука в физиотерапии

Ускорение регенерации тканей.

Одно из наиболее распространенных применений ультразвука в физиотерапии - это ускорение регенерации тканей и заживления ран. Восстановление тканей можно описать с помощью трех перекрывающихся фаз. В течение воспалительной фазы фагоцитарная активность макрофагов и полиморфнонуклеарных лейкоцитов ведет к удалению клеточных фрагментов и патогенных частиц. Переработка этого материала происходит главным образом при помощи лизосомальных ферментов макрофагов. Известно, что ультразвук терапевтических интенсивностей может вызвать изменения в лизосомальных мембранах, тем самым ускоряя прохождение этой фазы. Вторая фаза в залечивании ран - пролиферация или фаза разрастания. Клетки мигрируют в область поражения и начинают делиться. Фибробласты начинают синтезировать коллаген. Интенсивность заживления начинает увеличиваться, и специальные клетки, миофибробласты, заставляют рану стягиваться. Показано, что ультразвук значительно ускоряет синтез коллагена фибробластами как in vitro, так и in vivo. Если диплоидные фибробласты человека облучить ультразвуком частотой 3 МГц и интенсивностью 0,5 Вт/см2 in vitro, то количество синтезированного белка увеличится. Исследование таких клеток в электронном микроскопе показало, что по сравнению с контрольными клетками в них содержится больше свободных рибосом, шероховатой эндоплазматической сети. Третья фаза - восстановление. Эластичность нормальной соединительной ткани обусловлена упорядоченной структурой коллагеновой сетки, позволяющей ткани напрягаться и расслабляться без особых деформаций. В рубцовой ткани волокна часто располагаются нерегулярно и запутанно, что не позволяет ей растягиваться без разрывов. Рубцовая ткань, формировавшаяся при воздействии ультразвука, прочнее и эластичнее по сравнению с "нормальной" рубцовой тканью.

Лечение трофических язв.

При облучении хронических варикозных язв на ногах ультразвуком частотой 3 МГц и интенсивностью 1 Вт/см2 в импульсном режиме 2 мс: 8 мс были получены следующие результаты: после 12 сеансов лечения средняя площадь язв составляла примерно 66,4% от их первоначальной площади, в то время как площадь контрольных язв уменьшилась всего до 91,6%. Ультразвук может также способствовать приживлению пересаженных лоскутов кожи на края трофических язв.

Ускорение рассасывания отеков.

Ультразвук может ускорить рассасывание отеков, вызванных повреждениями мягких тканей, что скорее всего обусловлено увеличением кровотока или местными изменениями в тканях под действием акустических микропотоков.

Заживление переломов.

При экспериментальном исследовании переломов малой берцовой кости у крыс было обнаружено, что ультразвуковое облучение во время воспалительной и ранней пролиферативной фаз ускоряет и улучшает выздоровление. Костная мозоль у таких животных содержала больше костной ткани и меньше хрящей. Однако в поздней пролиферативной фазе приводило к негативным эффектам - усиливался рост хрящей и задерживалось образование костной ткани.

Светолечение

Светолечение - это метод физиотерапии, заключающийся в дозированном воздействии на организм больного инфракрасного, видимого или ультрафиолетового излучения.

Инфракрасное излучение

Механизм действия :

  1. местная гипертермия;
  2. спазм сосудов, сменяющийся их расширением, усиление кровотока;
  3. увеличение проницаемости стенок капилляров;
  4. усиление тканевого обмена, активация окислительно-восстановительных процессов;
  5. высвобождение биологически-активных веществ, в том числе гистаминоподобных, что также приводит к увеличению проницаемости капилляров;
  6. противовоспалительный эффект;
  7. ускорение обратного развития воспалительных процессов;
  8. ускорение тканевой регенерации;
  9. увеличение местной сопротивляемости тканей к инфекции;
  10. рефлекторное снижение тонуса поперечно-полосатой и гладкой мускулатуры - уменьшение болей, связанных с их спазмом.

Показания :

  1. не гнойные хронические и подострые местные воспалительные процессы;
  2. ожоги;
  3. обморожения;
  4. плохо заживающие раны и язвы;
  5. спаечный процесс в брюшной полости;
  6. миозиты;
  7. невралгии;
  8. последствия травм опорно-двигательного аппарата.

Противопоказания :

  1. злокачественные новообразования;
  2. тенденция к кровотечениям;
  3. острые гнойно-воспалительные заболевания.

Ультрафиолетовое излучение

Механизм действия :

  1. нервно-рефлекторный: лучистая энергия как раздражитель действует через кожу с ее мощным рецепторным аппаратом на центральную нервную систему, а через нее на все органы и ткани организма человека;
  2. часть поглощенной лучистой энергии превращается в теплоту, под ее влияние в тканях происходит ускорение физико-химических процессов, что сказывается на повышении тканевого и общего обмена;
  3. фотоэлектрический эффект - отщепленные при этом электроны и появившиеся положительно заряженные ионы влекут за собой изменения "ионной конъюнктуры" в клетках и тканях, а следовательно и изменение электрических свойств коллоидов; в результате этого увеличивается проницаемость клеточных мембран и увеличивается обмен между клеткой и окружающей средой;
  4. возникновение вторичного электромагнитного излучения в тканях;
  5. бактерицидное действие света, зависящее от спектрального состава, интенсивности излучения; бактерицидное действие складывается из непосредственного действия лучистой энергии на бактерий и повышение реактивности организма (образование БАВ, повышение иммунологических свойств крови);
  6. прямое разрушение токсинов: дифтерийного и столбнячного;
  7. при воздействии ультрафиолетового излучения появляется пигментация кожи, повышающая устойчивость кожи к повторным облучениям;
  8. изменение физико-химических свойств кожи (снижение рН за счет снижения уровня катионов и повышения уровня анионов).