В м инъекции кровью иммунитет называются. Состав и функции крови. Иммунитет. Какой вид иммунитета возникает в результате введения в организм сыворотки

Убитые вакцины обладают в целом более низкой эффективностью по сравнению с живыми вакцинами, но при повторном введении создают достаточно стойкий иммунитет, предохраняя привитых от заболевания или уменьшая его тяжесть. Наиболее частый способ применения - парентеральный . Одна из особенностей производства инактивированных вакцин заключается в необходимости строгого контроля за полнотой инактивации вакцин .

Корпускулярные бактериальные вакцины обладают высокой реактогенностью. Субъединичные, расщепленные вакцины (сплит-вакцины) лишены ли-пидов, имеют хорошую переносимость и достаточную иммуногенную активность.

    Химические вакцины . Преимущества и недостатки . Эффективность .

Химические вакцины - вакцины, состоящие из протективных антигенов патогенных и условно-патогенных микроорганизмов. Имеются следующие их разновидности:

    холерная (состоит из анатоксина-холерогена и липополисахарида, извлечённого из клеточной стенки холерного вибриона),

    рибосомальная бактериальная - рибомунил (включает рибосомальные фракции различных видов микроорганизмов; активизирует макрофаги, нейтрофилы и процесс синтеза ими интерлейкинов 1, 6, 8, а-интерферона, а также функции натуральных киллерных клеток, стимулирует гуморальный иммунный ответ и местный иммунитет дыхательного тракта; используется для профилактики острых респираторных инфекций),

    лизатная (получают с помощью оригинальных методов лизиса бактерий; например, бронхомунал - лиофилизированный лизат стрептококков, клебсиелл, гемофилов и др. представителей микрофлоры дыхательного тракта - стимулирует специфический клеточный и гуморальный иммунный ответ, функции фагоцитов, определяет количество Т- и В-лимфоцитов в крови, повышает местный иммунитет дыхательного и желудочно-кишечного тракта, а ИРС-19 представляет собой аэрозоль для интраназального применения, содержащий лизат микроорганизмов, наиболее часто являющихся возбудителями инфекций дыхательных путей; повышает фагоцитарную активность макрофагов, увеличивает содержание эндогенного интерферона и лизоцима, стимулирует процесс продуцирования секреторного иммуноглобулина А, обладает десенсибилизирующей активностью; применяется при острых и хронических инфекциях дыхательного тракта),

    глюкозаминилмурамилдипептид (лекарственная форма ликопид, фрагмент клеточной стенки практически всех известных бактерий - активирует неспецифический иммунитет, в частности, повышает интенсивность поглощения и киллинга микробов при фагоцитозе, цитотоксичность по отношению к вирусинфицированным и опухолевым клеткам, экспрессию HLA-DR-антигенов, синтеза ИЛ1, ФНО-альфа, КСФ, подавляет воспалительные процессы; применяется при гнойно-воспалительных заболеваниях кожи и мягких тканей, вызванных как грамположительными, так и грамотрицательными бактериями, при хронических инфекциях верхних и нижних дыхательных путей, туберкулезе, офтальмогерпесе, псориазе, папилломатозе и др.),

    гликопротеидные вакцины , полученные из капсул и клеточных стенок Streptococcus pneumonie и Klebsiella pneumonie; индуцируют не только специфический, но и естественный иммунитет (в частности, препарат “биостим” стимулирует синтез ИЛ1, активирует миелопоэз; рекомендуется больным хроническим бронхитом, а также онкобольным при химиотерапии).

    Анатоксины . Принципы получения , показания к применению , эффективность .

Анатоксины - иммунобиологические препараты, которые получают в результате соответствующей обработки экзотоксинов бактерий; применяют для выработки активного иммунитета у привитых. Возможность использования анатоксинов в целях профилактики возникновения заболеваемости обусловливается тем, что в основе патогенеза многих заболеваний (столбняк, дифтерия, ботулизм, газовая гангрена и др.) лежит воздействие на организм специфических ядовитых продуктов (экзотоксинов), выделяемых возбудителями этих заболеваний.

Экзотоксины, наряду со способностью вызывать в живом организме патологические процессы обладают антигенностью, т.е. способностью при введении в организм в небольших дозах вызывать в нем образование специфических антител - антитоксинов. После добавления к экзотоксинам формалина в небольшом количестве и выдерживания их в течение нескольких дней при 37-40°С они полностью утрачивают токсичность, сохраняя антигенные свойства.

Анатоксины - одни из наиболее эффективных и безопасных препаратов, используемых с целью активной иммунизации людей. Такие анатоксины готовят в виде очищенных, концентрированных препаратов, адсорбированных на геле гидроксида алюминия. Адсорбция анатоксинов на различных минеральных адсорбентах обусловливает резкое повышение эффективности вакцинации. Это объясняется тем, что в месте введения адсорбированного препарата создается депо антигена и замедляется его всасывание.

При дробном поступлении антигена из места инъекции обеспечивается эффект суммации антигенного раздражения, резко повышается степень иммунного ответа. Кроме того, депонирующее вещество вызывает в месте инъекции воспалительную реакцию, что, с одной стороны, препятствует всасыванию антигена и усиливает его депонирующее действие, а, с другой, - служит неспецифическим стимулятором, усиливающим плазмоцитарные реакции в лимфатических тканях организма, которые участвуют в иммуногенезе. Адсорбированные препараты перед применением взбалтывают с целью обеспечения во всем их объёме равномерного распределения активного начала, находящегося в осадке вместе с адсорбентом. На практике наиболее широко применяются дифтерийный, столбнячный и ботулинический анатоксины.

    Условия , обеспечивающие эффективность вакцинации . «Холодовая цепь» .

Оценка иммунологической эффективности осуществляется выборочно среди различных групп населения и прицельно в индикаторных группах населения (получающих в соответствии с возрастом прививки), а также в группах риска (детские интернаты, дома ребенка и др.). Основные требования, предъявляемые к иммунологическим исследованиям, сводятся к следующему:

    короткий промежуток времени, в течение которого исследуются все сыворотки;

    стандартность диагностических препаратов, сыворотки и диагностикумов;

    высокая чувствительность иммунологического теста для определения антител . Для этого используется весь арсенал серологических исследований (РНГА, РТГА, ИФА и др.). Выбор теста для оценки иммунологической эффективности вакцины зависит от характера иммунитета при данной инфекции. Например, для столбняка, дифтерии, кори, паротита критерием эффективности вакцины является определение уровня циркулирующих антител, а для туберкулеза, туляремии и бруцеллеза - клеточные реакции, например кожные пробы замедленного типа. К сожалению, для большинства инфекций, в основе которых лежит клеточный иммунитет, защитные уровни клеточных реакций не установлены.

Изучение иммунологической эффективности вакцин проводится путем сопоставления титров специфических антител в сыворотке крови привитых до и в разные сроки после иммунизации, а также путем сравнения этих результатов с данными уровня антител, полученными в те же сроки при обследовании лиц, которым вводили плацебо или препарат сравнения. Плацебо помещают в точно такие же ампулы или флаконы, как и изучаемую вакцину. В ряде случаев целесообразно, исходя из этических соображений, использовать вместо плацебо вакцины, предназначенные для профилактики других инфекционных заболеваний. При этом схема иммунизации, дозировка и место введения препарата должны быть такими же, как и в группе испытуемых.

Необходимость проведения подобных исследований определена неоднозначностью понятий «привит» и «защищен». Имеющийся опыт свидетельствует о том, что эти понятия далеко не всегда совпадают. Это было отмечено рядом авторов, когда речь шла о дифтерии, кори и эпидемическом паротите. Как показали исследования, проведенные сотрудниками НИИ вирусных препаратов РАМН в ряде детских коллективов Москвы и в других районах страны, около 40% детей дошкольного и младшего школьного возраста не имели антител к вирусу эпидемического паротита и, таким образом, были подвержены значительному риску развития этого заболевания.

Холодовая цепь" – это постоянно функционирующая система организационных и практических мероприятий, обеспечивающая оптимальный температурный режим хранения и транспортировки медицинских иммунобиологических препаратов (в т.ч. используемых для иммунопрофилактики) на всех этапах пути их следования от предприятия-изготовителя до вакцинируемого. "Холодовая цепь" является одним из важнейших компонентов мероприятий при организации иммунопрофилактики инфекционных болезней.

Необходимость такой системы обусловлена тем, что применяемые в настоящее время вакцины требуют строгого соблюдения определенного температурного режима при транспортировки и хранении, нарушение которого приводит к частичной или полной потере вакцинами иммуногенной активности, естественно влияющей на эффективность иммунизации и подрывающей доверие населения к прививкам.

Все вакцины являются чувствительными биологическими субстанциями, которые со временем теряют свою активность. Происходит это намного быстрее при воздействии на них неблагоприятных температурных условий (выше или ниже рекомендуемого диапазона). Утраченная однажды активность вакцины не восстанавливается при возращении ее в рекомендуемый температурный режим, т.е. утрата активности необратима. Поэтому правильное хранение и транспортировка вакцин жизненно важны для сохранения ее активности вплоть до введения в организм.

Все вакцины теряют свою активность при хранении при повышенной температуре, однако, их чувствительность к высоким температурам различна. Наиболее термочувствительными являются полиомиелитная, коревая, коклюшная (бесклеточная), паротитная, АКДС, АДС, АДС-М, БЦЖ, вакцина против гепатита В. Столбнячный анатоксин (АС) менее чувствителен к повышению температуры. Вакцины варьируют также по чувствительности также к низкой температуре: одни могут переносить замораживание без потери активности (БЦЖ, полиомиелитная, коревая, паротитная вакцины), другие разрушаются при замораживании (АКДС, АДС, АДС-М, АС, вакцина против гепатита В).

Система "Холодовой цепи" включает:

1) специально обученный персонал, обеспечивающий эксплуатацию холодильного оборудования, правильное хранение и транспортировку вакцин;

2) холодильное оборудование, предназначенное для хранения и транспортировки вакцин в оптимальных температурных условиях;

3) механизм контроля над соблюдением требуемых температурных условий на всех этапах хранения и транспортировки вакцин.

    Общая характеристика препаратов , применяемых для специфической профилактики инфекционных болезней .

    Специфическая профилактика дифтерии . Методы оценки иммунитета при дифтерии .

Профилактика

Иммунизация (вакцинация) анатоксином (комбинированной вакциной (АКДС, АДС) и производят ревакцинацию взрослого населения для поддержания иммунитета (АДС-М).

В очаге: карантин, контактные изолируются, берутся анализы, ведется наблюдение

АКДС представляет собой адсорбированную на гидроокиси алюминия взвесь коклюшных бактерий, убитых формалином или мертиолятом (20 млрд в 1 мл), и содержит дифтерийный анатоксин в дозе 30 флоккулирующих единиц и 10 единиц связывания столбнячного анатоксина в 1 мл. Вакцинируют детей с 3-месячного возраста, а затем проводят ревакцинации: первую через 1,5-2 года, последующие в возрасте 9 и 16 лет, а далее через каждые 10 лет.

Иммунитет

После перенесенного заболевания формируется нестойкий иммунитет, и приблизительно через 10-11 лет человек может заболеть вновь. Повторное заболевание носит нетяжелый характер и переносится легче.

    Иммунитет . Виды иммунитета . Пассивный иммунитет , его характеристика . Препараты для пассивной иммунизации и их применение .

Иммунитет - невосприимчивость организма к различным инфекционным агентам и продуктам их жизнедеятельности, а также к тканям и веществам, обладающим чужеродными антигенными свойствами (например, ядам растительного и животного происхождения).

Состояние иммунитета обеспечивается механизмами иммунитета, которые могут быть специфическими и неспецифическими и иметь гуморальные и клеточные основы.

Классификация .

Состояние иммунитета может быть как врожденным (наследуемым), так и индивидуально формируемым:

1. Видовой иммунитет (наследственный): к нему относится невосприимчивость определенных видов животных или человека к возбудителям некоторых инфекционных болезней. Так, люди невосприимчивы к возбудителю чумы собак, многие животные - к вирусу кори, гонококку и другим возбудителям инфекций человека. Устойчивость к соответствующей инфекции наследуется как видовой признак и проявляется у всех представителей данного вида. Напряженность видового иммунитета очень высока и преодолеть ее удается с большим трудом.

2. Приобретенный иммунитет формируется в течение всей жизни индивидуума.

Классификации

Иммунитет классифицируют на врождённый и приобретенный.

Врождённый (неспецифический, конституционный) иммунитет обусловлен анатомическими, физиологическими, клеточными или молекулярными особенностями, закрепленными наследственно. Как правило, не имеет строгой специфичности к антигенам и не обладает памятью о первичном контакте с чужеродным агентом. Например:

Все люди невосприимчивы к чуме собак.

Некоторые люди невосприимчивы к туберкулёзу.

Доказано, что некоторые люди невосприимчивы к ВИЧ.

Приобретенный иммунитет классифицируют на активный и пассивный.

Приобретенный активный иммунитет возникает после перенесенного заболевания или после введения вакцины.

Приобретенный пассивный иммунитет развивается при введении в организм готовых антител в виде сыворотки или передаче их новорожденному с молозивом матери или внутриутробным способом.

Другая классификация разделяет иммунитет на естественный и искусственный.

Естественный иммунитет включает врожденный иммунитет и приобретенный активный (после перенесенного заболевания). А также пассивный при передаче антител ребёнку от матери.

Искусственный иммунитет включает приобретенный активный после прививки (введение вакцины, иммуноглобулина) и приобретенный пассивный (введение сыворотки). Искусственный активный иммунитет еще называют поствакциналъным и он вырабатывается после введения вакцин или анатоксинов.

Пассивный иммунитет – это вид иммунитета, приобретённый человеком вследствие пассивной передачи специфических антител, борющихся с возбудителями заболеваний (антигенами) и обеспечивающих устойчивость организма к инфекциям. Пассивный иммунитет подразделяется на естественный и искусственный.

Пассивным иммунитет называют потому, что антитела в организме сами не вырабатываются, а они приобретаются организмом из вне. При естественном пассивном иммунитете антитела ребенку передаются от матери трансплацентарно или с молоком, а при искусственном - антитела вводятся людям парентерально в виде иммунных сывороток, плазмы или иммуноглобулинов.

Естественный пассивный иммунитет

Данный вид пассивного иммунитета может возникнуть в результате проникновения во внутреннюю среду организма антител, производимых другим организмом. Естественное проникновение антител из одного организма в другой возможно лишь в единственном случае – при беременности. Например, иммуноглобулины класса G могут проникать через плаценту и перемещаться в кровь развивающегося плода из материнского организма.

Популяционный иммунитет (раньше его чаще всего называли коллективным иммунитетом) - это приобретенное состояние специфической защищенности популяции (всего населения, отдельных его групп), слагающееся из иммунитета индивидуумов, входящих в эту популяцию.

Уровень популяционного иммунитета состоит из совокупной защищенности отдельных людей и характеризуется удельным весом таких лиц в популяции. Если все люди, входящие в популяцию, иммунны, популяционный иммунитет равен 100%, в этом случае развитие эпидемического процесса невозможно. Однако эта идеальная ситуация при естественном развитии эпидемического процесса (клинически выраженные формы инфекции, носительство) или не встречается вовсе, или встречается чрезвычайно редко (подобная ситуация иногда встречается среди местных жителей, проживающих в природных очагах), хотя искусственно с помощью вакцинации подобное положение создать вполне возможно. Развитие популяционного иммунитета в первую очередь находится в зависимости от механизма передачи, от его активности: чем больше вовлекается людей в циркуляцию возбудителя, тем выше популяционный иммунитет. Наиболее активным механизмом передачи характеризуется группа воздушно-капельных инфекций, поэтому при этих заболеваниях популяционный иммунитет, при прочих равных условиях, развивается особенно быстро. Соответственно, для распространения воздушно-капельных инфекций значимость популяционного иммунитета особенно велика - он играет решающую тормозящую роль в развитии эпидемического процесса

    Особенности пассивного иммунитета . Показания и препараты для пассивной иммунизации .

Пассивный иммунитет – это вид иммунитета, приобретённый человеком вследствие пассивной передачи специфических антител, борющихся с возбудителями заболеваний (антигенами) и обеспечивающих устойчивость организма к инфекциям. Пассивный иммунитет подразделяется на естественный и искусственный.

Естественный пассивный иммунитет

Данный вид пассивного иммунитета может возникнуть в результате проникновения во внутреннюю среду организма антител, производимых другим организмом. Естественное проникновение антител из одного организма в другой возможно лишь в единственном случае – при беременности. Например, иммуноглобулины класса G могут проникать через плаценту и перемещаться в кровь развивающегося плода из материнского организма.

Искусственный иммунитет- иммунитет вырабатывается при введении в организм вакцины или иммуноглобулина.

ПОСТКОНТАКТНАЯ ПРОФИЛАКТИКА:

Гепатит А Иммуноглобулин человеческий сывороточный

Гепатит В Человеческий иммуноглобулин гепатита В (HBIG)

Ветряная оспа Иммуноглобулин против ветряной оспы и опоясывающего лишая (VZIG)

Бешенство Человеческий антирабический иммуноглобулин (HRIG)

Корь, Краснуха Человеческий сывороточный иммуноглобулин

ЛЕЧЕНИЕ УСТАНОВЛЕННОГО ЗАБОЛЕВАНИЯ:

Ботулизм Лошадиный трехвалентный антитоксин*

Дифтерия Лошадиный дифтерийный антитоксин

Столбняк Человеческий столбнячный иммуноглобулин (TIG)

    Иммуноглобулины . Виды . Показания к применению .

Иммуноглобулины, иммунные сыворотки подразделяют на:

1. Антитоксические - сыворотки против дифтерии, столбняка, ботулизма, газовой гангрены, т. е. сыворотки, содержащие в качестве антител антитоксины, которые нейтрализуют специфические токсины.

2. Антибактериальные - сыворотки, содержащие агглютинины, преципитины, комплементсвязывающие антитела к возбудителям брюшного тифа, дизентерии, чумы, коклюша.

3. Противовирусныесыворотки (коревая, гриппозная, антирабическая) содержат вируснейтрализующие, комплементсвязывающие противовирусные антитела.

Иммуноглобулины создают пассивный специфический иммунитет сразу после введения. Применяют с лечебной и профилактической целью. Для лечения токсинемических инфекций (столбняк, ботулизм, дифтерия, газовая гангрена), а также для лечения бактериальных и вирусных инфекций (корь, краснуха, чума, сибирская язва). С лечебной целью сывороточные препараты в/м. Профилактически: в/м лицам, имевшим контакт с больным, для создания пассивного иммунитета.

При необходимости экстренного создания иммунитета, для лечения развивающейся инфекции применяют иммуноглобулины, содержащие готовые антитела.

    Экстренная профилактика . Показания к проведению . Используемые средства .

Экстренная профилактика

комплекс мероприятий в очаге заразных болезней, направленных на предупреждение заболевания лиц, общавшихся с заболевшим, в случае их возможного заражения. Включает химиопрофилактику, экстренную активную иммунизацию, введение иммунных сывороток и иммуноглобулинов

Показания к экстренной профилактике столбняка:

травмы с нарушением целостности кожных покровов и слизистых оболочек;

отморожения и ожоги (термические, химические, радиационные) второй, третьей и четвертой степени;

проникающие ранения желудочно-кишечного тракта;

внебольничные аборты;

роды вне больничных учреждений;

гангрены и некрозы тканей, абсцессы;

укусы животными.

Препараты для экстренной профилактики столбняка :

Адсорбированный столбнячный анатоксин (СА);

Противостолбнячная сыворотка (ПСС).

    Аллергические пробы . Их оценка и значение в эпидемиологической практике .

Иммунитет - это невосприимчивость организма к возбудителям заболеваний.


Лейкоциты (белые клетки крови) обеспечивают иммунитет: защищают организм от микроорганизмов и чужеродных частиц.


Фагоциты - это лейкоциты, пожирающие чужеродные частицы. Явление фагоцитоза было открыто И.И.Мечниковым.

Антитела - это белки, выделяемые лейкоцитами (В-лимфоцитами).

  • Антитела совпадают по форме с чужеродными частицами, присоединяются к ним, тем самым облегчают фагоцитам их уничтожение.
  • На то, чтобы выработать достаточное количество антител против нового (незнакомого) возбудителя, В-лимфоцитам требуется 3-5 дней.
  • Наличие в крови человека антител к определенному вирусу (например, к ВИЧ) говорит о том, что человек заражен.

Виды иммунитета

Естественный пассивный (врожденный)

  • У человека с рождения имеются готовые антитела против многих болезней. Например, человек не болеет собачьей чумкой
  • Ребенок получает готовые антитела с материнским молоком. Вывод: дети, находящиеся на грудном вскармливании, меньше болеют.

Естественный активный - по окончании болезни в организме остаются клетки памяти, запоминающие строение антител. При повторном попадании того же самого возбудителя выделение антител начинается не через 3-5 дней, а сразу, и человек не заболевает


Искусственный активный появляется после прививки - введения вакцины, т.е. препарата убитых или ослабленных возбудителей болезни. Организм проводит полноценную иммунную реакцию, остаются клетки памяти.


Искусственный пассивный - появляется после введения сыворотки - препарата готовых антител. Сыворотка вводится во время болезни, чтобы спасти человека. Клетки памяти при этом не образуются.

Выберите один, наиболее правильный вариант. Введение в кровь сыворотки, содержащей антитела против возбудителей определенного заболевания, приводит к формированию иммунитета
1) активного искусственного
2) пассивного искусственного
3) естественного врожденного
4) естественного приобретенного

Ответ


Выберите один, наиболее правильный вариант. Какой русский ученый открыл процесс фагоцитоза
1) И.П. Павлов
2) И.И. Мечников
3) И.М. Сеченов
4) А.А. Ухтомский

Ответ


Выберите один, наиболее правильный вариант. Вакцина содержит
1) яды, выделяемые возбудителями
2) ослабленных возбудителей
3) готовые антитела
4) убитых возбудителей

Ответ


Выберите один, наиболее правильный вариант. Пассивный искусственный иммунитет возникает у человека, если ему в кровь вводят

2) готовые антитела
3) фагоциты и лимфоциты
4) вещества, вырабатываемые возбудителями

Ответ


Выберите один, наиболее правильный вариант. Человеку, заболевшему дифтерией необходимо ввести
1) вакцину
2) сыворотку
3) антигены
4) физиологический раствор

Ответ


Выберите один, наиболее правильный вариант. Противостолбнячная сыворотка содержит
1) ослабленных возбудителей болезни
2) антибиотики
3) антитела
4) бактерий, питающихся бактериями столбняка

Ответ


Выберите один, наиболее правильный вариант. Активный искусственный иммунитет
1) человек получает при рождении
2) возникает после перенесенной болезни
3) образуется после предупредительной прививки
4) образуется после введения сыворотки

Ответ


Установите соответствие между защитным свойством организма человека и видом иммунитета: 1) активный, 2) пассивный, 3) врожденный. Запишите цифры 1, 2 и 3 в правильном порядке.
А) наличие антител в плазме крови, полученных по наследству
Б) получение антител с лечебной сывороткой
В) образование антител в крови в результате вакцинации
Г) наличие в крови сходных белков – антител у всех особей одного вида

Ответ


Установите последовательность этапов приготовления противодифтерийной сыворотки. Запишите соответствующую последовательность цифр.
1) получение дифтерийного яда
2) выработка стойкого иммунитета у лошади
3) приготовление противодифтерийной сыворотки из очищенной крови
4) очищение крови лошади – удаление из нее клеток крови, фибриногена и белков
5) многократное введение лошади дифтерийного яда через определенные промежутки времени с увеличением дозы
6) забор крови у лошади

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Лечебные сыворотки характеризуются тем, что
1) используются для профилактики инфекционных заболеваний
2) содержат готовые антитела
3) содержит ослабленных или убитых возбудителей заболеваний
4) в организме антитела сохраняются недолго
5) используются для лечения инфекционных заболеваний
6) после введения вызывают заболевания в легкой форме

Ответ


1. Установите соответствие между видом иммунитета 1) естественный, 2) искусственный - и способом его появления. Запишите цифры 1 и 2 в правильном порядке.
А) передается по наследству, врождённый
Б) возникает под действием вакцины
В) приобретается при введении в организм лечебной сыворотки
Г) формируется после перенесенного заболевания

Д) передается с материнским молоком

Ответ


2. Установите соответствие между особенностями и видами иммунитета: 1) естественный, 2) искусственный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) невосприимчивость человека к чумке, поражающей собак
Б) невосприимчивость к кори после прививки
В) возникает после введения сыворотки
Г) вырабатывается после введения препаратов, содержащих антитела
Д) наследование невосприимчивости к инфекциям

Ответ


Установите соответствие между характеристикой и видом лечебного препарата: 1) вакцина, 2) лечебная сыворотка. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) содержит убитые или ослабленные вирусы или бактерии
Б) содержит готовые антитела
В) может вызвать заболевание в лёгкой форме
Г) вводится, как правило, заболевшему человеку или при подозрении на заражение
Д) участвует в формировании пассивного искусственного иммунитета
Е) образует активный искусственный иммунитет

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Что характерно для естественного иммунитета человека?
1) передаётся по наследству
2) вырабатывается после перенесения инфекционного заболевания
3) вырабатывается после введения токсинов в организм
4) вырабатывается после введения ослабленных микроорганизмов
5) обеспечивается переходом антител из крови матери в кровь плода
6) формируется после введения человеку сыворотки

Ответ

© Д.В.Поздняков, 2009-2019

Иммунитет - способность организма распознавать вторжение чужеродного материала и мобилизовать клетки и образуемые ими вещества на более быстрое и эффективное удаление этого материала.

Фрэнк Бёрнет, лауреат Нобелевской премии по физиологии и медицине.

Словарь основных терминов

Иммунитет – способность организма защищать себя от бактерий, вирусов, чужеродных тел, избавляться от них и благодаря этому сохранять постоянство внутренней среды организма.

Фагоцитоз – процесс «заглатывания» лейкоцитами микроорганизмов, а также остатков мёртвых клеток и других частиц, например, пыли в лёгких.

Фагоциты – некоторые лейкоциты, осуществляющие процесс фагоцитоза. Фагоциты способны к амёбоидному движению, благодаря образованию ложноножек.

Антитела – белки, вырабатывающиеся В-лимфоцитами в ответ на присутствие чужеродного вещества – антигена . Антитела строго специфичны. Человеческий организм способен образовать примерно 100 миллионов различных антител, распознающих практически любые чужеродные вещества.

Антиген – чужеродная молекула, вызывающая образование антител. Антигенами могут быть микробы, вирусы, любые клетки, состав которых отличается от состава собственных клеток организма.

Антитоксин – специальное защитное вещество. Антитоксины нейтрализуют циркулирующие в крови яды микробов.

Вакцина – препарат, содержащий убитых или ослабленных возбудителей заболевания, т.е. препарат, содержащий небольшое количество антигенов.

Лечебная сыворотка – препарат, содержащий готовые антитела. Сыворотка готовится из крови животных, которые раньше специально заражались возбудителем заболевания. Иногда сыворотка готовится из крови человека, переболевшего заболеванием, например гриппом.

Макрофаги – крупные клетки способные к фагоцитозу, находящиеся в тканях. Выполняют санитарную и защитную функции.

Органы иммунной системы

1. Тимус (вилочковая железа) расположена позади грудины. Функционирует только у детей. Играет важную роль в развитии иммунной системы. В тимусе образуются и созревают Т–лимфоциты.

2. Костный мозг содержится в трубчатых костях. В нем образуются клетки крови - эритроциты, лейкоциты, тромбоциты, макрофаги. Рождающиеся здесь лимфоциты мигрируют в тимус. Дозревая там, они образуют Т-лимфоциты.

3. Лимфоузлы – узлы, расположенные по ходу лимфатических сосудов. Они содержат лимфоциты. Фильтруют лимфу, очищая её от вирусов, бактерий, раковых клеток.

4. Селезёнка – орган, в котором формируются лимфоциты. Является биологическим фильтром - удаляет состарившиеся, повреждённые клетки крови, растворяет и поглощает бактерии и другие чужеродные вещества. Выполняет роль депо крови.

Неспецифическая сопротивляемость обеспечивается:

1. Непроницаемостью здоровой кожи и слизистых оболочек для микроорганизмов;
2. Наличием защитных органов: печени, лимфоузлов, селезёнки;
3. Наличием бактерицидных веществ в жидкостях: в слюне, слезах, крови, лимфе, тканевой жидкости.
4. Выделения потовых и сальных желёз, а также соляная кислота выполняют защиту от микроорганизмов.

Наш организм имеет несколько форм защиты от чужеродных тел и соединений.

Неспецифический иммунитет – самая древняя форма иммунитета, осуществляется лейкоцитами путём фагоцитоза. Специфический иммунитет – это способность организма распознавать вещества, отличные от его клеток и тканей, и уничтожать только эти антигены.

Давайте вспомним, кто такие лимфоциты. Эти клетки составляют 20 – 40 % белых кровяных телец. Лимфоциты, в отличие от всех других лейкоцитов, способны не только проникать в ткани, но и возвращаться обратно в кровь. Лимфоциты представляют центральное звено иммунной системы организма.

В организме имеются два типа лимфоцитов – Т-клетки и В-клетки.

Т-лимфоциты возникают в костном мозге, проходят этап созревания в тимусе и затем расселяются в лимфатических узлах, селезёнке или в крови, где на их долю приходится 40 – 70 % всех лимфоцитов. Т-лимфоциты способны распознавать антигены.
В-лимфоциты образуются в костном мозге, дозревают в лимфоидной ткани червеобразного отростка, миндалинах. В-лимфоциты, получив информацию об антигене от Т-лимфоцита, начинают стремительно размножаться и синтезируют антитела.

Клеточный и гуморальный механизмы иммунитета

Клеточный иммунитет : Т-лимфоциты распознают микроорганизмы, вирусы, трансплантированные органы и ткани, злокачественные клетки. В реакции участвует вся иммунная клетка, свободные антитела при этом не выделяются.

Гуморальный иммунитет : В-лимфоциты выделяют антитела в плазму крови, тканевую жидкость и лимфу. Одни антитела склеивают микроорганизмы, другие осаждают склеенные частицы, а третьи разрушают, растворяют их.

Типы иммунитета:

Естественный Искусственный
Пассивный Материнские антитела проникают через плаценту в кровь плода и обеспечивают защиту младенца. В первые дни жизни младенец через молоко получает антитела, которые всасываются в кишечнике без расщепления. Введение антител обеспечивает немедленную защиту от инфекции.однако такая защита действует недолго, поскольку количество антител постепенно снижается.
Активный Организм сам производит антитела в результате инфекции. Корь, ветрянная оспа, коклюш, свинка обычно оставляют стойкий иммунитет. Введение вакцин вызывают появление антител в плазме привитого человека.
В настоящее время разработаны приёмы создания антител при помощи современных методов биотехнологии.

Воспалительный процесс.

При ранении участка тела возникает местная реакция, проявляющаяся в отёке и болезненности. Такое состояние называют воспалением. Воспаление сопровождается следующими признаками:

1. Происходит местное расширение капилляров, в результате чего усиливается приток крови к данному участку. Происходит покраснение и повышение температуры.
2. Вследствие усиления проницаемости капилляров, плазма и лейкоциты выходят в окружающие ткани. Возникает отёк.
3. Лейкоциты направляются к бактериям, происходит фагоцитоз. Если фагоцит поглощает больше микробов, чем он может переварить, то он гибнет. Смесь погибших и живых фагоцитов и бактерий называется гноем.
4. Возникающие признаки приводят к раздражению рецепторов, вызывающее ощущение боли.

Защита организма от инфекций осуществляется не только вследствие фагоцитоза, но и благодаря гуморальным факторам, т. е. путем образования в клетках веществ, обезвреживающих микробы и продукты их жизнедеятельности. Так, при некоторых заболеваниях, вызванных микробами (инфекционные болезни), в организме вырабатываются и накопляются вещества (антитоксины), обезвреживающие (вероятно, путем химического связывания) бактерийные яды - токсины. После многократного введения животным в кровь токсинов в ней накопляются соответствующие антитоксины. Сыворотку крови таких животных используют с лечебными целями.

При многих инфекционных заболеваниях (например, при кори, оспе, сыпном тифе и др.) в организме образуются вещества, называемые антителами, или иммунными телами, препятствующие развитию микроорганизмов. Вследствие этого некоторые болезни у одного и того же человека повторяются редко. Сыворотка крови переболевшего человека действует угнетающе на возбудителей данного заболевания. Состояние невосприимчивости к заболеванию вследствие наличия в крови и тканях веществ, препятствующих развитию инфекции, и вследствие изменения способности клеток организма реагировать на возбудителей болезней получило название иммунитета. Антитела вырабатываются лейкоцитами и клетками ретикуло-эндотелиальной системы.

Образование иммунных тел может быть вызвано не только микробами. При парентеральном (т. е. минуя пищеварительный тракт) введении в организм любого чужеродного белка в крови также появляются антитела. При действии сыворотки иммунизированного животного на тот чужеродный белок, к которому оно иммунизировано, белок свертывается и выпадает в виде хлопьев. Это явление получило название преципитации, а вещества, вызывающие его, называются преципитинами. К числу иммунных тел относятся также гемолизины, агглютинины и др.

В тех случаях, когда иммунные тела имеются в организме с момента рождения, говорят о врожденном, или наследственном, иммунитете. Накопление же иммунных тел в течение индивидуальной жизни получило название приобретенного иммунитета. Наследственным иммунитетом объясняется невосприимчивость человека и отдельных видов животных к некоторым заболеваниям. Так, человек не заболевает чумой рогатого скота. Внешние воздействия могут нарушить врожденный иммунитет. Куры, в обычных условиях невосприимчивые к сибирской язве, заболевают ею, если их подвергнуть охлаждению. Снижает сопротивляемость организма к инфекции также ионизирующее излучение.

Врожденный иммунитет в значительной мере обусловлен способностью лейкоцитов к фагоцитозу. После введения кролику спор сибирской язвы они оказываются захваченными и уничтоженными лейкоцитами, которые их переваривают. В сыворотке же крови кролика споры сибиреязвенных бактерий развиваются хорошо.

Анафилаксия . При повторном поступлении в организм посторонних, чужеродных ему веществ белковой природы наблюдается возникновение особого состояния, носящего название анафилаксии.

Например, если в первый раз ввести морской свинке под кожу, в кровь или внутрибрюшинно небольшое количество чужеродной сыворотки (0,02 мл), то никаких вредных последствий при этом не обнаружится. Но если через 15-20 дней повторить введение той же сыворотки, то наступает бурная реакция и тяжелое состояние- анафилактический шок, сопровождающийся судорогами, нарушением дыхания и сердечной деятельности и заканчивающийся смертью через несколько минут после введения сыворотки. Это происходит потому, что первое введение чужеродного белка вызывает состояние повышенной чувствительности животного к данному белку (сенсибилизирующая инъекция). Повторное введение того же белкового вещества действует на такое сенсибилизированное животное как введение сильнейшего яда (разрешающая инъекция).

Если животное выживает после разрешающей инъекции, то оно оказывается десенсибилизированным, т. е. освобожденным от состояния повышенной чувствительности, созданного сенсибилизирующей инъекцией. Механизмы возникновения этих состояний сложны и не вполне изучены.

951 0

Заканчивая обсуждение возможностей цитотоксического потенциала различных клеток организма, нельзя обойти вниманием еще один тип клеток.

Речь идет о тромбоцитах - клетках, которые, согласно общепринятым понятиям, сегодня не рассматриваются как клетки системы иммунитета.

Тем не менее они обладают цитотоксической активностью в отношении различных опухолевых клеток, однако их способность лизировать клетки-мишени изучена в наименьшей степени.

Интерес к исследованию роли тромбоцитов в опухолевом процессе обусловлен не только их участием в лизисе опухолевых мишеней, она может быть обсуждена как минимум в нескольких аспектах.

Первый - цитотоксическое действие в отношении различных опухолей, второй - участие в реализации функций таких клеток системы иммунитета, как естественные киллеры (ЕК) , моноциты, некоторые Т-лимфоциты (пролиферация, миграция, адгезия и др.), и третий - взаимодействие тромбоцитов с опухолевыми клетками.

С позиций уже сформировавшихся представлений последний аспект не имеет непосредственного отношения к противоопухолевой иммунологической защите, однако является важным для понимания особенностей микроокружения, а следовательно, и для реализации функций клеток системы иммунитета.

Не останавливаясь на общих и достаточно хорошо известных свойствах тромбоцитов, представляется целесообразным обратить внимание на те из них, которые важны в аспекте обсуждаемого вопроса.

В последнее время появляется много информации об экспрессии тромбоцитами различных структур, которых постоянно становится все больше и больше. Для понимания роли тромбоцитов в опухолевом процессе особенное значение представляет экспрессия следующих структур.

Прежде всего, следует подчеркнуть, что тромбоциты имеют много молекул, которые обеспечивают им широкие возможности к адгезии. Важное место в адгезивных свойствах тромбоцитов имеют различные интегрины, в частности в1-цепь интегрина - трансмембранный гликопротеин (CD29), который способен связываться с VIСАМ-1 и МАаСАМ-1, образовывать гетеродимеры с фибронектином, ламинином и в1-цепью коллагена.

Не менее существенна и роль CD41 - гликопротеин lib (GPIIb), который является а-субъединицей комплекса CD41-CD61 - кальцийзависимого гетеродимера; особенностью экспрессии CD41, а также CD42a, CD42b, CD42c является то, что они появляются исключительно на тромбоцитах и мегакариоцитах. Адгезивные свойства тромбоцитов связаны и с экспрессией молекулы межклеточной адгезии - ICAM-2 (CD102), а также потенциальной молекулы адгезии - CD147.

Важное место в адгезивных свойствах тромбоцитов занимает и Р-селектин (CD62) - мембранно-связанный белок тромбоцитов и эндотелиальных клеток, который мобилизуется под влиянием медиаторов (гистамина, компонентов комплемента и др.); его лигандами являются молекулы сиалил-Льюис X и сиалил-Льюис А.

В функционировании тромбоцитов важное место занимает экспрессия рецептора тромбоцитарного фактора роста (CD140a), который принимает участие в пролиферации и миграции этих клеток. Не менее существенна и роль экспрессии Fc-рецептора для IgE.

Некоторые экспрессируемые тромбоцитами поверхностные структуры имеют непосредственное отношение к регуляции функций клеток системы иммунитета. Тромбоциты имеют на своей поверхности мембранный гликопротеин, который участвует в адгезии тимоцитов и эпителиальных клеток тимуса.

Такая молекула, как CD226 - гликопротеин, экспрессируется не только тромбоцитами, но и ЕК, моноцитами и некоторыми Т-лимфоцитами, участвуя в адгезии Т-лимфоцитов к другим клеткам, которые имеют соответствующий лиганд.

К общим антигенам, экспрессируемых тромбоцитами и некоторыми клетками системы иммунитета, относится и антиген CD245 с молекулярной массой 220-240 кД, который экспрессируется также моноцитами, лимфоцитами, гранулоцитами, участвует в передаче сигнала и ко-стимуляции Т-лимфоцитов и естественных киллеров.

Наконец, следует отметить, что и CD36 - член семейства рецепторов-скавенджеров, который участвует во взаимодействии тромбоцитов с моноцитами и опухолевыми клетками, распознавании и фагоцитозе.

Тромбоциты экспрессируют и CD114 - трансмембранную молекулу типа I (член семейства рецепторов цитокинов I типа), которая принимает участие в регуляции функций и пролиферации лимфоидных клеток.

Большие возможности имеют тромбоциты для взаимодействия с коллагеном, рецепторы для которого они экспрессируют, что способствует их взаимодействию с экстрацеллюлярным матриксом, который в основном состоит из коллагенов I, II и III типов; в этот процесс включаются гликопротеин тромбоцитов lb и FVIII/vWF, последний необходим для прикрепления к эндотелию. Тромбоциты экспрессируют антиген НРА-1а.

Весьма существенно и то, что тромбоциты выполняют роль вторичного мессенджера при действии гистамина и цитохрома Р450.

Тромбоциты способны оказывать определенные регуляторные влияния на многие клетки системы иммунитета (Т-лимфоциты, различные антигенпрезентирующие клетки и др.). Такое влияние в основном связано с действием продуктов гранул тромбоцитов, а также продуцируемых ими фактора тромбоцитов 4 (PF4), RANTES, растворимой формы CD40L.

Изложенные далеко не в полном объеме данные об особенностях тромбоцитов, тем не менее не оставляют сомнений в том, что они могут включаться в различные процессы, которые далеко выходят за рамки представлений об этих клетках.

В табл. 11 представлена общая характеристика тромбоцитов.

Таблица 11. Общая характеристика тромбоцитов

Цитотоксическое действие тромбоцитов

Цитотоксичность тромбоцитов, подобно эозинофилам и базофилам, впервые была отмечена при лизисе шистосом. Более того, было установлено, что пассивный перенос тромбоцитов от крыс, иммунизированных Schistosoma mansoni, защищает их от последующего инфицирования.

Рассматривая роль тромбоцитов в антигельминтном действии, авторы оценили ее как вспомагательную для цитотоксичности мононуклеарных фагоцитов, а также тучных клеток и отметили, что фактором, индуцирующим цитотоксичность тромбоцитов является Fc-peцептор для IgE.

Этими же исследователями несколько позже было показано, что наряду с низкоаффинным рецептором для IgE (FceRII) они экспрессируют и высокоаффинный рецептор для этого изотипа иммуноглобулинов - FceRI; экспрессия последнего отличается большой гетерогенностью и только небольшое количество тромбоцитов ко-экспрессирует оба рецептора.

Цитотоксичность тромбоцитов может быть индуцирована различными стимуляторами (ионопор кальция, PAF, ФГА, рицин и др.). Все факторы усиливают продукцию тромбоксана-2 тромбоцитами и гидролиз продуктов тромбоксана А; в отношении клеток некоторых опухолевых линий, в частности К562, цитотоксичность тромбоцитов сопровождалась активацией обоих факторов.

В настоящее время известны два основных механизма цитотоксичности тромбоцитов - действие продуктов циклооксигеназы (TXA2/PGH2) и оксида азота.

Опухолевые клетки отличаются различной чувствительностью к литическому действию тромбоцитов, что подтверждается данными исследований клеток различных линий: клетки линий К562, KU812, LU99A, KG1 были чувствительными, а клетки линий U937, М1АРаСа2 и MOLT-4 - полностью нечувствительными.

В частности, изучение цитотоксичности тромбоцитов в отношении клеток линии К562 и LU99A (рак легкого) показало, что они проявляют различную чувствительность к цитотоксическим продуктам тромбоцитов (использовали различные ингибиторы циклооксигеназы и оксида азота): если клетки линии К.562 лизировались с участием продуктов циклооксигеназы, то клетки линии LU99A - под действием оксида азота.

К указанным различиям чувствительности отдельных опухолевых клеток присоединяются еще и различия в действии активированных и неактивированных тромбоцитов, что было подтверждено электронно-микроскопическими исследованиями. Оказалось, что нестимулиро-ванные тромбоциты прикрепляются к клеткам К562, а стимулированные - нет.

Из этого следует вывод, что без стимуляции тромбоцитов прямой контакт между ними и опухолевыми клетками обязателен, а для стимулированных тромбоцитов - необязателен. Предполагается также, что эффект лизиса тромбоцитами связан с их растворимыми факторами, которые легко инактивируются.

Приведенные факты служат очередным подтверждением универсальности значения биологических свойств опухолевых клеток для любых форм их взаимодействия с различными клетками.

Многообразие клеток разнообразных опухолевых линий, которые исследовали авторы, дало им основание прийти к заключению, что тромбоциты - эффекторные цитотоксические клетки в противоопухолевой защите.

Наконец, тромбоциты, как отмечалось, могут оказывать регуляторные влияния на моноциты, ЕК и Т-лимфоциты, изменяя их цитотоксическое действие. Несмотря на то что этот вопрос крайне мало изучен, подтверждением правомочности его постановки являются данные о том, что наличие тромбоцитов в некоторых случаях усиливает цитотоксичность моноцитов.

Основные механизмы цитотоксичности тромбоцитов представлены на рис. 53.


Рис. 53. Механизмы цитотоксичности тромбоцитов

Таким образом, из приведенных немногочисленных данных становится очевидным, что и тромбоциты обладают способностью к цитотоксическому действию в отношении различных опухолевых мишеней, однако механизмы этого действия подлежат дальнейшему изучению.

Негативное влияние тромбоцитов на рост опухоли

Наряду со способностью к цитотоксическому действию тромбоциты могут и негативно влиять на противоопухолевую защиту. Несмотря на то что участие различных клеток в иммуностимуляции роста будет предметом обсуждения в третьей части монографии, представлялось целесообразным вопрос о негативном влиянии тромбоцитов обсудить здесь, так как, во-первых, они не являются классическими клетками системы иммунитета, а во-вторых, данных об их непосредственном участии в иммуностимуляции нет.

Известно, что тромбоциты часто инфильтрируют ткань опухоли, в связи с чем возник вопрос: каким образом их наличие отражается на действии TNFa - одного из важных компонентов цитотоксичности?

Для ответа на этот вопрос была проведена экспозиция клеток фибросаркомы линии L929 с тромбоцитами и показано, что наличие тромбоцитов ослабляет TNFa-зависимый цитолиз. Однако отсутствие эффекта TNFa не было связано ни с его деградацией, ни с потерей способности опухолевых клеток связывать этот фактор. Выяснилось, что TNFa взаимодействует с определенными участками тромбоцитов, в результате чего происходит неполное его связывание с опухолевыми клетками.

К отрицательной роли тромбоцитов следует отнести и тот факт, что при определенных условиях они защищают опухолевые клетки от лизиса естественных киллеров in vitro и in vivo. В экспериментах с клетками различных линий (CFS1, В16) были получены данные о том, что агрегация тромбоцитов вокруг опухолевых клеток ингибирует их лизис ЕК.

Использование клеток линий как чувствительных к естественным киллерам, так и нечувствительных показало, что во всех случаях тромбоциты способствуют выживаемости опухолевых клеток в периферической крови, усиливая процесс метастазирования.

Подтверждением того, что тромбоциты препятствуют реализации эффекта ЕК, являются опыты с клетками неметастазирующей меланомы линии SBcl2 и использованием эристостатина, связывающего аIIвЗ-интегрин: под действием указанного препарата клетки меланомы становились высокочувствительными к ЕК-подобным TALL-104-клеткам; рецептор, с которым эристостатин взаимодействует с клетками меланомы, неизвестен.

Особый интерес представляет способность взаимодействия тромбоцитов с опухолевыми клетками. Такая способность и ее выраженность во многом зависят от биологических особенностей опухолевой клетки. Одним из важных проявлений этого взаимодействия является агрегация тромбоцитов, с чем связано возникновение метастазов.

Эти данные были получены на клетках линий различных опухолей; показано, что взаимодействие опухоли и тромбоцитов активно способствует агрегации последних при высокометастазирующей фибросаркоме РАК 17.15 (такое действие в отношении низкометастазирующей опухоли РАК 17.14 выражено слабо).

При изучении клеток меланомы и аденосаркомы М7609 установлено, что они вызывают агрегацию тромбоцитов в гепаринизированной плазме; в одних случаях этот процесс зависит от участия гликопротеина мембраны GPlb, в других - от гликопротеина GPIb/IIIa.

Тромбоциты активируются и под влиянием клеток мелкоклеточной карциномы легкого и нейробластомы - процесс, который опосредует Р-селектин путем связывания с карбогидратными структурами, содержащими молекулы сиалил-Льюис. Наличие сиализированной карбогидратной цепи gp44 способствует и агрегации клеток аденокарциномы мышей (линия 26).

Исследование различных гистологических субтипов клеток линии рака легкого человека (мелкоклеточная, плоскоклеточная, крупноклеточная карциномы, аденокарцинома и альвеолярно-клеточная карцинома) показало, что клетки перечисленных линий используют различные пути активации тромбоцитов: для одних клеток агрегация связана с наличием коагуляционных факторов VII и X, для других - с необходимостью прямого контакта опухоли и тромбоцитов.

Весьма часто взаимодействие опухолевых клеток и тромбоцитов сочетается также со взаимодействием с эндотелиальными клетками и экстрацеллюлярным матриксом. Существенное место во взаимодействии между опухолевыми клетками, тромбоцитами и экстрацеллюлярным матриксом со стороны тромбоцитов занимает гликопротеин GPIIb/IIIa, а со стороны опухоли - а(v)-интегрины, что показано при изучении клеток трех линий меланомы человека и одной линии карциномы.

На рис. 54 проиллюстрировано усиление агрегации тромбоцитов при их взаимодействии с опухолевыми клетками.


Рис. 54. Агрегация тромбоцитов при взаимодействии с опухолевыми клетками

В некоторых случаях тромбоциты в системах in vitro могут предотвращать адгезию опухоли к эндотелиальным клеткам. Однако удаление тромбоцитов in vivo сопровождалось торможением метастазирования, что показано на моделях опухолевого роста, индуцированного клетками различных линий мышей (эпителиальные клетки) и таких опухолевых клеток, как клетки фибросаркомы и тимомы.

Выяснить роль различных адгезивных молекул (ICAM-1, LTA-1, VCAM-1, Е- и Р-селектины) с использованием модификатора их на развитие метастазов не удалось.

Можно было бы привести еще много фактов, которые иллюстрировали бы участие тромбоцитов в усилении метастазирования. Однако, независимо от этого, биологические свойства тромбоцитов свидетельствуют об их выраженной способности активно взаимодействовать с опухолевыми и эндотелиальными клетками, экстрацеллюлярным матриксом. Результатом этого взаимодействия может быть несколько механизмов усиления метастазирования с участием тромбоцитов.

К таким механизмам в первую очередь следует отнести:

1) возможность стимуляции пролиферации опухолевых клеток;
2) усиление взаимодействия опухолевых клеток с экстрацеллюлярным матриксом;
3) увеличение миграции опухолевых клеток в сосудистое русло.

Уже этих несомненных фактов достаточно, чтобы признать правомочность антикоагуляционной терапии, которая уменьшает риск распространения метастазов путем влияния на тромбоциты. Есть все основания полагать, что расширение спектра иммунологических исследований с учетом роли тромбоцитов может быть достаточно перспективным направлением в онкоиммунологии.

Бережная Н.М., Чехун В.Ф.