Иммунная терапия. Иммуномодулирующая терапия. Иммуностимулирующая терапия. Типы иммуностимулирующей терапии. Применение иммуномодуляторов. Доклад: Иммуностимулирующая терапия В последние годы возрос интерес к адъювантам полианионной природы в связи с инте

Интерес к иммуностимулирующейтерапии, имеющей длительную историю, резко возрос в последние годы и связан спроблемами инфекционной патологии и онкологии.

Специфическое лечение ипрофилактика, основанная на вакцинации, действенны при ограниченном числе инфекций.При таких инфекциях, как кишечные и грипп, эффективность вакцинации остаетсянедостаточной. Высокий процент смешанных инфекций, полиэтиологичность многихделают создание специфических препаратов для иммунизации против каждого извозможных возбудителей не реальным. Введение сывороток или иммунных лимфоцитовоказывается эффективным только на ранних этапах инфекционного процесса. Крометого, сами вакцины в определенные фазы иммунизации способны подавлятьсопротивляемость организма к инфекциям. Также известно, что в связи с быстрымувеличением числа возбудителей, обладающих множественной устойчивостью кантимикробным средствам, с высокой частотой ассоциированных инфекций, резкимповышением иммунизации способны подавлять сопротивляемость организма к L-формамбактерий и значительным количеством серьезных осложнений эффективнаяантибиотикотерапия становится все более сложной.

Течение инфекционного процессаосложняется, а трудности терапии существенно усугубляются при поражениииммунной системы и механизмов неспецифической защиты. Эти нарушения могут бытьгенетически обусловлены или же возникают вторично под влиянием разнообразныхфакторов. Все это делает актуальной проблему иммуностимулирующей терапии.

С широким введением асептики,обеспечивающей предупреждение занесения микроорганизмов в операционную рану,началась научно обоснованная профилактика инфекций в хирургии.

Прошло всего восемьдесят шестьлет, а учение об инфекции в хирургии проделало большой и сложный путь. Открытиеи широкое применение антибиотиков обеспечили надежную профилактику нагноенийоперационных ран.

Клиническая иммунология - молодойраздел медицинской науки, но уже первые результаты ее применения в профилактикеи лечении открывают широкие перспективы. Пределы возможностей клиническойиммунологии полностью предвидеть пока трудно, но уже сейчас с уверенностьюможно сказать - в этом новом разделе науки врачи приобретают могучего союзникав профилактике и лечении инфекций.


1. Механизмы иммунологической защиты организма

Начало развития иммунологииотносится к концу XVIII века и связано с именем Э. Дженнера, впервыеприменившего на основании лишь практических наблюдений впоследствииобоснованный теоретически метод вакцинации против натуральной оспы.

Открытый Э. Дженнером факт лег воснову дальнейших экспериментов Л. Пастера, завершившихся формулировкойпринципа профилактики от инфекционных заболеваний - принцип иммунизацииослабленными или убитыми возбудителями.

Развитие иммунологии долгое времяпроисходило в рамках микробиологической науки и касалось лишь изученияневосприимчивости организма к инфекционным агентам. На этом пути былидостигнуты большие успехи в раскрытии этиологии ряда инфекционных заболеваний.Практическим достижением явилась разработка методов диагностики, профилактики илечения инфекционных заболеваний в основном путем создания различного родавакцин и сывороток. Многочисленные попытки выяснения механизмов,обусловливающих устойчивость организма против возбудителя, увенчались созданиемдвух теорий иммунитета - фагоцитарной, сформулированной в 1887 годуИ. И. Мечниковым, и гуморальной, выдвинутой в 1901 годуП. Эрлихом.

Начало XX века - времявозникновения другой ветви иммунологической науки - иммунологии неинфекционной.Как отправной точкой для развития инфекционной иммунологии явились наблюденияЭ. Дженнера, так для неинфекционной - обнаружение Ж. Борде и Н. Чистовичемфакта выработки антител в организме животного в ответ на введение не толькомикроорганизмов, а вообще чужеродных агентов. Свое утверждение и развитиенеинфекционная иммунология получила в созданном И. И. Мечниковым в 1900 г.учении о цитотоксинах - антителах против определенных тканей организма, воткрытии К. Ландштейнером в 1901 году антигенов человеческихэритроцитов.

Результаты работ П. Медавара(1946) расширили рамки и привлекли пристальное внимание к неинфекционнойиммунологии, объяснив, что в основе процесса отторжения чужеродных тканейорганизмом лежат тоже иммунологические механизмы. И именно дальнейшее расширениеисследований в области трансплантационного иммунитета привлекло к открытию в1953 году явления иммунологической толерантности - неотвечаемости организма навведенную чужеродную ткань.

Таким образом, даже краткийэкскурс в историю развития иммунологии позволяет оценить роль этой науки врешении ряда медицинских и биологических проблем. Инфекционная иммунология - прародительница общей иммунологии - стала в настоящее время только ее ветвью.

Стало очевидным, что организмочень точно различает ”свое” и “чужое”, а в основе реакций, возникающих в нем вответ на введение чужеродных агентов (вне зависимости от их природы), лежатодни и те же механизмы. Изучение совокупности процессов и механизмов,направленных на сохранение постоянства внутренней среды организма от инфекций идругих чужеродных агентов - иммунитета, лежит в основе иммунологической науки(В. Д. Тимаков, 1973 г.).

Вторая половина ХХ векаознаменовалась бурным развитием иммунологии. Именно в эти годы была созданаселекционно-клональная теория иммунитета, вскрыты закономерностифункционирования различных звеньев лимфоидной системы как единой и целостнойсистемы иммунитета. Одним из важнейших достижений последних лет явилосьоткрытие двух независимых эффекторных механизмов в специфическом иммунномответе. Один из них связан с так называемыми В-лимфоцитами, осуществляющимигуморальный ответ (синтез иммуноглобулинов), другой - с системой Т-лимфоцитов(тимусзависимых клеток), следствием деятельности которых является клеточныйответ (накопление сенсибилизированных лимфоцитов). Особенно важным является получениедоказательств существования взаимодействия этих двух видов лимфоцитов виммунном ответе.

Результаты исследований позволяютутверждать, что иммунологическая система - важное звено в сложном механизмеадаптации человеческого организма, а его действие в первую очередь направленнона сохранение антигенного гомеостаза, нарушение которого может бытьобусловленно проникновение в организм чужеродных антигенов (инфекция,трансплантация) или спонтанной мутации.

Система комплемента,

опсонины

Иммуноглобулины

Лимфоциты

Кожные барьеры

Полинуклеары

Макрофаги

Гистиоциты

Неспецифи-

Неспцифи-

Гуморальный

иммунитет

Клеточный

иммунитет

Иммунологи-

ческая защита

Nezelof представил себе схему механизмов, осуществляющихиммунологическую защиту следующим образом:

Но, как показали исследованияпоследних лет, деление иммунитета на гумморальный и клеточный весьма условно.Дейтсвительно, влияние антигена на лимфоцит и ретикулярную клеткуосуществляется с помощью микро- и макрофагов, перерабатывающих иммунологическуюинформацию. В то же время реакция фагоцитоза, как правило, участвуютгуморальные факторы, а основу гуморального иммунитета составляют клетки,продуцирующие специфические иммуноглобулины. Механизмы, направленные наэлиминацию чужеродного агента, чрезвычайно разнообразны. При этом можновыделить два понятия - “иммунологическая реактивность” и “неспецифическиефакторы защиты”. Под первым понимаются специфические реакции на антигены,обусловленные высокоспецифической способностью организма реагировать начужеродные молекулы. Однако защищенность организма от инфекций зависит еще и отстепени проницаемости для патогенных микроорганизмов кожных и слизистыхпокровов, и наличия в их секретах бактерицидных субстанций, кислотностижелудочного содержимого, присутствия в биологических жидкостях организма такихферментных систем, как лизоцим. Все эти механизмы относятся к неспецифическимфакторам защиты, так как нет никакого специального реагирования и все онисуществуют вне зависимости от присутствия или отсутствия возбудителя. Некотороеособое положение занимают фагоциты и система комплемента. Это обусловлено тем,что, несмотря на неспецифичность фагоцитоза, макрофаги участвуют в переработкеантигена и в кооперации Т- и В-лимфоцитов при иммуном ответе, то есть участвуютв специфических формах реагирования на чужеродные субстанции. Аналогичновыработка комплемента не является специфической реакцией на антиген, но самасистема комплемента участвует в специфических реакциях антиген-антител.

2.Иммуномоделирующие средства.

Иммуномоделирующими средствамиявляются препараты химической или биологической природы, способные модулировать(стимулировать или подавлять) реакции иммунитета в результате воздействия наиммунокомпетентные клетки, на процессы их миграции или на взаимодействие такихклеток или их продуктов.

2.1. Полисахариды

Число сообщениий об изучении различных липополисахаридов(ЛПС) продолжает стремительно нарастать. Особенно интенсивно изучаются ЛПСграмнегативных бактерий, в оболочке которых содержится до 15-40% ЛПС.Полисахаридные препараты, в последнее время левамизол, вызывают большой интерессреди средств неспецифической иммуностимулирующей терапии.

Большинство ЛПС из-за их высокой токсичности и обилияпобочных эффектов неприемлемы для клинического использования, но являютсяценным средством иммунологического анализа. Но ЛПС очень активны и имеютширокий спектр иммуномодулирующгео действия, и поэтому идет постоянный поискновых, менее токсичных ЛПС. Доказательством этого является синтез сальмозана,который представляет собой полисахаридные фракции самотического О-антигенабактерии брюшного тифа. Он малотоксичен, практически не содержит белков илипидов. В экспериментах на мышах доказано, что при парентеральном введениисальмозан является стимулятором пролиферации и дифференцировки стволовыхклеток, стимулирует образование антител, фагоцитарную активность лейкоцитов имакрофагов, повышает титр лизоцима в крови, стимулирует неспецифическуюрезистентность к инфекциям.

Исследования последних лет доказывают, что полисахариды иполисахаридные комплексы - не единственные компоненты бактериальной клетки,способные стимулировать иммунитет.

Но из бактериальных полисахаридов в медицине в настоящеевремя более широко применяются пирогенал и продигиозан.

Пирогенал:препарат,который давно вошел в арсенал средств неспецифической иммуностимулирующейтерапии. Он вызывает кратковременную (несколько часов) лейкопению, сменяющуюсялейкоцитозом, и повышает фагоцитарную функцию лейкоцитов. В организациинеспецифической защиты против инфекции основное значение пирогенала связано сактивацией фагоцитоза. Как и другие ЛПС, пирогенал проявляет адъювантныесвойства, повышая иммунный ответ к различным антигенам. Мобилизацияфагоцитарных механизмов, стимуляция образования антител, гуморальныхнеспецифических факторов защиты может быть причиной повышения антиинфекционнойрезистентности под влиянием пирогенала. Но это зависит от времени воздействияпирогенала по отношению к моменту заражения, дозы, чистоты введения.

Но при острых инфекционных заболеваниях пирогенал неприменяется из-за мощного пирогенного эффекта, хотя лихорадка увеличиваетрезистентность организма к ряду инфекций, вызывая благоприятные метаболическиеи иммунологические сдвиги.

Основная клиническая область использования пирогенала каксредства неспецифической иммуностимулирующей терапии - хроническиеинфекционно-воспалительные заболевания. Накоплен значительный опыт примененияпирогенала в комплексной терапии туберкулеза (вместе с антибактериальнымипрепаратами): ускоряется закрытие полостей распада у больных, у которых впервыевыявлен туберкулез легких, и улучшает клиническое течение заболевания убольных, ранее безуспешно леченных только антибактериальными средствами.Наибольшую активность отмечают при кавернозной, инфильтративной форметуберкулеза легких. Способность пирогенала стимулировать антибиотикотерапию,по-видимому связано с противовоспалительным, сенсибилизирующим, фибринолитическимэффектами, с усилением регенеративных процессов в тканях. О перспективахприменения пирогенала в онкологии свидетельствуют экспериментальные наблюдения:препарат уменьшает прививаемость и задерживает рост опухоли, усиливаетпротивоопухолевую активность лучевой и химиотерапии. Сведения о применениипирогенала как антиаллергического средства очень противоречивы. Он эффективенпри некоторых кожных заболеваниях. Но усиливает проявление анафилактическогошока, феномена Артюса и Шварцмана. Будучи индуктором интерферона пирогеналснижает резистентность к вирусным инфекциям - прямое противопоказание придиагностировании гриппа.

Продигиозан:самый яркий иважный эффект - это неспецифическое повышение устойчивости организма кинфекциям. Кроме высокой эффективности при генерализованных инфекциях,продигиозан оказывает действие и при локальных гнойно-воспалительных процессах,ускоряет ликвидацию инфекции, продуктов некротического распада, рассасываниявоспалительного эксссудата, заживление поврежденных тканей, способствуетвосстановлению функций органов.

Весьма важно то, что продигиозан увеличивает эффектантибиотиков при использовании субэффективных доз антибиотиков и при инфекциях,вызванных антибиотикоустойчивыми штаммами.

Продигиозан, как и другие ЛПС, прямым действием намикроорганизмы не обладает. Повышение устойчивости к инфекциям целикомобусловлено антиинфекционными механизмами макроорганизма. Увеличениерезистентности наступает через четыре часа после инъекции, достигает максимумачерез сутки, затем снижается. но остается на достаточном уровне в течениенедели.

Действие продигиозана основано:

а) на энергичной мобилизации фагоцитарной активностимакрофагов и лейкоцитов;

б) на увеличении их числа;

в) на усилении поглотительной и переваривающейфункции;

г) на увеличении активности лизосомальных ферментов;

д) на том, что максимум фагоцитарной активности лейкоцитовудерживается дольше, чем лейкоцитоз: числа лейкоцитов в периферической кровивозвращается в норму на первые-вторые сутки, а активность - лишь к третьимсуткам;

е) на увеличении опсонизирующего действия сыворотки крови.

Путь действия продигиозана:

стимуляция макрофагов продигиозаном - монокины - лимфоциты- лимфокины - активация макрофагов.

О влиянии продигиозана на Т- и В- системы иммунитетаинформации мало.

Продигиозан позитивно влияет на клиническое течение рядазаболеваний и улучшает иммунологические показатели (бронхолегочные заболевания,туберкулез, хронический остеомиелит, афтозный стоматит, дерматозы, тонзиллит,лечение и профилактика респираторных вирусных инфекций у детей).

Например, применение продигиозана на ранних этапах остройпневмонии с вялотекущим течением - средство профилактики хронизации процесса;продигиозан способствует снижению степени выраженности аллергических реакций,заболеваемости ангиной в четыре раза у больных хроническим тонзиллитом, снижаетчастоту острых респираторных заболеваний в два-три раза.

2.2 Препараты нуклеиновых кислот и синтетические полинуклеотиды

В последние годы возрос интерес кадъювантам полианионной природы в связи с интенсивным поискомиммуностимуляторов.

Впервые нуклеиновые кислоты сталиприменять в 1882 году по инициативе Горбачевского при инфекционных заболеванияхстрепто- и стафиллококкового происхождения. В 1911 году Черноруцкий установил,что под влиянием дрожжевой нуклеиновой кислоты увеличивается количествоиммунных тел.

Нуклеинат натрия:увеличивает фагоцитарную активность, активирует поли- и мононуклеары,увеличивает эффективность тетрациклинов при смешанной инфекции, вызваннойстафиллококком и синегнойной палочкой. При профилактическом введении нуклеинатнатрия обусловливает и противовирусный эффект, так как обладаетинтерфероногенной активностью.

Нуклеинат натрия ускоряетформирование прививочного иммунитета, увеличивает его качество, позволяетуменьшить дозу вакцины. Этот препарат оказывает позитивный эффект при лечениибольных с хроническим паротитом, язвенной болезнью, различными формамипневмонии, хроническим воспалением легких, бронхиальной астмой. Нуклеинатнатрия увеличивает содержание РНК и белка в макрофагах в 1,5 раза и гликогена в1,6 раза, увеличивает активность лизосомальных ферментов, следовательноувеличивает завершенность фагоцитоза макрофагами. Препарат увеличиваетсодержание у человека лизоцима и нормальных антител, если их уровень былснижен.

Особое место среди препаратовнуклеиновых кислот занимает иммунная РНК макрофагов, котораяпредставляет собой информационную РНК, которая вносит в клетку фрагментантигена, следовательно, идет неспецифическая стимуляция иммунокомпетентныхклеток нуклеотидами.

Неспецифическими стимуляторамиявляются синтетические двухцепочечные полинуклеотиды, которыестимулируют антителообразование, увеличивают антигенный эффект неиммуногенныхдоз антигена, обладающего антивирусными свойствами, связанными синтерфероногенной активностью. Их механизм действия сложен и недостаточновыяснен. Двунитчатая РНК включается в систему регуляции синтеза белка в клетке,активно взаимодействуя с клеточной мембраной.

Но высокая стоимость препаратов,недостаточная их эффективность, наличие побочных явлений (тошнота, рвота,снижение артериального давления, увеличение температуры тела, нарушение функцийпечени, лимфопения - из-за прямого токсического действия на клетки), отсутствиесхем использования делают применениепрепаратов ограниченным.

2.3 Производные пиримидина и пурина.

В качестве средств, повышающихрезистентность организма к инфекциям, с каждым годом все шире применяютсяпроизводные пиримидина и пурина. Огромная заслуга в изучении производныхпиримидина принадлежит Н. В. Лазареву, который более 35 лет назад первым пришелк мысли о необходимости средств, ускоряющих процессы регенерации. Производныепиримидина интересны тем, что они обладают низкой токсичностью, стимулируютбелковый и нуклеиновый обмен, ускоряют клеточный рост и размножение, вызываютпротивоспалительные действия. Наибольшее распространение в качестве стимулятораантиинфекционной резистентности получил метилурацил, который стимулируетлейкопоэз, эритропоэз. Производные пиримидина способны предупреждать снижениефагоцитарной активности лейкоцитов, которое наступает под влияниемантибиотиков, вызывают индукцию синтеза интерферона, увеличивают уровеньиммунизации, уровень нормальных антител. Механизм их действия как стимуляторовиммуногенеза, по-видимому, связан с включением их в белковый и нуклеиновыйобмен, вызывающим поливалентное влияние на иммуногенез и процессы регенерации.

В клинике применяется в терапиитуберкулеза, хронической пневмонии, лепры, рожи, ожоговой болезни. Например,включение метилурацила в комплексную терапию дизентерии, который способствуетнормализации показателей естественной резистентности (комплемент, лизоцим, b-лизинсыворотки, фагоцитарная активность).

Иммуностимуляторами также являютсяпроизводные пурина: мерадин, 7-изоприназин, 9-метиладенин.

Изоприназин является одним изновых иммуностимулятров, который относится к иммуномодуляторам. Препаратобладает большой широтой терапевтического действия. Он изменяетиммунологическую реакцию на разных стадиях: стимулирует активность макрофагов,усиливает пролиферацию, цитотоксическую активность лимфоцитов, усиливает числои активность фагоцитоза. Известно, что изоприназин не оказывает влияние нафункции нормальных полиморфноядерных лейкоцитов.

2.4. Производные имидазола

К этой группе иммуностимуляторовотносится левамизол, дибазол и кобальтсодержащие производные имидазола.

Левамизол: это белый порошок, хорошо растворяется в воде, малотоксичен.Препарат является эффективным противоглистным средством. Влияние левамизола наиммунологические процессы было обнаружено позднее. Левамизол стимулирует восновном клеточный иммунитет. Он является первым препаратом, имитирующимгормнальную регуляцию иммунной системы, то есть модулирование регуляторныхТ-клеток. Способность левамизола имитировать тимусный гормон обеспечивается егоимидозолоподобным воздействием на уровень циклических нуклеотидов в лимфоцитах.Возможно, что препарат стимулирует тимопоэтинрецепторы. Препарат благоприятновлияет на иммунологический статус путем восстеновления эффекторных функцийперефирических Т-лимфоцитов и фагоцитов, стимуляции созревания предшественниковТ-лимфоцитов аналогично действию тимусных гормонов. Левамизол является мощныминдуктором дифференцировки. Препарат вызывает быстрый эффект (через 2 часа припероральном приеме). Повышение активности макрофагов с помощью левамизолаиграет большую роль в способности препарата повышать иммунологические свойстваорганизма.

Лечение левамизолом приводит куряжению, укорочению и снижению интенсивности инфекционного процесса. Препаратпонижает воспалительные явления при угрях, восстанавливает сниженную функциюТ-клеток. Имеются данные о значении левамизола при лечении онкологическихзаболеваний. Он удлиняет продолжительность ремиссии, увеличивает выживаемость ипредупреждает метастазирование опухоли после ее удаления или лучевой ихимиотерапии. Каким образом реализуются эти эффекты? Это зависит от повышениялевамизолом активности клеточного иммунитета у онкологических больных, отусиления иммунного контроля в котором играют роль стимулируемые левамизоломТ-лимфоциты и макрофаги. Левамизол не повышает иммунной реакции вышенормального для человека уровня и особенно он эффективен у онкологическихбольных с иммунодефицитными состояниями. Побочные реакции левамизола: желудочно-кишечныерасстройства в 90% случаев, возбуждение ЦНС, гриппоподобное состояние,аллергические кожные высыпания, головная боль, слабость.

Дибазол:препарат, который обладает свойствами адаптогена - стимулируетгликолиз, синтез белка, нуклеиновых кислот. Применяется чаще с профилактическойцелью, а не с лечебной. Уменьшает восприимчивость к инфекциям, вызываемыхстафилококком, стрептококком, пневмококком, сальмонеллами, риккетсиями,вирусами энцефалита. Дибазол при введении в организм в течение трех недельпредупреждает заболевание ангиной, катаром верхних дыхательных путей. Дибазолстимулирует образование интерферона в клетках, следовательно, он эффективен принекоторых вирусных инфекциях.

2.5. Препараты разных групп

Тимозин. Основной эффект - индукция созревания Т-лимфоцитов. Данные о влияниитимозина на гуморальный иммунитет противоречивы. Существует мнение, чтоусиливая проявление иммунных реакций, тимозин снижает образование аутоантител.Влияние тимозина на клеточные реакции иммунитета определило сферу его клиническогоприменения: первичные иммунодефицитные состояния, опухоли, аутоиммунныенарушения, вирусные инфекции.

Витамины. Витамины, являясь коферментами или их частью, благодаря своей роли,в обменных процессах оказывают весьма значительное влияние на функции различныхорганов и систем организма, в том числе и на системы иммунитета. Чрезвычайноширокое использование витаминов, часто в дозах, существенно превышающихфизиологические, делает понятным интерес к их влиянию на иммунитет.

а) витамин С.

По многочисленным данным дефицитвитамина С приводит к отчетливому нарушению Т-системы иммунитета, система жегуморального иммунитета более устойчива к С-витаминной недостаточности. Кромевеличины дозы большое значение имеет характер сочетания витамина С другими препаратами,например, с витаминами группы В. Стимуляция фагоцитоза связана снепосредственным влиянием его на фагоциты и зависит от величины дозы препарата.Полагают, что витамин С увеличивает чувствительность бактерий к лизоциму.Однако, после длительной терапии большими дозами витамина С возможно развитиерезкого гиповитаминоза витамина С после прекращения его приема.

б) Тиамин (В1).

При гиповитаминозе В1 наблюдаетсяснижение иммуногенеза по отношению к корпускулюрным антигенам, снижениеустойчивости к некоторым инфекциям. Влияние на фагоцитоз происходит путемвмешательства в углеводно-фосфорный обмен фагоцитов.

в) Цианокобаломин (В12).

Очевидно, эффективность витаминаВ12 в нормальных дозах при крайне расстроенных гемопоэтических иимунологических функциях (нарушение дифференцировки В-клеток, снижение числаплазмоцитов, антител, лейкопения, мегалобластная анемия, рецидивирующаяинфекция). Но отмечается стимулирующее влияние витамина В12 на рост опухоли (вотличие от В1, В2, В6). Одним из основных иммуномоделирующих действий витаминаВ12 является влияние на обмен нуклеиновых кислот и белков.

Недавно синтезирован коферментныйпрепарат В12 - кобамамид, который нетоксичен и обладает анаболическимисвойствами и в отличие от витамина В12 нормализует нарушенный липидный обмен убольных атеросклерозом.

Общетонизирующие средства: препараты лимонника, элеутерококка, женьшеня, радиолы розовой.

Ферментные препараты: лизоцим.

Антибиотики:при антигеноспецифической ингибиции фагоцитоза.

Змеиный яд: лечебные препараты, содержащие офидитоксин (випратоксин, випералгин,эпиларктин) увеличивают активность комплемента и лизоцима, увеличиваютмакрофагальный и нейтрофильный фагоцитоз.

Микроэлементы.

3. Принципы дифференцированной иммунокоррекции.

Известно, что любое заболеваниесопровождается развитием иммунодефицитных состояний (ИДС). Существуют методыоценки иммунного статуса, которые позволяют обнаружить пораженные звеньяиммуносистемы.

В большинстве случаев имеет местонеспецифическая иммунокоррекция. Но нужно учитывать, что многиеиммуномодуляторы вызывают и неиммунное действие. Можно подумать, чтоиммунокоррекция не имеет перспектив. Но это не так. Просто нужно подходить к этой проблеме с двухпозиций: 1.- в организме существуют общие универсальные реакции, отражающиепатологию. 2.- существуют тонкости патогенеза многих, например, бактериальныхтоксинов, которые вносят свой вклад в механизм иммунных расстройств.

Из этого можно сделать вывод обактуальности дифференцированного назначения иммуномодуляторов.

Существенным минусом в диагностикеИДС является отсутствие четкой градации, поэтому иммуномодуляторы частоназначаются без учета степени иммунных расстройств и активности препарата.Выделяют три степени ИДС:

1 степень - снижение количестваТ-клеток на 1-33%

2 степень - снижение количестваТ-клеток на 34-66%

3 степень - снижение количестваТ-клеток на 67-100%

Для определения ИДС применяютиммунологический графический анализ. Например, при пиелонефрите, ревматизме,хронической пневмонии выявляется третья степень ИДС; при хроническом бронхите - вторая; при язвенной болезни желудка и ДПК - первая.

Мнение о том, что большинствотрадиционных лекарственных препаратов не оказывает на иммунную систему никакогодействия, представляется ошибочным и устаревшим. Как правило, они либостимулируют, либо подавляют иммунную реакцию. Иногда сочетание традиционныхлекарственных средств с учетом их иммунотропности может устранитьиммунологические расстройства у больных. Это очень важно, так как если упрепарата есть иммуносупресорное свойство, что неблагоприятно;иммуностимулирующее свойство тоже неблагоприятно, так как оно можетспособствовать развитию аутоиммунных и аллергических состояний. При комбинациипрепаратов возможно усиление иммуносупрессорных и иммуностимулирующих эффектов.Например, сочетание антигистаминных и антибактериальных средств (пенициллин исупрастин) способствует развитию супрессорных качеств обоих препаратов.

Очень важно знать основные мишенидействия иммуномодуляторов, показания по их применению. Несмотря наопределенность действия, тинозин, нуклеинат натрия, ЛПС, левамизол активируютвсе основные звенья иммунной системы, то есть их можно принимать при любыхформах вторичных ИДС с дефицитами Т- и В-клеточных систем, фагоцитарнойсистемы, их сочетаний.

Но такие препараты как катерген,зиксорин имеют выраженную селективность действия. Избирательность действияиммуномодуляторов зависит от исходного состояния иммунного статуса. То естьэффект иммунокоррекции зависит не только от фармакологических свойствпрепарата, но и от исходного характера иммунных расстройств у больных.Перечисленные выше препараты эффективны при нарушении любого звена иммунитета,при условии их подавления.

Длительность действияиммуномодуляторов зависит от их свойств, механизма действия, иммунологическихпоказателей больного, характера патологического процесса. Благодаряэкспериментальным исследованиям установлено, что повторные курсы модуляции нетолько не формируют процесса привыкания или передозировки, а усиливаютвыраженность эффекта действия.

Иммунные расстройства редкозатрагивают все звенья иммунной системы, чаще они бывают изолированными.Иммуномодуляторы влияют только на измененные системы.

Установлена связь междуиммуномодуляторами и генетической системой организма. В большинстве случаевмаксимальна эффективность иммуномодуляторов у больных со второй группой кровипри дизентерии, при гнойных инфекциях мягких тканей - с третьей группой крови.

Показаниями для применениямоноиммунокорреги-рующей терапии служат:

а) ИДС 1-2 степени;

б) отягощенное затяжноеклиническое течение заболевания;

в) тяжелая сопутствующаяпатология: аллергические реакции, аутоиммунная реакция, истощение, ожирение,злокачественные новообразования. Пожилой возраст.

г) атипичные температурныереакции.

Сначала назначают малыеиммуноекорректоры (метацин, витамин С), если эффекта нет, то используют болееактивные препараты.

Комбинированнаяиммунокоррегирующая терапия - это последовательное или одновременное применениенескольких иммуномодуляторов с различным механизмом действия. Показания:

1- хроническое течение основногопатологического процесса (более трех месяцев), частые рецидивы, сопутствующиеосложнения, вторичные заболевания.

2- синдром интоксикации, нарушениеобмена веществ, потеря белка (почками), глистная инвазия.

3- безуспешная иммунокоррегирующаятерапия в течение одного месяца.

4- увеличение степени ИДС,комбинированное поражение Т- и В-звеньев, Т-, В- и макрофагального звена,разнонаправленные нарушения (стимуляция одних процессов и угнетение других).

Необходимо осветить понятие опредварительной иммуннокоррекции. Предварительная иммунокоррекция - этопредварительное устранение иммунной патологии для улучшения базовой терапии;используется для профилактических целей.


Основные принципы примененияиммуномодуляторов.

1. Обязательная оценка характера иммунныхнарушений у больных.

2. Не применяются самостоятельно, адополняют традиционную этиотропную терапию.

3. Влияние на зависимость измененияиммунных показателей от возраста, биоритмов больного и других причин.

4. Необходимость определения степенивыраженности иммунных расстройств.

5. Иммунотропные эффекты традиционныхлекарственных веществ.

6. Внимание на мишени действияиммуномодуляторов.

7. Учет побочных реакций.

8. Профильность действия модуляторовсохраняется при различных заболеваниях, но только при наличии однотипныхиммунных расстройств.

9. Выраженность эффекта коррекции в остромпериоде выше, чем в стадии ремиссии.

Выделяют препараты животного, микробного, дрожжевого и синтетического происхождения, обладающие специфической способностью стимулировать иммунные процессы и активировать иммунокомпетентные клетки.

Усиление общей сопротивляемости организма может в той или другой степени происходить под влиянием ряда стимулирующих и тонизирующих средств (Кофеин, Элеутерококк, Женьшень, Родиола розовая, Пантокрин, мед и др.), витаминов А и С, Метилурацил, Пентоксил и биогенные стимуляторы (Алоэ, ФиБС и др.).

Широко применяют естественные интерфероны, для создания не специфической защиты от вирусных инфекций, и препараты, получаемые из вилочковой железы (Тималин, Тимостимулин, Т-активин, Тимоптин, Вилозен), костного мозга (В-активин), и их аналоги, полученные искусственны путем (Тимоген, Левамизол, Натрия нуклеинат, Метилурацил, Пентоксил; Продигиозан; Рибомунил)

Способность этих препаратов повышать резистентность организма и ускорять процессы регенерации послужила основанием для широкого применения их в комплексной терапии вялотекущих процессов при инфекционных и других заболеваниях.

Дезинтоксикационная терапия

Среди препаратов патогенетической терапии на первом месте стоят препараты дезинтоксикацинного ряда, корригирующие гемодинамику и сорбирующие яды:

А. Парентеральные сорбенты (коллоиды): Полидез; Полиглюкин; Реополиклюкин; Желатиноль; Альвезин; Реоман; Рефортан; Стабизол и т. д.). При применении парентеральных препаратов нужно учитывать их молекулярный вес. При весе 30 – 60 тысяч препараты оказывают гемодинамическое действие, при весе менее 30 тысяч – дезинтоксикационное

Б. Оральные сорбенты; Активированный уголь; Энтеродез; Полифепан; Имодиум и др.

В. Кристаллоиды: Раствор Рингера; Трисоль; Трисомин; Оралит; Глюкосолан; Цитроглюкосолан; Регидрон: Глюкоза 5% и т.д.

При приёме коллоидов и кристаллоидов необходимо соблюдать пропорцию 1:3 в сутки (1 часть коллоидов и 3 части кристаллоидов)

Г. Глюкокортикоиды : Преднизолон; Дексаметазон; Гидрокортизон; Кортизон и др.

Регидротационная терапия

При многих инфекционных заболеваниях, особенно кишечных инфекциях, происходит потеря большого количества жидкости и солей. Поэтому часто приходится проводить коррекцию водно-солевого баланса

Всю регидратацию проводят в два этапа:

А. Первичная регидратация

Расчет проводят с учетом обезвоживания организма, который находят по потери веса больного.



1. Легкая степень обезвоживания (потеря веса до 3%) – вводят 40-60 миллитров на 1 кг веса в течение 4-6 часов.

2. Средняя степень обезвоживания (потеря веса до 6%) – вводят 70-90 миллилитров на кг веса в течение 4-6 часов.

3. Тяжелая степень обезвоживания (потеря веса до 9%) - - вводят 90-120 мл. на 1 кг веса в течение 4-6 часов.

4. Очень тяжелая обезвоживания (потеря веса более 9%) – вводят более 120 мл. в течении 4-6 часов.

При легких формах обезвоживания обычно ограничиваются оральной дегидратацией глюкозо-солевыми растворами (Регидрон; Глюкосолан; Цитроглюкосолан и др.).

При более тяжелых формах обезвоживания, регидратационную терапию проводят парентерально кристаллоидами (Дисоль; Трисоль; Трисомин; Кватрасоль; р. Рингера и т.д.).

Б. Поддерживающая регидратация .

Вторичная поддерживающая регидратация проводится в дальнейшем весь период потери жидкости и электролитов во время рвоты и диареи, с 10% добавкой.

Противовоспалительная терапия

А. Нестероидные противовоспалительные препараты.

· Препараты, обладающие выраженным противовоспалительным и анальгезирующим эффектом: По убывающей силе действия – Бутадион; Индометацин; Клинорил; Толектин; Кеторолак; Диклофенак; Фенклофенак и Аклофенак; Бруфен и другие.



· Препараты, обладающие выраженным жаропонижающим эффектом: Парацетамол; Бруфен; Напросин; Кетопрофен; Сургам.

Б. Стероидные противовоспалительные препараты.

· Естественные глюкокортикоиды – Кортизон; Кортизон; Гидрокортизон:

· Синтетические аналоги глюкокортикоидов – Преднизолон; Метилпреднизолон; Триамцинолон; Дексаметазон; Бетаметазон:

В. Антигистаминные средства

1 поколение – Димедрол; Пипольфен; Супрастин; Диазолин; Тавегил; Фенкарол:

2 поколение – Кларитин; Бронал; Гисманал; Семпрекс; Зиртек; Ливостин; Аллергодил; Кестин:

В практической медицине чаще применяют комбинированные препараты (НПВС + антигистаминные средства + витамин С). Могут быть и другие комбинации – Панадеин; Антигриппин; Антиангин; Клариназе; Эффералган; Колдакт; Колдрекс и другие.

Противоотечная терапия

При инфекционных болезнях противоотечная терапия применяется не часто и обычно ее прием связан с отеком – набуханием головного мозга (гипертензионный синдром) при нейротоксикозе и инфекционно-токсической энцефалопатии. Чаще используют парентеральные мочегонные препараты (Лазикс, Фуросемид, Маннит, и др.), в сочетании с гипертоническими растворами (40% раствор глюкозы, 25-50% раствор магния сульфата, 10% растворы хлористого натрия и кальция).

69. Иммунная защита от инфекционных агентов.

Иммунная система в норме эффективно защищает организм от инфекций или позволяет минимализовать их последствия и ускорить выздоровление. Однако не все результаты иммунного ответа (ИО) на экзогенных возбудителей полезны для организма. ИО часто ведёт к невыигрышным для хозяина последствиям или оказывается неэффективным.

Прионы - малые белковые инфекционные частицы, устойчивые к инактивирующим воздействиям, которые модифицируют нуклеиновые кислоты (Прюзинер, 1982). Прионы устойчивы к кипячению, ультразвуку, УФ- и гамма-облучению и детергентам.

Откладывается амилоид в тканях головного мозга, особенно в больших полушариях и мозжечке, с их вакуолярной дегенерацией, атрофией и астроглиозом. Прионы вызывают спонгиозные трансмиссивные энцефалопатии: куру, БКЯ, семейную бессонницу. Характерен очень длительный инкубационный период с последующим быстрым прогрессированием (атаксией, миоклонусом, деменцией) и смертью.

!! Иммунная система абсолютно толерантна к прионам и не защищает от них, поэтому прионовые б-ни долго протекают бессимптомно. Очевидно, это связано с убиквитарностью нормальных гомологов прионового белка.

Вирусы. Различные формы эффективного ИО. Внедрение в слизистые и кожу => атакуются IgА и ИФН, при вирусемии возбуждают цитокиновый ответ и подвергаются действию циркулирующих Ig. Заражённые вирусом клетки экспрессир. вирусные АГ, на них действуют Т-кил, NK, АТ-зависимые К-клетки, комплемент и фагоциты.

Вирусные АГ распознают Тхелп и Ткил, ИФН способствуют появлению АГ-презентирующих молекул у заражённых клеток, которые до этого их не экспрессировали. Протективную роль при многих вирусных инфекциях играет распознавание и ответ со стороны Ткил. Циркулир. АТ повышают иммунитет при некоторых вирусных инфекциях (гепатиты, корь, краснуха), только если действуют до того, как вирус стал внутриклеточным АГ.

Гуморальный ответ при вирусных инфекциях иногда ведет к пагубному результату. Нейтрализация вирусов АТ-ми => появление персистирующей фракции вируса и иммунокомплексные (ИК) заболевания. Фагоцитоз комплексов вируса и АТ с фрагментами комплемента может инфицировать фагоциты или убрать с клеточной поверхности вирусные АГ, сделав заражённые клетки менее доступными для Ткил. Природа ведущего звена противовирусного иммунитета требует уничтожения не вирионов, а собственных клеток, содержащих вирусные или вирус-индуцированные АГ. Для проникновения в клетки вирусы используют клеточные рецепторы (вирус бешенства - ацетилхолиновый рецептор). ИО на белки вируса, которые он использует для проникновения в клетку, должен приводить к появлению аутоантиидиотипов, которые будут копировать вирусные эпитопы, взаимодействовать с рецепторами, и вызывать аутоиммунные рецепторные заболевания с блокадой или стимуляцией соответствующих рецепторов.



Вирусы м. б. поликлональными активаторами Лц, => неточная и избыточная работа иммунной системы.

Бактерии. Вначале неиммунологическое распознавании компонентов бактерий и неспецифические барьерные механизмы.

Бактериальные липополисахариды (ЛПС) активируют альтернативный путь комплемента.

ЛПС-чувствительные рецепторы макрофагов и эндотелия и рецепторы факторов комплемента после действия на них этих лигандов активируют сторожевую полисистему крови, фагоцитоз и выработку цитокинов острой фазы. Начинает формироваться лихорадка. Белки острой фазы (С-реактивный белок, лактоферрин и др.) оказывают бакт-цидное действие и ограничивают доступность ростовых факторов для бактерий.

Следующая «линия обороны» - ускоренные Т-независимые ИО на ЛПС, маннаны и жгутиковые АГ. Они способствуют раннему ограничению распространения инфекции и фагоцитозу патогенов.

Наконец, развивается специфический ИО.

Циркулирующие Ig могут обеспечивать такие формы антибактериальной защиты:

Нейтрализацию токсинов, например, столбнячного;

Инактивацию факторов вирулентности и распространения бактерий, например, гиалуронидаз;

Блокаду бактериальных рецепторов ростовых факторов, например железосвязывающих белков;

Опсонизирующий эффект для фагоцитоза бактерий;

Литический эффект через комплемент;

Блокаду бактериальных органоидов движения;

Предотвращение прикрепления бактерий к клеткам организма путём занятия соответствующих адгезивных молекул;

Установлено существование у молекул некоторых АТ Cat-активности (Ig-гидролазы и ДНК-азы).

ВИЧ-инфекция основные морфологические проявления. Важнейшие осложнения.

Вич вызывает в ор-ме заболев-ия с пораж-ием к-ок крови и орг.иммуногенеза.Финал-СПИД.

ВИЧ. РНК-вирус из семейства Retroviridae. ВИЧ-1, ответственный за большинство случаев болезни выделен и охарактеризован в 1983-1984 году. В 1986 г. – ВИЧ-2 (40%-гомология с ВИЧ-1) в Западной Африке; вызывает менее тяжёлую форму СПИД. 3 штамма вируса, различаемые по белку капсида env - Μ, О, и Е.

Передаётся половым путём при ректальных (риск более 50%), вагинальных (риск от 15 до 50 %) и эпизодически оральных контактах. Способствуют травмы и эрозии слизистых. М. б. передан через кровь и все ее продукты, кроме Ig, альбумина и антитромбина; а также с трансплантатами и спермой при искусственном осеменении. Риск при уколе 3 шанса из 1000., (гепатит В не менее, чем 1:5). 30% плодов инфицируются трансплацентарно. М. б. пероральное заражение при грудном вскармливании. Нет прямых доказательств передачи через секреты, хотя вирус там обнаружен. Отмечены случаи передачи от младенцев матерям при грудном вскармливании. Группы риска: гомосексуалисты, наркоманы, реципиенты крови, их партнёры.

Вирус соединяется белком gpl20 с СD 4 -маркером и, при участии своего фьюзогена gp41, проникает в Т-лимфоциты-регуляторы и макрофаги.

Обратная транскриптаза копирует в виде ДНК геном вируса, а интеграза встраивает копию в геном клеток. Активация заражённых Лц и макрофагов способствует синтезу и сборке новых вирионов.

Патогенез: 1) фаза острой вирусемии (освобождение лимфокинов и активация клеток иммунной системы). Вирус проникает в АПК и Лц в лимфоидных органах, где размножается, клиника виремии затухает.

2) латентный период (длится несколько лет). На протяжении первых 6 месяцев формируются антитела к вирусу, которые защиты не обеспечивают, но служат для диагностики. В течение первых 3 месяцев кровь, содержащая вирус, может оставаться серонегативной из-за недостаточного титра антител. Прогрессивно снижаются сначала функции Тхелп (синтез цитокинов, взаимодействие с Ткил и В-клетками), а затем и их количество. Вирус персистирует в л/у, вызывая лимфаденопатию. 3) манифестная стадия СПИД (число Тхелп ниже 200 клеток на 1 мкл плазмы) проявляется СПИД-ассоциированным симптомокомплексом (персистирующая генерализованная лимфаденопатия, симптомы системного действия цитокинов и дерматомикозы), а затем прогрессирующей сочетанной оппортунистической инфекцией. Наиболее типичны пневмоцистная интерстициальная пневмония, кандидамикоз пищевода, атипичные микобактериозы (М.avium), токсоплазмоз головного мозга, системная цитомегаловирусная и герпетическая инфекции. Встречаются криптококкоз, гистоплазмоз, иерсениоз и туберкулез.

Лишенные Т-хелперской помощи, В-лимфоциты снижают свой стимулированный ответ на АГ, но проявляют повышенную спонтанную АТ-образующую и цитокинсинтезирующую активность. => продукция аутоАТ, избытка IgM низкой аффинности, ИЛ-6 и ФНОα. Из-за действия цитокинов усиливается катаболизм и пациент худеет, воспроизводятся многие симптомы, сопровождающие цитокиновый ответ. Аутоаллергия может вызывать миелопатию и полинейропатии. Вирусный белок gp120 обладает высокой степенью молекулярного сходства с инсулином и эпидермальным фактором роста. Эти особенности вызывают у больных прогрессирующие кахексию и дистрофические процессы (перекрёстнореагирующие с анаболическими гормонами аутоАТ). Часто обнаруживаются аутоиммунные гемоцитопении, аутоАТ к белкам плазмы и тироглобулину, антиядерные и антикардиолипиновые иммуноглобулины. Аутоантитела к гликопротеидам ГКГС способны нарушать клеточную кооперацию при ИО. М. б., вирус действует как гомолог эндогенных иммуносупрессивных анти-СD 4 -лигандов.

ВИЧ менее цитопатогенен для макрофагов => в них он персистирует и разносится по организму. Макрофагальные функции страдают. Из-за дефицита цитокиновой поддержки со стороны лимфоцитов хелперов-индукторов и макрофагов снижается цитолитическая активность нормальных киллеров.

ВИЧ проникает в глиальные клетки и нейроны, т.к. некоторые из них экспрессируют CD 4 , а другие - галактозилцерамид, альтернативный входной рецептор для вируса. Нейропатия при СПИД аутоаллергическими механизмами и цитокинами, отмечена и прямая нейротоксичность белка gpl20. Кроме того, этот белок проявляет высокую степень структурного совпадения с нейролейкином - одним из важных факторов роста нейронов.

«Саркома» Капоши. Это не саркома, а реактивная поликлональная гиперплазия сосудистых эндотелиальных и гладкомышечных клеток, в которой не экспрессированы онкогены и нет мутаций. Патогенез связан с действием цитокинов и вирусного ростового фактора на сосудистые клетки. Эпидемиологически связана с гомосексуализмом. СПИД у гетеросексуалов чаще без этого симптома. М. б., ректальная передача со спермой неких ростовых факторов или неизвестного инфекционного агента. При СПИД учащаются и истинные неоплазмы (В-лимфомы, у женщин - инвазивные опухоли шейки матки).

Этиология. Возбудитель - Т-лимфоцитарный вирус иммунодефицита человека – ВИЧ. 3 пути инфицирования: пол. парентер.транспланц.или с milk.Патогенез. В кровь либо парентерально при инъекциях, либо при половом контакте через поврежденные слизистые оболочки половых путей. Тропен к CD4+ к-кам. Большой латентн. период. Три фазы раннюю острую, хроническую и прогрессирования заболевания. ВИЧ в органах больных практически обнаруживается очень редко. Обычно в лимфоидной системе (в лимфоц., дендрит., макрофагов и гигантских многоядерных клеток,) при ЭлМкСкоп могут быть выявлены своеобразные тубулярные и тубулоретикулярные включения в виде сети цилиндрических или изогнутых трубочек. СD4+лимфоциты теряют способность распознавать антиген. .Период персистирующей генерализованной лимфоаденопатии - характеризуется стойким, в течение нескольких месяцев, увеличением различных групп лимфатических узлов. Особенно – персистирующая генерализованная лимфаденопатия. Вначале – гиперплазия фолликулов в кортикальных и медулярных зонах. Среди клеток – диффузно – иммунобласты с высокой митотической активностью. Медулярные тяжи опр. С трудом.краевые и промежуточные синусы увеличиваются. Появл крупные одноядерные клетки – макрофаги и слущенные кл-ки эндотелия. В дальнейшем – фрагментация фолликолов. Перифеические зоны неровны и местами отсутствуют – часть г. центров имеет неровные края. Гипертрофия клеток эндотелия, особенно венул. Фагоцитоз эритроцитов. Появление гигантских клеток. Далее – стирание строуктуры ЛУ.Фолликулы мелкие атрофичные. Гиалиноз Центров фолликулов. Пролиферация – низкая. Периферич. Зона утрачена, деструкция дендритных клеток. На последней стадии ЛУ – состоит из одной стромы, переполнен крупн 1-яд кл с фагоцитированными эритроцитами. Сходные изменения в селезенке и тимусе. Постепенная атрофия лимфоидной ткани. Измеения в др. органах. В ЦНС – в белом в-ве, имеет характер подострого энцефалита с мн-яд кл, мелк и крупн скопл микроглии и периваск. МКФ. Вакуализация белго в-ва(спонгиоз). Поражение яичек. С частичным или полным прекр. Дифф. Сперматозоидов, атрофией семенных канальцев, лимф. Инфильтрацией и фиброзом, выраж в разл. Степени. В почках – отл-е имм компл, дистр нефротелия и гиперплазия отд его кл, микрокистозная тубулэктазия и расшир капсул. В легких – гиперплазия альвеолоцитов с послед их слущиванием. В России: Наиболее част вторичн инф в стадии СПИД - ЦМВинф, туберкулёз, криптококкоз, пневмоцистоз, хламидиоз, микоплазмоз, саркома Капоши, лимфома головного мозга. Акцидентальная трансформация тимуса

70.Сенсибилизация… -первичный иммунный ответ на аллерген. В патогенезе аллергических реакций различают три стадии: Иммунологическую, Патохимическую, Патофизиологическую. Иммунологическая стадия охватывает период от первичной до вторичной встречи с аллергеном включительно. Вторичной встрече предшествует период сенсибилизации, суть которого состоит в том, что в ответ на изначальную встречу с антигеном-аллергеном, в ходе первичного иммунного ответа, иммунная система организма вырабатывает достаточное (для последующего развития аллергии) количество специфических иммуноглобулинов (при ГНТ) и сенсибилизированных Т-лимфоцитов (при ГЗТ и ГНТ). При постоянном контакте с антигеном после первой встречи (при персистировании чужеродных антигенов или в случае эндогенных антигенов, в т. ч. аутоантигенов) иммунологическая стадия длится до тех пор, пока не разовьется сенсибилизация. Таким образом, аллергическую сенсибилизацию можно рассматривать как частный случай чрезмерно сильного, либо недостаточно отрегулированного первичного иммунного ответа. С. при ГНТ требует экспансии специфического клона В-лимфоцитов, наработки достаточно большого количества циркулирующих иммуноглобулинов (длится долго). При ГЗТ С., зак-ся формированием специфического Т-лимфоцитарного клона (быстрее).

А. Безредко предложил способ снижения анафилактической готовности-десенсибилизации, путем дробного внутрикожного и, затем-подкожного введения малых доз анафилактогенного аллергена. Аллерген связывается с антителамиÞснижается их титр+выработка антиген-блокир. антител.Это-так называемая специфическая десенсибилизация(антигеном). При других ГНТ она малоэффективна, а при ГЗТ не работает.

Неспецифической десенсибилизация (иммунодепр., антигистаминн.преп…)-фармакологическая блокады дегрануляции в разных точках.Также различают:1.Активная сенсибилизация (антиген попадает в организм),2.Пассивная сенсибилизация (в интактный организм рецепиента вводится сыворотка с антителами).Фазы активной сенсибилизации:1.Фаза активации, 2. Фаза клональной пролиферации.3. Заключительная фаза в которой значительная часть лимфоцитов превращается в эффекторные клетки, а оставшиеся-в клетки памяти, обеспечивающие вторичный иммунный ответ.

Сывороточная болезнь: - генерализованная форма иммунокомплексной аллергии. В качестве типового случая системного некротизирующего васкулита, обусловленного иммунными комплексами, можно рассматривать сывороточную болезнь. Она развивается через 8-10 дней после однократного введения большого количества ксеногенной сыворотки. Сывороточная болезнь проявляется: повышением температуры, увеличением селезенки и лимфоузлов, протеинурией, лейкоцитозом, артральгиями, кожной сыпью, иногда, геморрагического характера, снижением содержания факторов комплемента в крови.Симптоматика болезни возникает с появлением в кровотоке антител. Симптомы сохраняются до тех пор, пока в кровотоке находится свободный антиген (область избытка антигена, растворимые иммунные комплексы). После элиминации антигена симптомы исчезают. Перенесенная сывороточная болезнь оставляет после себя повышенную чувствительность к белкам чужеродной природы: повторная инъекция может вызвать анафилактический шок.Поздние механизмы сывороточной болезни включают и иные гиперергические реакции, в частности,ГЗТ. Патогенез 3 фазы:образование в крови комплексов антиген-антитело, осаждение этих компл в разных тканях, развитие воспаления в разл орг и тк. Хронич. форма при повторных или пролонгированных введениях антигена.

Иммуномодулирующая терапия (иммунотерапия) - это методы нормализации иммунитета (резистентности) организма.

Особое значение приобрела иммунотерапия в связи с увеличением устойчивых к антибио­тикам микробных штаммов, а также усилени­ем роли условно-патогенной микробной флоры как причинного фактора заболеваний носоглот­ки у детей. Иммунотерапия имеет большое зна­чение еще и потому, что в последние десятиле­тия изменилось течение инфекционных заболе­ваний, увеличилась аллергизация населения, а в клинической практике стали широко приме­нять средства, подавляющие иммунные реак­ции (кортикостероиды, антибиотики широкого спектра действия). Иммунотерапия может на­значаться в комплексе с другими лекарствен­ными средствами. Ее эффективность зависит от правильной оценки исходного состояния имму­нореактивности, характера и выраженности па­тологических изменений, выбора правильного комплекса лечебных мероприятий.

Проведение иммуномодулирующей тера­пии способствует устранению острых и хрони­ческих очагов инфекции и уменьшению про­явлений аллергического процесса. Грамотное применение иммунотерапии в конечном итоге приводит к более быстрому выздоровлению и восстановлению здоровья после перенесенно­го заболевания.

Однако лекарственные препараты, влияющие на иммунитет, имеют немало неблагоприятных воз­действий на растущий детский организм и пре­жде всего на еще формирующуюся иммунную си­стему ребенка.

Решение о необходимости применения им­мунотерапии должно приниматься только при наличии четких показаний. При этом саму те­рапию необходимо проводить под контролем врача-педиатра, равно как и выбор иммунно­го препарата, так как применение вслепую, не­верные подходы к продолжительности курса та­ких препаратов могут привести к еще более вы­раженному дисбалансу в иммунной системе.

Часто назначаемая антибактериальная терапия является причиной развития нестабильности им­мунитета.

Теперь имеется Большой арсенал иммунотропных средств. Условно их можно разделить на 4 большие группы: иммуностимуляторы, им­муномодуляторы, иммунокорректоры и иммуно­депрессанты.

Иммуностимуляторы - это средства, уси­ливающие иммунный ответ. К ним относятся ле­карственные препараты, пищевые добавки, другие различные агенты биологической или хи­мической природы, стимулирующие иммунные процессы. Они должны назначаться по строгим показаниям, и проводится такое лечение под обязательным лабораторным иммунологиче­ским контролем.

Иммуномодуляторы - это лекарственные средства, обладающие иммунотропной актив­ностью, которые в обычных лечебных дозах вос­станавливают функции иммунной системы. Они могут применяться без предварительного им­мунологического обследования и характеризу­ются хорошей переносимостью. Лечебный эф­фект иммуномодуляторов зависит от исходного состояния иммунитета: эти препараты снижают повышенные и повышают сниженные показате­ли иммунитета. Причем иммуномодуляторы, из­бирательно действующие на соответствующий компонент иммунитета, помимо влияния на этот компонент, будут так или иначе оказывать влия­ние на все другие компоненты иммунной систе­мы. Препараты данной группы в настоящее вре­мя стали называть иммунокорректорами. То есть иммунокорректоры - это иммуномодуля­торы точечного действия.

Иммунодепрессанты - это средства, по­давляющие иммунный ответ. К ним относятся лекарственные препараты, обладающие имму- нотропностью или неспецифического действия, и другие различные агенты биологической или химической природы, угнетающие иммунные процессы.

Все заболевания иммунной системы де­лятся на иммунодефицитные состояния, ал­лергические и аутоиммунные заболевания. У ЧБД наблюдается иммунная недостаточность и иммунная нестабильность. Главным критери­ем назначения иммуномодуляторов является упорно протекающий инфекционный синдром.

Хорошо зарекомендовали себя и гомео­патические средства иммуномодулирующе­го и противовирусного действия. Как правило, они безопасны в применении, обладают мягким действием и широким спектром противовирус­ной активности и рекомендуются даже для мас­совой профилактики простудных заболеваний у детей в детских садах. Включение таких пре­паратов в комплекс лечебных мероприятий со­кращает длительность клинических симптомов гриппа и других респираторных вирусных ин­фекций (лихорадка, кашель, насморк, недомога­ние) практически в 2 раза, способствует сокра­щению продолжительности самого заболевания на 2-3 дня, снижает риск развития бактериаль­ных осложнений и повторных эпизодов острых заболеваний.

Профилактическое применение гомеопа­тических препаратов в схеме ведения часто и длительно болеющих детей сокращает количе­ство респираторных вирусных инфекций более чем в 2 раза. У заболевших детей, получавших такую профилактику, клиническая симптомати­ка менее выражена, доминируют легкие формы заболевания, в 2 раза сокращается количество осложнений, таких как отиты, гнойные риниты, стоматиты, конъюнктивиты.

В последнее время стали использовать и препараты нуклеиновых кислот. Это препа­раты природного происхождения, которые ока­зывают не только мягкое иммуномодулирующее действие, но и цитопротективный (защищающий клетки), и репаративный (восстанавливающий) эффекты. Удобна и форма выпуска таких пре­паратов - в виде раствора, который использу­ют интраназально (капли в нос), лингвально (на язык) или сублингвально (под язык), а также в виде глазных капель (например, при аденови­русной инфекции). Они обладают высокой про­тивовирусной активностью, а потому применя­ются не только для профилактики простуд­ных заболеваний, но и в острый период респи­раторных вирусных инфекций и гриппа, замет­но сокращая сроки болезни и смягчая симпто­мы заболевания, облегчая при этом состояние ребенка. Многочисленные научные исследова­ния показали, что такие препараты безопасны для детей с аллергической патологией и полно­стью совместимы с любым курсом лечения.

Иммунотропные препараты других групп должны назначаться детям, в том числе ЧБД, под контролем лабораторных иммунологиче­ских показателей.

Таким образом, в системе лечения и оздо­ровления ЧБД иммуномодулирующая терапия занимает далеко не первое место, но присут­ствует в обязательном порядке.

Эта терапия назначается:

  • при острых респираторных вирусных ин­фекциях (лечение острого заболевания)
  • после перенесенных инфекций и тяже­лых заболеваний (бронхит, пневмония) в периоде реабилитации
  • в качестве сезонной профилактики (весна, осень)

В справочниках по ЛС описано множество препаратов (синтетических и природного происхождения) Аг-неспецифического иммуностимулирующего назначения. Материалы по их составу и механизмам действия приведены в специальной периодической литературе и монографиях. Отечественными учёными в клиническую практику внедрён ряд иммунотропных ЛС стимулирующего назначения.

Полиоксидоний (N-оксидированное производное полиэтиленпиперазина, авторы этого синтетического полимера: Механизм действия - стимуляция активности макрофагов, а также T- и В-лимфоцитов.

Миелопид - комплекс пептидов из кроветворного костного мозга свиней. В настоящее время проводятся успешные работы по химическому синтезу аналогичных пептидов. Механизм действия «широкомасштабный» - препарат влияет практически на все компоненты иммунной системы.

Ликопид - производное мурамилпептидов. Первоначально препарат выделили из клеточной стенки бактерии Lactobacillus bulgaricus, затем его воспроизвели химическим синтезом. В механизме действия на первый план выступает активация макрофагов.

Препараты для определения антитоксического иммунитета

Против дифтерии и скарлатины

Бактериальные экзотоксины (дифтерийный и скарлатинозный) применяются для определения антитоксического иммунитета к дифтерии в реакции Шика и к скарлатине в реакции Дика.

Дифтерийный токсин готовят из очищенного экзотоксина, после двухлетней выдержки, разведением в глицерино-желатиновой смеси с таким расчетом, чтобы в 0,2 мл содержалось 1/40 Dimдля морской свинки. Токсин вводят в дозе 0,2 мл строго внутрикожно в среднюю часть ладонной поверхности предплечья. При положительной реакции на токсин (т. е. при отсутствии антитоксического иммунитета у обследуемого), учитываемой через 72-96 часов, на месте введения появляется инфильтрат и эритема от 15 до 30 мм. Следовательно не обходимо дополнительное вакцинирование против дифтерии.

Детям с отрицательной реакцией Шика (при отсутствии местных изменений вследствие нейтрализации антитоксинами введенного токсина) дополнительных прививок не проводят.



Скарлатинозный токсин (эритрогенный) - термостабильный нуклеопротеоид стрептококка, консервированный фенолом (0,2%) или мертиолатом (в разведении 1: 10000). Скарла тинозный токсин дозируется в так называемых кожных дозах, причем за одну кожную дозу принимается такое количество токсина, которое при внутрикожном введении кролику вызывает воспаление (15-20 мм). Для определения напряженности иммунитета против скарлатины детям строго внутрикожно вводят скарлатинозный токсин в дозе 0,1 мл (одну кожную дозу для кролика). Учет реакции проводят через 18-24 часа.

Положительной реакцией, свидетельствующей об отсутствии иммунитета к скарлатине, считается образование в месте введения эритемы, размером от 20-30 мм и более при резко положительной реакции.

ИБП Классификация иммунобиологических препаратов

Иммунобиологические препараты (ИБП) – препараты, действующие или на иммунную систему, или через иммунную систему, или же механизм их действия основан на иммунологических принципах. Действующим началом в ИБП являются антигены, полученные тем или иным способом, или антитела, или микробные клетки и их дериваты, или биологически активные вещества типа иммуноцитокинов, иммунокомпетентные клетки и другие иммунореагенты. Кроме действующего начала, Для каждого ИБП установлены строго регламентированные дозировки и схемы применения, показания и противопоказания, а также побочные эффекты.

Классификация иммунобиологических препаратов

I групп а – ИБП, получаемые из живых или убитых микроорганизмов (бактерии, вирусы, грибы) или микробных продуктов и используемые для специфической профилактики или терапии. К ним относятся живые и инактивированные корпускулярные вакцины, субклеточные вакцины из микробных продуктов, анатоксины, бактериофаги, пробиотики.

II группа – ИБП на основе специфических антител. К ним относятся иммуноглобулины, иммунные сыворотки, иммунотоксины, антитела-ферменты (абзимы), рецепторные антитела. III группа – иммуномодуляторы для иммунокоррекции, лечения и профилактики инфекционных и неинфекционных болезней, иммунодефицитов. К ним относятся экзогенные иммуномодуляторы (адъюванты, некоторые антибиотики, антиметаболиты, гормоны) и эндогенные иммуномодуляторы (интерлейкины, интерфероны, пептиды тимуса, миелопептиды и др.).

IV групп а – адаптогены – сложные химические вещества растительного, животного или иного происхождения, обладающие широким спектром биологической активности, в том числе действием на иммунную систему. К ним относятся, например, экстракты женьшеня, элеутерококка и др., тканевые лизаты, различные биологически активные пищевые добавки (липиды, полисахариды, витамины, микроэлементы и др.).

V групп а – диагностические препараты и системы для специфической диагностики инфекционных и неинфекционных болезней, с помощью которых можно обнаружить антигены, антитела, ферменты, продукты метаболизма, чужеродные клетки, биологически активные пептиды и т. д.

Специфическая профилактика инфекционных заболеваний

Иммунопрофилактика

Иммунопрофилактика - метод индивидуальной или массовой
защиты населения от заболеваний путём создания или усиления искусственного иммунитета. Она подразделяется на неспецифическую и специфическую.

Специфическая иммунопрофилактика - против конкретного
заболевания. Она может быть активная и пассивная.

Активная специфическая иммунопрофилактика - создание искусственного активного иммунитета путем введения вакцин. Используется для профилактики:

– инфекционных заболеваний до контакта организма с возбудителем. При инфекциях с длительным инкубационным периодом активная иммунизация позволяет предупредить заболевание даже после заражения бешенством либо после контакта с больными корью или менингококковой инфекцией;

– отравлений ядами (например, змеиными);

– неинфекционных заболеваний:опухолей (например, гемобластозов),атеросклероза.

Пассивная специфическая иммунопрофилактика - создание искусственного пассивного иммунитета путём введения иммунных сывороток, -глобулинов или плазмы. Используется для экстренной профилактики инфекционных заболеваний с коротким инкубационным периодом у контактных лиц.

62.1 Классификация вакцин (А. А. Воробьев, 2004)

Живые вакцины

Аттенуированные – препараты, действующим началом которых являются ослабленные тем или иным способом, потерявшие вирулентность, но сохранившие специфическую антигенность штаммы патогенных микроорганизмов (бактерий, вирусов), получившие название аттенуированных штаммов.

– Дивергентные – получают на основе непатогенных штаммов микроорганизмов, имеющие общие протективные антигены с патогенными для человека возбудителями инфекционных болезней (вакцина против натуральной оспы человека - используется вирус оспы коровы, вакцина БЦЖ - используются микобактерии бычьего типа).

– Рекомбинантные – на основе получения непатогенных для человека рекомбинантных штаммов, несущих гены протективных антигенов патогенных микробов и способных при введении в организм человека размножаться, синтезировать специфический антиген и создавать иммунитет к патогенному возбудителю.

Инактивированные (неживые) вакцины

– Корпускулярные:

Цельноклеточные – действующим началом являются убитые химическим или физическим методом культуры патогенных бактерий; цельновирионные – действующим началом являются убитые химическим или физическим методом культуры патогенных вирусов;

Субъединичные: субклеточные – действующим началом являются извлеченные из патогенных бактерий комплексы, содержащие в своем составе протективные антигены; субвирионные – действующим началом являются извлеченные из патогенных вирусов комплексы, содержащие в своем составе протективные антигены.

– Молекулярные (антиген находится в молекулярной форме или же ввиде фрагментов его молекул, определяющих специфичность антигенности, то есть в виде эпитопов (детерминант):

Биосинтетически природные – анатоксины – синтезируемый бактериями (дифтерия, столбняк, ботулизм, газовая гангрена) токсин в молекулярной форме превращают в анатоксин, то есть нетоксичные молекулы, сохраняющие специфическую антигенность и иммуно-генность;

Генно-инженерные биосинтетические – получение рекомбинантных штаммов, способных синтезировать молекулы несвойственных им антигенов (например, можно получить антигены ВИЧ, вирусных гепатитов, туляремии, бруцеллеза, сифилиса и др.). Уже используется вакцина против гепатита В, полученная из антигена вируса, продуцируемого ре-комбинантным штаммом дрожжей;

Химически синтезированные – антиген в молекулярной форме или его детерминанты получают химическим синтезом, после расшифровки его структуры.

Ассоциированные вакцины (живые + инактивированные)

Поливакцина – содержит однородные антигены (полиомиелитная – типы I, II, III; полианатоксины). – Комбинированные – состоят из разнородных антигенов (АКДС-вакцина).

Живые вакцины

Живые вакцины получают путем культивирования на искусственных питательных средах (бактерии), в культурах клеток или в КЭ (вирусы). Биомассу вакцинного штамма подвергают центрифугированию, затем стандартизуют по числу микроорганизмов, вносят стабилизатор, фасуют в ампулы и высушивают. Живые вакцины применяют, как правило, однократно, вводят подкожно (п/к), накожно (н/к) или внутримышечно (в/м), а некоторые вакцины перорально и ингаляционно. Главным преимуществом живых вакцин является то, что они активируют все компоненты иммунной системы, вызывая сбалансированный прочный иммунный ответ. Живые вакцины подразделяются на аттенуированные, дивергентные и рекомбинантные.

Аттенуированные вакцины – препараты, действующим началом которых являются ослабленные тем или иным способом, потерявшие вирулентность, но сохранившие специфическую антигенность штаммы патогенных микроорганизмов (бактерий, вирусов), получившие название аттенуированных штаммов.

Примеры аттенуированных вакцин: – Живая сухая сибиреязвенная вакцина СТИ Готовый препарат состоит из высушенной взвеси живых спор вакцинного штамма-варианта. Включена в календарь профилактических прививок по эпидемиологическим показаниям. Поствакцинальный иммунитет сохраняется на высоком уровне не менее года.

– Вакцина чумная живая сухая приготовлена из живых бактерий вакцинного штамма чумного микроба EV линии НИИЭГ, лиофилизированных в сахарозо-желатиновой среде с натрием глутаминовокислым, тиомочевиной и пептоном или в сахарозожелатиновой среде с декстраном, аскорбиновой кислотой и тиомочевиной. . Включена в календарь профилактических прививок по эпидемиологическим показаниям. Поствакцинальный иммунитет сохраняется на высоком уровне не менее года.

– Вакцина чумная живая сухая для орального применения – приготовлена из лиофилизированной живой культуры вакцинного штамма чумных микробов ЕВ НИИЭГ с наполнителем и выпускается в виде таблеток. Вакцина пригодна для профилактики чумы у лиц в возрасте от 14 до 60 лет.

– Живая сухая концентрированная туляремийная вакцина. Вакцинный штамм получен из вирулентных возбудителей путем аттенуации. Вакцина вводится накожно. Входит в календарь профилактических прививок по эпидемиологическим показаниям. Напряженность поствакцинального иммунитета не менее 5 лет.

– Сухая живая вакцина М-44 (вакцина Ку-лихорадки) представляет собой лиофильно высушенную в стерильном снятом молоке живую культуру аттенуированного штамма М-44 Coxiella burnetii, выращенных в желточных мешках куриных эмбрионов. Вакцина включена в календарь профилактических прививок по эпидемиологическим показаниям. Поствакцинальный иммунитет сохраняется в течение 2–3 лет.

– Вакцина Е сыпнотифозная комбинированная живая сухая представляет собой взвесь риккетсий Провачека авирулентного штамма Мадрид Е, выращенных в ткани желточных мешков куриных эмбрионов в комбинации с растворимым антигеном риккетсий Провачека вирулентного штамма Брейнль. Применяется по эпидемическим показаниям в очагах или возможных очагах сыпного тифа. Поствакцинальный иммунитет сохраняется в течение 3 лет.

– Полиомиелитная вакцина 1) Вакцина «Имовакс Полио» (инактивировання полиомиелитная вакцина – ИПВ) производится из вирусов полиомиелита I, II, III типов, культивируемых на клеточной линии Vero и инактивированных формалином. Входит также в состав вакцины Тетракок, содержащей дифтерийный анатоксин, столбнячный анатоксин, адсорбированные на гидроокиси алюминия, коклюшной суспензии и ИПВ I, II, III типов. Препарат предназначен для профилактики коклюша, дифтерии, столбняка и полиомиелита. 2) Полио Сейбин ВЕРО – живая вакцина, полученная на клетках Vero, содержит вакцинные вирусы трех типов.

– Живая коревая культуральная вакцина (ЖКВ), приготовленная из вакцинного штамм вируса кори, выращенный в культуре фибробластов эмбрионов японских перепелов. Массовая вакцинация в рамках календаря обязательных профилактических прививок.

– Живая паротитная вакцина на основе аттенуированного штамма вируса паротита, выращенного в культуре клеток эмбрионов японских перепелов. Массовая вакцинация в рамках календаря обязательных профилактических прививок.

– Живая вакцина против ветряной оспы – была создана в 1974 г. путем последовательных пассажей на клеточных культурах из вируса штамма ОКА. За рубежом наиболее часто используют вакцины: 1) ОКА Вакс (Франция). 2) Варилрикс («SmithKline Beecham»). Рекомендаций к массовому использованию пока не имеется.

Дивергентные вакцины – получают на основе непатогенных штаммов микроорганизмов. Имеют общие протективные антигены с патогенными для человека возбудителями инфекционных болезней. Вакцинация таким дивергентным штаммом обеспечивает иммунную защиту от патогенного микроорганизма.

Примеры дивергентных вакцин: – Вакцина БЦЖ (BCG – Baccille Calmette-Guerin). Получена путем длительного культивирования (в течение 13 лет) на картофельно-глицериновом агаре с добавлением бычьей желчи вирулентный штамм M. bovis, выделенный от больной коровы. В нашей стране был разработан специальный препарат – вакцина БЦЖ-М, – предназначенный для щадящей иммунизации. Эту вакцину используют для вакцинации новорожденных, имеющих противопоказания к введению вакцины БЦЖ. В вакцине БЦЖ-М в 2 раза уменьшено содержание бактериальной массы в привовочной дозе. Вакцина входит в календарь обязательных профилактических прививок. Вакцину БЦЖ применяют как для вакцинации, так и для ревакцинации, внутрикожно с последующей ревакцинацией.

– Вакцина бруцеллезная живая сухая (БЖВ). Представляет собой лиофилизированную культуру живых микробов вакцинного штамма B. abortus. Входит в календарь профилактических прививок по эпидемическим показаниям. Поствакцинальный иммунитет в течение года.

Рекомбинантные (векторные) вакцины – на основе получения непатогенных для человека рекомбинантных штаммов, несущих гены протективных антигенов патогенных микробов и способных при введении в организм человека размножаться, синтезировать специфический антиген и создавать иммунитет к патогенному возбудителю. Микробы, в геном которых встраиваются «чужие» гены, называют векторами. В качестве вектора используют вирус осповакцины; вакцину БЦЖ; аттенуированные штаммы аденовирусов, холерного вибриона, сальмонелл; дрожжевые клетки.

Примеры рекомбинантных вакцин: – Рекомбинантная дрожжевая вакцина против гепатита В (отечественная). Получают путем встраивания гена вируса гепатита В, ответственного за продукцию специфического гена, в дрожжевые (или другие) клетки. После завершения процесса культивирования дрожжей наработанный белок – НВsAg – подвергают тщательной обработке от дрожжевых белков. В качестве сорбента используют алюминия гидроксид. Зарубежные аналоги: 1. Энджерикс В (Великобритания). 2. НВ-VAX II (США). 3. Эувакс (Южная Корея). 4. ДНК-рекомбинантная вакцина против гепатита В (республика Куба).

Убитые вакцины

Инактивированные вакцины – это препараты из патогенного микроба, инактивированного путем химического (формалин, спирт, фенол), физического (тепло, ультрафиолетовое облучение) воздействия или комбинацией обоих факторов В целом инактивированные вакцины получают путем выращивания патогенных микробов в жидких питательных средах (бактерии) или культивирования в клеточных культурах, КЭ и лабораторных животных (вирусы). Инактивированные вакцины подразделяются на две основные группы: корпускулярные и молекулярные.

Корпускулярные вакцины. Для приготовления корпускулярных вакцин используются наиболее вирулентные штаммы микробов, поскольку они обладают наиболее полным набором антигенов.

Примеры корпускулярных вакцин: – Лептоспирозная концентрированная инактивированная жидкая вакцина – цельноклеточная. Представляет собой смесь убитых формальдегидом культур лептоспир четырех основных серогрупп: icterohaemorrhagiae, grippotyphosa, рomona, sesroe. Применяется для профилактики лептоспироза по эпидемическим показаниям, а также для иммунизации доноров с целью получения противолептоспирозного иммуноглобулина человека. Предназначена для плановой профилактики лептоспироза, а также у взрослых и детей с 7-летнего возрата по эпидемическим показаниям. Поставакцинальный иммунитет сохраняется в течение года.