Цитокины при заболеваниях органов пищеварения. Цитокины и воспаление Цитокины статья

  • 6.В-лимфоциты,развитие и дифференцировка.Функция в-лимфоцитов,субпопуляции в-лимфоцитов.
  • 7.Методы определения субпопуляций клеток иммунной системы.Проточная цитометрия для оценки субпопуляции лимфоцитов.
  • 8.Антигены:определение,свойства,виды.
  • 9.Инфекционные антигены,виды,характеристика.
  • 10.Неинфекционные антигены, виды.
  • 11.Система hla-антигенов, роль в иммунологии.
  • 12.Иммуноглобулины:определение, структура.
  • 13.Классы иммуноглобулинов, характеристика.
  • 14.Антитела:виды,механизмы действия. Моноклональные антитела, получение, применение.
  • 15.Серологические реакции:общая характеристика, назначение.
  • 16.Реакция преципитации,ингредиенты реакции,цель постановки.Виды реакции преципитации(кольцепреципитация,диффузия в агаре,иммуноэлектрофорез).Способы получения преципитирующих сывороток.
  • 17.Динамика иммунного ответа: неспецифические механизмы защиты.
  • 18.Специфический иммунный ответ на т-независимые аг.
  • 19.Специфический иммунный ответ на т-зависимые аг:презентация, процессинг,индукция,эффекторная фаза
  • 20.Иммунный ответ против внутриклеточных микроорганизмов, опухолевых клеток.
  • 21.Механизмы ограничения иммунного ответа.
  • 22.Первичный и вторичный иммунный ответ.Иммунологическая толерантность.
  • 23.Генетический контроль иммунного ответа.
  • 24.Реакция агглютинации:ингредиенты,ее виды,назначение.
  • 25.Рпга:ингредиеты,назначение.Реакция Кумбса:ингредиенты,назначение.
  • 26.Реакция нейтрализации:виды,ингредиенты, назначение.
  • 27.Иммунный статус,методы иммунодиагностики.
  • 28.Характеристика т- и в-лимфоцитов,методы оценки. Клеточные реакции:рбтл,рпмл.
  • 29.Характеристика системы гранулоцитов и моноцитов. Методы оценки. Нст-тест. Характеристика системы комплемента.
  • 30.Риф:виды,ингредиенты.
  • 31.Ифа:ингредиенты,цель постановки, учет реакции.Иммуноблотинг.
  • 32.Риа: цель применения, ингредиенты.
  • 33.Вакцины,виды,цель применения.
  • 34.Иммунные антисыворотки и иммуноглобулины.
  • 35.Иммунопотология. Классификация. Основные виды. Иммунотропные препараты.
  • 36.Иммунодефициты, виды, причины.
  • 37.Аллергия: определение. Общая характеристика. Типы аллергических ревкций по Геллу-Кумбсу.
  • 38.Реакции повышенной чувствительности немедленного типа, виды. Анафилактический тип аллергических реакций. Аллергические заболевания, развивающиеся по этому механизму.
  • 39.Цитотоксические, иммунокомплексные, антирецепторные реакции. Аллергические и аутоиммунные заболевания, развивающиеся по этому механизму.
  • 40. Реакции повышенной чувствительности замедленного типа. Аллергические, аутоиммунные и инфекционные заболевания, развивающиеся по этому механизму.
  • 41.Аутоимунные (аутоаллргические) заболевания, классификация. Механизмы развития отдельных аутоиммунныхзаболеваний.
  • 42.Кожно-аллергические пробы, использование их в диагностике. Аллергены для кожно-аллергических проб, получение, применение.
  • 43.Особенности противоопухолевого иммунитета. Особенности иммунитета в системе «мать-плод»
  • 44.Естественная невосприимчивость организма к инфекционным заболеваниям. «Наследственный иммунитет». Факторы естественного врожденного иммунитета.
  • 45.Гуморальные факторы неспецифического иммунитета.
  • 46.Молекулярные образы патогенов и образраспознающие рецепторы. Система Toll-like-рецепторов.
  • 47.Антигенпредставляющие клетки, их функции.
  • 48. Система мононуклеонарных фагоцитов, функции.
  • 49.Фагоцитоз: стадии, механизмы, виды.
  • 50.Система гранулоцитов, функция.
  • 51.Естественные киллеры, механизмы активации, функция.
  • 52.Система комплеиента:характеристика, пути активации.
  • 53.Рск: ингридиенты, механизм, назначение.
  • 3.Цитокины:общие свойства, классификация. Интерлейкины.

    Цитокины – это секретируемые активированными клетками пептидные медиаторы, осуществляющие регуляцию взаимодействий, активацию всех звеньев самой СИ и влияющие на различные органы и ткани. Общие свойства цитокинов : 1. Являются гликопротеинами. 2. Действуют на саму клетку и на ее ближайшее окружение. Это короткодистантные молекулы.3. Действуют в минимальных концентрациях. 4. Цитокины имеют соответствующие им специфические рецепторы на поверхности клеток 5. Механизм действия цитокинов заключается в передаче сигнала после взаимодействия с рецептором с мембраны клетки на ее генетический аппарат. При этом изменяется экспрессия клеточных белков с изменением функции клетки (например, выделяются другие цитокины). Цитокины разделяются на несколько основных групп .1. Интерлейкины (ИЛ)2. Интерфероны 3. Группа факторов некроза опухоли (ФНО) 4. Группа колониестимулирующих факторов (например, гранулоцитарно-макрофагальный колониестимулирующий фактор – ГМ-КСФ) 5. Группа факторов роста (эндотелиальный фактор роста, фактор роста нервов и т.д.) 6. Хемокины. Цитокины, выделяемые преимущественно клетками системы иммунитета, получили название интерлейкинов (ИЛ) – факторов межлейкоцитарного взаимодействия. Они нумеруются по порядку (ИЛ-1 – ИЛ-31). Выделяются лейкоцитами при стимуляции продуктами микробов и другими антигенами. ИЛ-1 выделяется макрофагами и дендритными клетками, вызывает повышение температуры, стимулирует и активирует стволовые клетки, Т-лимфоциты, нейтрофилы, участвует в развитии воспаления. Существует в двух формах – ИЛ-1a и ИЛ-1b. ИЛ-2 выделяется Т-хелперами (преимущественно 1 типа, Тх1) и стимулирует пролиферацию и дифференцировку Т- и В-лимфоцитов, ЕКК, моноцитов. ИЛ-3 является одними из основных гемопоэтических факторов, стимулирует пролиферацию и дифференцировку ранних предшественников гемопоэза, макрофаги, фагоцитоз. ИЛ-4 – фактор роста В-лимфоцитов, стимулирует их пролиферацию на раннем этапе дифференцировки; выделяется Т-лимфоцитами 2-го типа и базофилами.ИЛ-5 стимулирует созревание эозинофилов, базофилов и синтез иммуноглобулинов В-лимфоцитами, вырабатывается Т-лимфоцитами под влиянием антигенов. ИЛ-6 – цитокин с множественным действием, выделяется Т-лимфоцитами, макрофагами и многими клетками вне системы иммунитета, стимулирует созревание B-лимфоцитов в плазматические клетки, развитие T-клеток и гемопоэз, активирует воспаление. ИЛ-7 – лимфопоэтический фактор, активирует пролиферацию предшественников лимфоцитов, стимулирует дифференцировку Т-клеток, образуется стромальными клетками, а также кератоцитами, гепатоцитами и др. клетками почек.ИЛ-8 – регулятор хемотаксиса нейтрофилов и Т-клеток (хемокин); секретируется Т-клетками, моноцитами, эндотелием. Активирует нейтрофилы, вызывает их направленную миграцию,адгезию, выброс ферментов и активных форм кислорода, стимулирует хемотаксис Т-лимфоцитов, дегрануляцию базофилов, адгезию макрофагов, ангиогенез. ИЛ-10 – выделяется Т-лимфоцитами (хелперами 2 типа Тх2 и регуляторными Т-хелперами – Tr). Подавляет выделение провоспалительных цитокинов (ИЛ-1, ИЛ-2, ФНО и др.) ИЛ-11 – вырабатывается стромальными клетками костного мозга, гематопоэтический фактор, действует сходно с ИЛ-3. ИЛ-12 – источник – моноциты-макрофаги, дендритные клетки вызывает пролиферацию активированных Т-лимфоцитов и естественных киллеров, усиливает действие ИЛ-2.ИЛ-13 – выделяется Т-лимфоцитами, активирует дифференцировку В-клеток.ИЛ-18 – продуцируется моноцитами и макрофагами, дендритными клетками, стимулирует Т-хелперы 1-го типа и продукцию ими гамма-интерферона, ингибирует синтез IgЕ.

    В настоящей главе будет рассмотрен комплексный подход в оценке системы цитокинов с использованием описанных ранее современных методов исследования.

    Вначале мы изложим основные представления о системе цитокинов.

    Цитокины в настоящее время рассматривают как белковопептидные молекулы, продуцируемые различными клетками организма и осуществляющие межклеточные и межсистемные взаимодействия. Цитокины - универсальные регуляторы жизненного цикла клеток, они контролируют процессы дифференцировки, пролиферации, функциональной активации и апоптоза последних.

    Цитокины, продуцируемые клетками иммунной системы, называют иммуноцитокинами; они представляют собой класс растворимых пептидных медиаторов иммунной системы, необходимых для ее развития, функционирования и взаимодействия с другими системами организма (Ковальчук Л.В. и соавт., 1999).

    Являясь регуляторными молекулами, цитокины играют важную роль в осуществлении реакций врожденного и адаптивного иммунитета, обеспечивают их взаимосвязь, контролируют гемопоэз, воспаление, заживление ран, образование новых кровеносных сосудов (ангиогенез) и многие другие жизненно важные процессы.

    В настоящее время существует несколько различных классификаций цитокинов, учитывающих их строение, функциональную активность, происхождение, тип цитокиновых рецепторов. Традиционно, в соответствии с биологическими эффектами, принято выделять следующие группы цитокинов.

    1. Интерлейкины (ИЛ-1-ИЛ-33) - секреторные регуляторные белки иммунной системы, обеспечивающие медиаторные взаимодействия в иммунной системе и связь ее с другими системами организма. Интерлейкины разделяют по функциональной активности на про- и противовоспалительные цитокины, ростовые факторы лимфоцитов, регуляторные цитокины и др.

    3. Факторы некроза опухоли (ФНО) - цитокины с цитотоксическим и регуляторным действиями: ФНОа и лимфотоксины (ЛТ).

    4. Факторы роста гемопоэтических клеток - фактор роста стволовых клеток (Kit - ligand), ИЛ-3, ИЛ-7, ИЛ-11, эритропоэтин, тробопоэтин, гранулоцитарно-макрофагальный колониестимулирующий фактор - ГМ-КСФ, гранулоцитарный КСФ - Г-КСФ, макрофагаль-

    ный КСФ - М-КСФ).

    5. Хемокины - С, СС, СХС (ИЛ-8), СХ3С - регуляторы хемотаксиса различных типов клеток.

    6. Факторы роста нелимфоидных клеток - регуляторы роста, дифференцировки и функциональной активности клеток различной тканевой принадлежности (фактор роста фибробластов - ФРФ, фактор роста эндотелиальных клеток, эпидермальный фактор роста - ЭФР эпидермиса) и трансформирующие факторы роста (ТФРβ, ТФРα).

    Среди прочих в последние годы активно изучается фактор, ингибирующий миграцию макрофагов (миграцию ингибирующий фактор - МИФ), который рассматривается как нейрогормон с цитокиновой и ферментной активностью (Суслов А.П., 2003; Ковальчук Л.В. и соавт.,

    Цитокины различаются по строению, биологической активности и другим свойствам. Однако наряду с различиями цитокины обладают общими свойствами, характерными для данного класса биорегуляторных молекул.

    1. Цитокины - это, как правило, гликозилированные полипептиды средней молекулярной массы (менее 30 кD).

    2. Цитокины вырабатываются клетками иммунной системы и другими клетками (например, эндотелием, фибробластами и др.) в ответ на активирующий стимул (патогенассоциированные молекулярные структуры, антигены, цитокины и др.) и участвуют в реакциях врожденного и адаптивного иммунитета, регулируя их силу и продолжительность. Некоторые цитокины синтезируются конститутивно.

    3. Секреция цитокинов - короткий по времени процесс. Цитокины не сохраняются как преформированные молекулы, а их

    синтез начинается всегда с транскрипции генов. Клетки вырабатывают цитокины в низкой концентрации (пикограммы на миллилитр).

    4. В большинстве случаев цитокины продуцируются и действуют на клетки-мишени, находящиеся в непосредственной близости (короткодистантное действие). Основное место действия цитокинов - межклеточный синапс.

    5. Избыточность системы цитокинов проявляется в том, что каждый тип клеток способен продуцировать несколько цитокинов, а каждый цитокин может секретироваться различными клетками.

    6. Для всех цитокинов характерна плейотропность, или полифункциональность действия. Так, проявление признаков воспаления обусловлено влиянием ИЛ-1, ФНОα, ИЛ-6, ИЛ-8. Дублирование функций обеспечивает надежность работы системы цитокинов.

    7. Действие цитокинов на клетки-мишени опосредуется высокоспецифичными высокоаффинными мембранными рецепторами, представляющими собой трансмембранные гликопротеины, состоящие, как правило, более чем из одной субъединицы. Внеклеточная часть рецепторов ответственна за связывание цитокина. Существуют рецепторы, устраняющие избыток цитокинов в патологическом очаге. Это так называемые рецепторы-ловушки. Растворимые рецепторы представляют собой внеклеточный домен мембранного рецептора, отделенный с помощью фермента. Растворимые рецепторы способны нейтрализовывать цитокины, участвовать в транспорте их в очаг воспаления и в выведении из организма.

    8. Цитокины работают по принципу сети. Они могут действовать согласованно. Многие функции, приписываемые первоначально одному цитокину, как оказалось, обусловлены согласованным действием нескольких цитокинов (синергизм действия). Примерами синергического взаимодействия цитокинов являются стимуляция воспалительных реакций (ИЛ-1, ИЛ-6 и ФНОа), а также синтеза IgE

    (ИЛ-4, ИЛ-5 и ИЛ-13).

    Одни цитокины индуцируют синтез других цитокинов (каскад). Каскадность действия цитокинов необходима для развития воспалительных и иммунных реакций. Способность одних цитокинов усиливать или ослаблять продукцию других обусловливает важные позитивные и негативные регуляторные механизмы.

    Известно антагонистическое действие цитокинов, например продукция ИЛ-6 в ответ на увеличение концентрации ФНОа может быть

    негативным регуляторным механизмом контроля выработки этого медиатора при воспалении.

    Цитокиновая регуляция функций клеток-мишеней осуществляется с помощью аутокринного, паракринного или эндокринного механизмов. Некоторые цитокины (ИЛ-1, ИЛ-6, ФНОα и др.) способны участвовать в реализации всех перечисленных механизмов.

    Ответ клетки на влияние цитокина зависит от нескольких факторов:

    От типа клеток и их исходной функциональной активности;

    От локальной концентрации цитокина;

    От присутствия других медиаторных молекул.

    Таким образом, клетки-продуценты, цитокины и специфические для них рецепторы на клетках мишенях формируют единую медиаторную сеть. Именно набор регуляторных пептидов, а не индивидуальные цитокины, определяют окончательный ответ клетки. В настоящее время система цитокинов рассматривается как универсальная система регуляции на уровне целостного организма, обеспечивающая развитие защитных реакций (например, при инфекции).

    В последние годы сложилось представление о системе цитокинов, объединяющей:

    1) клетки-продуценты;

    2) растворимые цитокины и их антагонисты;

    3) клетки-мишени и их рецепторы (рис. 7.1).

    Нарушения различных компонентов системы цитокинов приводят к развитию многочисленных патологических процессов, а потому выявление дефектов в этой регуляторной системе имеет важное значение для правильной постановки диагноза и назначения адекватной терапии.

    Вначале рассмотрим основные компоненты системы цитокинов.

    Клетки-продуценты цитокинов

    I. Основную группу клеток-продуцентов цитокинов в адаптивном иммунном ответе представляют лимфоциты. Покоящиеся клетки не секретируют цитокины. При распознавании антигена и при участии рецепторных взаимодействий (CD28-CD80/86 для Т-лимфоцитов и СD40-CD40L для В-лимфоцитов) происходит активация клеток, приводящая к транскрипции генов цитокинов, трансляции и секреции гликозилированных пептидов в межклеточное пространство.

    Рис. 7.1. Система цитокинов

    CD4 Т-хелперы представлены субпопуляциями: Тh0, Тh1, Тh2, Тh17, Tfh, которые различаются между собой спектром секретируемых цитокинов в ответ на различные антигены.

    Тh0 вырабатывают широкий спектр цитокинов в очень низких концентрациях.

    Направление дифференцировки Th0 определяет развитие двух форм иммунного ответа с преобладанием гуморальных или клеточных механизмов.

    Природа антигена, его концентрация, локализация в клетке, тип антигенпрезентирующих клеток и определенный набор цитокинов регулируют направление дифференцировки Тh0.

    Дендритные клетки после захвата и процессинга антигена представляют антигенные пептиды Th0 клеткам и вырабатывают цитокины, регулирующие направление их дифференцировки в эффекторные клетки. Роль индивидуальных цитокинов в данном процессе отражена на рис. 7.2. ИЛ-12 индуцирует синтез ИФНγ Т-лимфоцитами и ]ЧГК. ИФНу обеспечивает дифференцировку ТЫ1, которые начинают секретировать цитокины (ИЛ-2, ИФНу, ИЛ-3, ФНОа, лимфотоксины), регулирующие развитие реакций на внутриклеточные патогены

    (гиперчувствительности замедленного типа (ГЗТ) и различные типы клеточной цитотоксичности).

    ИЛ-4 обеспечивает дифференцировку Тh0 в Тh2. Активированные Тh2 вырабатывают цитокины (ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-13 и др.), определяющие пролиферацию В-лимфоцитов, их дальнейшую дифференцировку в плазматические клетки,и развитие реакций антителогенеза, преимущественно на внеклеточные патогены.

    ИФНу негативно регулирует функцию Тh2-клеток и, наоборот, ИЛ-4, ИЛ-10, секретируемые Тh2, угнетают функцию Тh1 (рис. 7.3). Молекулярный механизм этой регуляции связан с транскрипционными факторами. Экспрессия Т-bet и STAT4, детерминированная ИФНу, направляет дифференцировку Т-клеток по пути Тh1 и супрессирует развитие Тh2. ИЛ-4 индуцирует экспрессию GATA-3 и STAT6, что соответственно обеспечивает превращение наивных ТЫ0 в Тh2-клетки (рис. 7.2).

    В последние годы описана особая субпопуляция Т-клеток хелперов (Тh17), продуцирующих ИЛ-17. Члены семейства ИЛ-17 могут экспрессироваться активированными клетками памяти (CD4CD45RO), у5Т-клетками, NKT клетками, нейтрофилами, моноцитами под влиянием ИЛ-23, ИЛ-6, ТФРβ, вырабатываемых макрофагами и дендритными клетками. Основным дифференцировочным фактором у человека является ROR-C, у мышей - ROR-γl Показана кардинальная роль ИЛ-17 в развитии хронического воспаления и аутоиммунной патологии (см. рис. 7.2).

    Кроме того, Т-лимфоциты в тимусе могут дифференцироваться в естественные клетки-регуляторы (Treg), экспрессирующие поверхностные маркеры CD4 + CD25 + и транскрипционный фактор FOXP3. Эти клетки способны подавлять иммунный ответ, опосредуемый Тh1 и Тh2-клетками, путем прямого межклеточного контакта и синтеза ТФРβ и ИЛ-10.

    Схемы дифференцировки клонов Тh0 и секретируемых ими цитокинов представлены на рис. 7.2 и 7.3 (см. также цв. вклейку).

    Т-цитотоксические клетки (CD8 +), естественные киллеры - слабые продуценты цитокинов, таких, как интерфероны, ФНОа и лимфотоксины.

    Избыточная активация одной из субпопуляций Тh может определить развитие одного из вариантов иммунного ответа. Хроническая несбалансированность активации Тh способна привести к формированию иммунопатологических состояний, связанных с проявления-

    ми аллергии, аутоиммунной патологии, хронических воспалительных процессов и др.

    Рис. 7.2. Различные субпопуляции Т-лимфоцитов, продуцирующие цитокины

    II. В системе врожденного иммунитета основными продуцентами цитокинов являются клетки миелоидного ряда. С помощью Toll-по- добных рецепторов (TLRs) они распознают сходные молекулярные структуры различных патогенов, так называемые патогенассоциированные молекулярные патерны (РАМП), например липополисахарид (ЛПС) грамотрицательных бактерий, липотейхоевые кислоты, пептидогликаны грамположительных микроорганизмов, флагеллин, ДНК, богатую неметилированными СрG повторами, и др. В результате

    такого взаимодействия с TLR запускается внутриклеточный каскад передачи сигнала, приводящий к экспрессии генов двух основных групп цитокинов: провоспалительных и ИФН типа 1 (рис. 7.4, см. также цв. вклейку). Главным образом эти цитокины (ИЛ-1, -6, -8, -12, ФНОа, ГМ-КСФ, ИФН, хемокины и др.) индуцируют развитие воспаления и участвуют в защите организма от бактериальных и вирусных инфекций.

    Рис. 7.3. Спектр цитокинов, секретируемых ТЫ1- и ТЫ2-клетками

    III. Клетки, не относящиеся к иммунной системе (клетки соединительной ткани, эпителия, эндотелия), конститутивно секретируют аутокринные факторы роста (ФРФ, ЕФР, ТФРр и др.). и цитокины, поддерживающие пролиферацию гемопоэтических клеток.

    Цитокины и их антагонисты подробно описаны в ряде монографий (Ковальчук Л.В. и соавт., 2000; Кетлинский С.А., Симбирцев А.С.,

    Рис. 7.4. TLR-опосредованная индукция выработки цитокинов клетками врожденного иммунитета

    Избыточная экспрессия цитокинов небезопасна для организма и может привести к развитию чрезмерной воспалительной реакции, острофазового ответа. В регуляции выработки провоспалительных цитокинов принимают участие различные ингибиторы. Так, описан ряд веществ, которые неспецифически связывают цитокин ИЛ-1 и препятствуют проявлению его биологического действия (а2-макроглобулин, С3-компонент комплемента, уромодулин). Специфическими ингибиторами ИЛ-1 могут быть растворимые рецепторы-ловушки, антитела и рецепторный антагонист ИЛ-1 (ИЛ-1RA). При развитии воспаления происходит усиление экспрессии гена ИЛ-1RA. Но и в норме этот антагонист присутствует в крови в высокой концентрации (до 1 нг/мл и более), блокируя действие эндогенного ИЛ-1.

    Клетки-мишени

    Действие цитокинов на клетки-мишени опосредуются через специфические рецепторы, связывающие цитокины с очень высокой аффинностью, причем отдельные цитокины могут использовать

    общие субъединицы рецепторов. Каждый цитокин связывается со своим специфическим рецептором.

    Рецепторы цитокинов представляют собой трансмембранные белки и делятся на 5 основных типов. Наиболее распространен так называемый гемопоэтиновый тип рецепторов, имеющих два экстраклеточных домена, один из которых содержит общую последовательность аминокислотных остатков двух повторов триптофана и серина, разделенных любой аминокислотой (WSXWS-мотив). Второй тип рецепторов может иметь два внеклеточных домена с большим количеством консервативных цистеинов. Это рецепторы семейства ИЛ-10 и ИФН. Tретий тип представлен рецепторами цитокинов, относящихся к группе ФНО. Четвертый тип рецепторов цитокинов принадлежит к суперсемейству иммуноглобулиновых рецепторов, имеющих внеклеточные домены, напоминающие по строению домены молекул иммуноглобулинов. Пятый тип рецепторов, связывающих молекулы семейства хемокинов, представлен трансмембранными белками, пересекающими клеточную мембрану в 7 местах. Рецепторы цитокинов могут существовать в растворимой форме, сохраняя способность связывать лиганды (Кетлинский С.А. и др., 2008).

    Цитокины способны влиять на пролиферацию, дифференцировку, функциональную активность и апоптоз клеток-мишеней (см. рис. 7.1). Проявление биологической активности цитокинов в клетках-мишенях зависит от участия различных внутриклеточных систем в передаче сигнала от рецептора, что связано с особенностями клеток-мишеней. Сигнал к апоптозу проводится в том числе с помощью специфического участка семейства рецепторов ФНО, так называемого домена «смерти» (рис. 7.5, см. цв. вклейку). Дифференцировочный и активирующий сигналы передаются посредством внутриклеточных белков Jak-STAT - сигнальных трансдукторов и активаторов транскрипции (рис. 7.6, см. цв. вклейку). G-белки участвуют в передаче сигнала от хемокинов, что приводит к усилению миграции и адгезии клеток.

    В комплексный анализ системы цитокинов входит следующее.

    I. Оценка клеток-продуцентов.

    1. Определение экспрессии:

    Рецепторов, распознающих патоген или антиген TКР, TLR) на уровне генов и молекулы белка (ПЦР, метод проточной цитофлуориметрии);

    Адаптерных молекул, проводящих сигнал, запускающий транскрипцию цитокиновых генов (ПЦР и др.);

    Рис. 7.5. Передача сигнала с ФНО-рецептора

    Рис. 7.6. Jak-STAT - сигнальный путь с цитокиновых рецепторов типа 1

    Генов цитокинов (ПЦР); белковых молекул цитокинов (оценка цитокинсинтезирующей функции мононуклеарных клеток человека).

    2. Количественное определение субпопуляций клеток, содержащих те или иные цитокины: Th1, Th2 Th17 (метод внутриклеточного окрашивания цитокинов); определение количества клеток, секретирующих определенные цитокины (метод ELISPOT, см. гл. 4).

    II. Оценка цитокинов и их антагонистов в биологических средах организма.

    1. Tестирование биологической активности цитокинов.

    2. Количественное определение цитокинов с помощью ИФА.

    3. Иммуногистохимическое окрашивание цитокинов в тканях.

    4. Определение соотношения оппозитных цитокинов (про- и противовоспалительных), цитокинов и антагонистов рецепторов цитокинов.

    III. Оценка клеток-мишеней.

    1. Определение экспрессии рецепторов цитокинов на уровне генов и белковой молекулы (ПЦР, метод проточной цитофлуориметрии).

    2. Определение сигнальных молекул во внутриклеточном содержимом.

    3. Определение функциональной активности клеток-мишеней.

    В настоящее время разработаны многочисленные методы оценки системы цитокинов, которые дают разноплановую информацию. Среди них различают:

    1) молекулярно-биологические методы;

    2) методы количественного определения цитокинов с помощью иммуноанализа;

    3) тестирование биологической активности цитокинов;

    4) внутриклеточное окрашивание цитокинов;

    5) метод ELISPOT, позволяющий выявить цитокины вокруг единичной цитокинпродуцирующей клетки;

    6) иммунофлюоресценцию.

    Приводим краткую характеристику этих методов.

    С помощью молекулярно-биологических методов можно исследовать экспрессию генов цитокинов, их рецепторов, сигнальных молекул, изучать полиморфизм указанных генов. В последние годы выполнено большое число работ, выявивших ассоциации между вариантами аллелей генов молекул системы цитокинов и предрасположенностью

    к ряду заболеваний. Изучение аллельных вариантов генов цитокинов может дать информацию о генетически запрограммированной продукции того или иного цитокина. Наиболее чувствительной считается полимеразная цепная реакция в реальном времени - ПЦР-РВ (см. гл. 6). Метод гибридизации in situ позволяет уточнить тканевую и клеточную локализацию экспрессиии цитокиновых генов.

    Количественное определение цитокинов в биологических жидкостях и в культурах мононуклеарных клеток периферической крови методом ИФА можно охарактеризовать следующим образом. Поскольку цитокины являются локальными медиаторами, более целесообразно измерять их уровни в соответствующих тканях после экстракции тканевых протеинов или в естественных жидкостях, например в слезе, смывах из полостей, моче, амниотической жидкости, спинномозговой жидкости и т.д. Уровни цитокинов в сыворотке или других биологических жидкостях отражают текущее состояние иммунной системы, т.е. синтез цитокинов клетками организма in vivo.

    Определение уровней продукции цитокинов мононуклеарами периферической крови (МНК) показывает функциональное состояние клеток. Спонтанная продукция цитокинов МНК в культуре свидетельствует, что клетки уже активированы in vivo. Индуцированный (различными стимуляторами, митогенами) синтез цитокинов отражает потенциальную, резервную способность клеток отвечать на антигенный стимул (в частности, на действие лекарственных препаратов). Сниженная индуцированная продукция цитокинов может служить одним из признаков иммунодефицитного состояния. Цитокины не специфичны в отношении конкретного антигена. Поэтому специфическая диагностика инфекционных, аутоиммунных и аллергических заболеваний с помощью определения уровня тех или иных цитокинов невозможна. В то же время оценка уровней цитокинов позволяет получить данные о тяжести воспалительного процесса, его переходе на системный уровень и прогнозе, функциональной активности клеток иммунной системы, о соотношении Th1- и Th2-клеток, что очень важно при дифференциальной диагностике ряда инфекционных и иммунопатологических процессов.

    В биологических средах можно определить цитокины количественно с помощью целого ряда методов иммуноанализа, используя поликлональные и моноклональные антитела (см. гл. 4). ИФА позволяет узнать, каковы точные концентрации цитокинов в био-

    логических жидкостях организма. Иммуноферментное выявление цитокинов имеет ряд преимуществ перед другими методами (высокая чувствительность, специфичность, независимость от присутствия антагонистов, возможность точного автоматизированного учета, стандартизации учета). Однако и этот метод имеет свои ограничения: ИФА не характеризует биологическую активность цитокинов, может давать ложные результаты за счет перекрестно-реагирующих эпитопов.

    Биологическое тестирование проводят на основе знания основных свойств цитокинов, их действия на клетки-мишени. Изучение биологических эффектов цитокинов позволило разработать четыре разновидности тестирования цитокинов:

    1) по индукции пролиферации клеток-мишеней;

    2) по цитотоксическому эффекту;

    3) по индукции дифференцировки костно-мозговых предшественников;

    4) по противовирусному действию.

    ИЛ-1 определяют по стимулирующему действию на пролиферацию мышиных тимоцитов, активированных митогеном in vitro; ИЛ-2 - по способности стимулировать пролиферативную активность лимфобластов; по цитотоксическому действию на мышиные фибробласты (L929) тестируют ФНОа и лимфотоксины. Колониестимулирующие факторы оценивают по их способности поддерживать рост костномозговых предшественников в виде колоний в агаре. Противовирусную активность ИФН выявляют по угнетению цитопатического действия вирусов в культуре диплоидных фибробластов человека и опухолевой линии фибробластов мышей L-929.

    Созданы клеточные линии, рост которых зависит от присутствия определенных цитокинов. В табл. 7.1 представлен список клеточных линий, используемых для тестирования цитокинов. По способности индуцировать пролиферацию чувствительных клеток-мишеней проводят биотестирование ИЛ-1, ИЛ-2, ИЛ-4, ИЛ-6, ИЛ-7, ИЛ-15 и др. Однако эти методы тестирования отличаются недостаточной чувствительностью и информативностью. Молекулы ингибиторов и антагонистов могут маскировать биологическую активность цитокинов. Некоторые цитокины проявляют общую биологическую активность. Тем не менее эти методы идеальны для тестирования специфической активности рекомбинантных цитокинов.

    Таблица 7.1. Клеточные линии, используемые для тестирования биологической активности цитокинов

    Окончание табл. 7.1

    Лабораторная работа 7-1

    Определение биологической активности ИЛ-1 по комитогенному действию на пролиферацию тимоцитов мышей

    В основе метода биологического тестирования ИЛ-1 лежит способность цитокина стимулировать пролиферацию мышиных тимоцитов.

    ИЛ-1 может быть определен в культуре моноцитов, стимулированных ЛПС, а также в любой биологической жидкости организма. Необходимо обратить внимание на ряд деталей.

    1. Для тестирования применяют тимоциты мышей линии С3Н/ HeJ, стимулированные к пролиферации митогенами (конканавалин А - КонА и фитогемагглютинин - ФГА). Тимоциты С3Н/HeJ выбраны не случайно: мыши этой инбредной линии не отвечают на ЛПС, который может находиться в составе тестируемого материала и вызывать продукцию ИЛ-1.

    2. Тимоциты отвечают на ИЛ-2 и митогены, поэтому в препаратах, тестируемых на ИЛ-1, следует определять также присутствие ИЛ-2 и митогенов.

    Порядок работы

    1. Получают суспензию тимоцитов в концентрации 12×10 6 /мл среды RРМI 1640, содержащей 10% сыворотки эмбрионов коров и 2-меркаптоэтанол (5×10 -5 М).

    2. Готовят ряд последовательных двукратных разведений опытных (биологические жидкости организма) и контрольных образцов. В качестве контрольных используют биологические жидкости, содержащие ИЛ-1 или образцы, полученные при инкубации мононуклеарных клеток без ЛПС, и лабораторный стандартный ИЛ-1-содержащий препарат. В 96-луночные круглодонные планшеты из каждого разведения переносят по 50 мкл в 6 лунок.

    3. В три лунки каждого разведения добавляют по 50 мкл растворенного в полной среде очищенного ФГА (Wellcome) в концентрации 3 мкг/мл, а в другие 3 лунки - по 50 мкл среды.

    4. В каждую лунку добавляют по 50 мкл суспензии тимоцитов и инкубируют в течение 48 ч при 37 °С.

    6. Перед завершением культивирования в лунки вносят по 50 мкл раствора (1 мкКи/мл) [" 3 Н]-тимидина и инкубируют еще 20 ч.

    7. Для определения уровня радиоактивности клетки культуры переносят на фильтровальную бумагу с помощью автоматического сборщика клеток, фильтры высушивают и определяют включение метки жидкостным сцинтилляционным счетчиком.

    8. Результаты выражают в виде коэффициента стимуляции.

    где m cp - среднее число импульсов в 3 лунках.

    Если тимоциты отвечают на стимуляцию стандартным ИЛ-1, то индекс стимуляции исследуемого образца, превышающий 3, достоверно свидетельствует об ИЛ-1-активности.

    Биоанализ является единственным методом для оценки функционирования цитокина, но данный метод должен быть дополнен разными видами соответствующего контроля на специфичность с использованием моноклональных антител. Добавление определенных моноклональных антител к цитокину в культуру блокирует биологическую активность цитокина, что доказывает: сигналом к пролиферации клеточной линии служит определяемый цитокин.

    Использование биоанализа для выявления интерферона. Принцип оценки биологической активности ИФН основан на его противовирусном действии, которое определяется по степени ингибиции размножения тест-вируса в культуре клеток.

    В работе могут быть использованы клетки, чувствительные к действию ИФН: первично трипсинизированные клетки-фибробласты эмбрионов кур и человека, перевиваемые клетки диплоидных фибробластов человека и культура мышиных клеток (L929).

    При оценке противовирусного действия ИФН целесообразно использовать вирусы с коротким циклом размножения, высокой чувствительностью к действию ИФН: вирус энцефаломиелита мышей, везикулярного стоматита мыши и др.

    Лабораторная работа 7-2

    Определение активности интерферона

    1. Взвесь диплоидных фибробластов плода человека на среде с 10% сывороткой эмбрионов коров (концентрация клеток - 15-20×10 6 /мл) разливают в стерильные 96-луночные плоскодонные планшеты по 100 мкл в лунку и помещают в СО 2 -инкубатор при температуре 37 °С.

    2. После формирования полного монослоя из лунок удаляют ростовую среду и в каждую лунку добавляют по 100 мкл поддерживающей среды.

    3. Титрование активности ИФН в исследуемых образцах проводят методом двукратных разведений на монослое фибробластов.

    Одновременно с образцами в лунки вносят вирус энцефаломиелита мышей (ВЭМ) в дозе, вызывающей 100% поражение клеток через 48 ч после заражения.

    4. Для контроля используют лунки с интактными (необработанными) клетками, зараженными вирусом.

    В каждом исследовании в качестве референс-препаратов используют пробы референс-ИФН с известной активностью.

    5. Планшеты с разведениями образца инкубируют 24 ч при температуре 37 °С в атмосфере с 5% содержанием СО 2 .

    6. Уровень активности ИФН определяют величиной, обратной значению максимального разведения тестируемого образца, задерживающего цитопатическое действие вируса на 50%, и выражают ее в единицах активности на 1 мл.

    7. Для определения типа ИФН в систему добавляют антисыворотку против ИФНα, ИФНβ или ИФНγ. Антисыворотка отменяет действие соответствующего цитокина, что позволяет идентифицировать тип ИФН.

    Определение биологической активности миграции ингибирующего фактора. В настоящее время сформировались совершенно новые представления о природе и свойствах МИФ, открытого в 60-х годах прошлого столетия в качестве медиатора клеточного иммунитета и много лет остававшегося без должного внимания (Bloom B.R., Bennet В., 1966; David J.R., 1966). Лишь в последние 10-15 лет стало ясно: МИФ представляет собой один из важнейших биологических медиаторов в организме с широким спектром биологических функций цитокина, гормона, фермента. Действие МИФ на клетки-мишени реализуется через СD74 - -рецептор или через неклассический путь эндоцитоза.

    МИФ рассматривают как важный медиатор воспаления, активирующий функцию макрофагов (выработку цитокинов, фагоцитоз, цитотоксичность и др.), а также как эндогенный иммунорегуляторный гормон, модулирующий глюкокортикоидную активность.

    Накапливается все больше сведений о роли МИФ в патогенезе многих воспалительных заболеваний, включая сепсис, ревматоидный артрит (РА), гломерулонефрит и др. При РА значительно увеличена концентрация МИФ в жидкости пораженных суставов, коррелирующая с тяжестью заболевания. Под влиянием МИФ возрастает выработка провоспалительных цитокинов как макрофагами, так и синовиальными клетками.

    Известны различные методы тестирования активности МИФ, когда мигрирующие клетки (клетки-мишени для МИФ) помещают в стеклянный капилляр (капиллярный тест), в каплю агарозы или в агарозный колодец.

    Мы приводим сравнительно простой скрининговый метод, основанный на формировании на дне лунок 96-луночного плоскодонного планшета клеточных микрокультур (лейкоцитов или макрофагов), стандартных по площади и числу клеток, с последующим их культивированием в питательной среде и определением изменения площади этих микрокультур при действии МИФ (Суслов А.П., 1989).

    Лабораторная работа 7-3

    Определение МИФ-активности

    Определение биологической активности МИФ проводят с помощью устройства для формирования клеточных микрокультур (рис. 7.7) - МИГРОСКРИН (НИИ эпидемиологии и микробиологии им. Н.Ф. Гамалеи РАМН).

    1. В лунки 96-луночного планшета (Flow, Великобритания или аналогичные) добавляют по 100 мкл разведенной на культуральной среде пробы, в которой определяют МИФ-активность (каждое разведение в 4 параллелях, опытные пробы). Культуральная среда включает RPMI 1640, 2 mM L-глутамина, 5% сыворотки эмбриона коровы, 40 мкг/мл гентамицина.

    2. В контрольные лунки добавляют культуральную среду (в 4 параллелях) по 100 мкл.

    3. Готовят клеточную суспензию перитонеальных макрофагов, для чего 2 мышам-гибридам (СВАхС57В1/6)F1 внутрибрюшинно вводят по 10 мл раствора Хенкса с гепарином (10 ЕД/мл), осторожно массируют брюшко в течение 2-3 мин. Затем животное забивают декапитацией, осторожно прокалывают брюшную стенку в области паха и через иглу шприцем отсасывают экссудат. Клетки перитонеального экссудата дважды отмывают раствором Хенкса, центрифугируя их 10-15 мин при 200 g. Затем готовят суспензию клеток с концентрацией 10±1 млн/мл среды RPMI 1640. Подсчет проводят в камере Горяева.

    4. Собирают систему МИГРОСКРИН, представляющую собой штатив для направленной и стандартной фиксации наконечников с клеточными культурами в строго вертикальном положении на заданной высоте над центром лунки 96-луночного культурального планшета, а также включающую 92 наконечника для автоматической пипетки фирмы «Costar», USA (рис. 7.7).

    Вставляют ножки штатива в угловые лунки планшета. Клеточную суспензию набирают автоматической пипеткой в наконечники - по 5 мкл в каждый, ополаскивают от избытка клеток однократным опусканием в среду и вставляют вертикально в гнезда штатива системы. Заполненный штатив с наконечниками выдерживают при комнатной температуре в течение 1 ч на строго горизонтальной поверхности. За это время происходит оседание клеток суспензии на дно лунок, где формируются стандартные клеточные микрокультуры.

    5. Штатив с наконечниками осторожно снимают с планшета. Планшет с микрокультурой клеток помещают в строго горизонтальном положении в СО 2 -инкубатор, где культивируют в течение 20 ч. В ходе культивирования клетки мигрируют по дну лунки.

    6. Количественный учет результатов после инкубации проводят на бинокулярной лупе, визуально оценивая размер колонии по шкале внутри окуляра. Микрокультуры имеют форму круга. Затем исследователи определяют среднее значение диаметра колоний по результатам измерения колоний в 4 опытных или контрольных лунках. Погрешность измерения равна ±1 мм.

    Индекс миграции (ИМ) рассчитывают по формуле:

    Проба обладает МИФ-активностью, если значения ИМ равны

    За условную единицу (ЕД) МИФ-активности принимают обратную величину, равную значению наибольшего разведения пробы (образца), при котором индекс миграции равен 0,6±0,2.

    Биологическую активность ФЕO αоценивают по цитотоксическому его действию на линию трансформированных фибробластов L-929. В качестве положительного контроля используют рекомбинантный ФНОа, а в качестве отрицательного контроля - клетки в культуральной среде.

    Вычисляют цитотоксический индекс (ЦИ):

    где a - количество живых клеток в контроле; b - количество живых клеток в опыте.

    Рис. 7.7. Схема МИГРОСКРИН - устройства для количественной оценки миграции клеточных культур

    Клетки окрашивают красителем (метиленовым синим), который включается только в погибшие клетки.

    За условную единицу активности ФНО принимают значение обратного разведения образца, необходимого для получения 50% клеточной цитотоксичности. Удельная активность образца - отношение активности в условных единицах на 1 мл к концентрации белка, содержащегося в образце.

    Внутриклеточное окрашивание цитокинов. Изменение соотношения клеток, продуцирующих различные цитокины, может отражать патогенез заболевания и служить критерием прогноза заболевания и оценки проводимой терапии.

    Методом внутриклеточного окрашивания определяют экспрессию цитокина на уровне одной клетки. Проточная цитофлуориметрия позволяет подсчитать количество клеток, экспрессирующих тот или иной цитокин.

    Перечислим основные этапы определения внутриклеточных цитокинов.

    Нестимулированные клетки продуцируют небольшие количества цитокинов, которые, как правило, не депонируются, поэтому важным этапом оценки внутриклеточных цитокинов являются стимуляция лимфоцитов и блокада выхода этих продуктов из клеток.

    В качестве индуктора цитокинов чаще всего используют активатор протеинкиназы С форбол-12-миристат-13-ацетат (ФМА) в комбинации с ионофором кальция иономицином (ИН). Применение такого сочетания вызывает синтез широкого спектра цитокинов: ИФНу, ИЛ-4, ИЛ-2, ФНОα. Недостаток использования ФМА-ИН - проблемы выявления CD4-молекул на поверхности лимфоцитов после такой активации. Также продукцию цитокинов Т-лимфоцитами индуцируют с помощью митогенов (ФГА). В-клетки и моноциты стимулируют

    Мононуклеарные клетки инкубируют в присутствии индукторов продукции цитокинов и блокатора их внутриклеточного транспорта брефельдина А или моненсина в течение 2-6 ч.

    Затем клетки ресуспендируют в буферном растворе. Для фиксации добавляют 2% формальдегид, инкубируют 10-15 мин при комнатной температуре.

    Потом клетки обрабатывают сапонином, который повышает проницаемость клеточной мембраны, и окрашивают моноклональными антителами, специфичными к определяемым цитокинам. Предварительное окрашивание поверхностных маркеров (CD4, CD8) увеличивает количество получаемой информации о клетке и позволяет более точно определить ее популяционную принадлежность.

    Имеются некоторые ограничения в применении описанных выше методов. Так, с их помощью невозможно анализировать синтез цитокинов единичной клеткой, невозможно определить количество цитокинпродуцирующих клеток в субпопуляции, невозможно определить, экспрессируют ли цитокинпродуцирующие клетки уникальные маркеры, синтезируются ли различные цитокины разными клетками или одними и теми же. Ответ на эти вопросы получают, используя другие методы исследования. Для определения частоты цитокин-продуцирующих клеток в популяции применяют метод лимитирующих разведений и вариант иммуноферментного анализа ELISPOT (см. гл. 4).

    Метод гибридизации in situ. Метод включает:

    2) фиксацию параформальдегидом;

    3) выявление мРНК с помощью меченой кДНК. В некоторых случаях цитокиновую мРНК определяют на срезах с помощью радиоизотопной ПЦР.

    Иммунофлюоресценция. Метод включает:

    1) замораживание органа и приготовление криостатных срезов;

    2) фиксацию;

    3) обработку срезов меченными флюоресцеином антицитокиновыми антителами;

    4) изуальное наблюдение флюоресценции.

    Эти методики (гибридизация in situ и иммунофлюоресценция) быстры и не зависят от пороговых концентраций секретируемого продукта. Однако они не определяют количество секретированного цитокина и могут быть сложны технически. Необходим разнообразный тщательный контроль на неспецифические реакции.

    С помощью представленных методов оценки цитокинов были выявлены патологические процессы, связанные с нарушениями в системе цитокинов на различных уровнях.

    Таким образом, оценка системы цитокинов чрезвычайно важна для характеристики состояния иммунной системы организма. Изучение различных уровней системы цитокинов позволяет получить информацию о функциональной активности разных типов иммунокомпетентных клеток, о тяжести воспалительного процесса, о его переходе на системный уровень и о прогнозе заболевания.

    Вопросы и задания

    1. Перечислите общие свойства цитокинов.

    2. Приведите классификацию цитокинов.

    3. Перечислите основные компоненты системы цитокинов.

    4. Перечислите клетки-продуценты цитокинов.

    5. Охарактеризуйте семейства рецепторов цитокинов.

    6. Каковы механизмы функционирования сети цитокинов?

    7. Расскажите о выработке цитокинов в системе врожденного иммунитета.

    8. Каковы основные подходы к комплексной оценке системы цитокинов?

    9. Каковы методы тестирования цитокинов в биологических жидкостях организма?

    10. Каковы дефекты в системе цитокинов при различных патологиях?

    11. Каковы основные методы биологического тестирования ИЛ-1, ИФН, МИФ, ФНОа в биологических жидкостях?

    12. Опишите процесс определения внутриклеточного содержания цитокинов.

    13. Опишите процесс определения цитокинов, секретируемых единичной клеткой.

    14. Опишите последовательность применяемых методов выявления дефекта на уровне рецептора цитокина.

    15. Опишите последовательность методов, применяемых для выявления дефекта на уровне клеток-продуцентов цитокинов.

    16. Какую информацию можно получить, исследуя выработку цитокинов в культуре мононуклеарных клеток, в сыворотке крови?

    Вы когда-нибудь слышали о цитокинах? Термин «цитокин» происходит от комбинации двух греческих слов: «цито» означает клетку и «кинос» означает движение. Противовоспалительные цитокины играют важную роль как в здоровье, так и в болезнях, особенно когда речь идет о воспалительных состояниях, аутоиммунных заболеваниях, хронических и острых инфекциях, травмах, проблемах с зачатием и беременностью, и даже раком ().

    Согласно одной научной статье, которая подчеркивает роль цитокинов в здоровье женщин, включая преждевременные роды и эндометриоз, «прогресс в понимании биологии цитокинов привел к пониманию важности цитокинов во всех областях медицины» ().

    Так что же такое цитокины? Они представляют собой категорию небольших белков, которые обеспечивают связь между клетками. Существует несколько семейств цитокинов, которые вырабатываются по-разному, ведут себя по-разному и имеют разную активность в организме.

    С другой стороны, противовоспалительные цитокины могут помочь нам бороться с инфекциями и оказывать положительное влияние на нашу иммунную систему и воспаление. Однако, когда некоторые цитокины не ведут себя идеально или перепроизводятся, это может привести к заболеванию.

    Может быть трудно объяснить цитокины без чрезмерного научного языка, но лучше понимая эти мощные молекулы, мы можем улучшить или даже предотвратить некоторые очень распространенные, но серьезные проблемы со здоровьем, включая артрит, рак и многое другое.

    Что такое цитокины

    Простое определение цитокинов: группа белков, созданных иммунной системой, которые действуют как химические мессенджеры. Цитокины представляют собой белки, пептиды или гликопротеины, секретируемые лимфоцитами и моноцитами, которые регулируют иммунные ответы, гемопоэз и развитие лимфоцитов ().

    Эти мелкие белки действуют как посредники между клетками, и занимаются передачей жизненно важной информации, которая влияет на многие вещи в организме, начиная от эмбрионального развития до модуляции структуры кости и поддержания гомеостаза (). Цитокины, вероятно, наиболее известны своей ключевой ролью в качестве медиаторов и регуляторов воспалительных реакций. Они на самом деле способны стимулировать движение клеток к участкам инфекции, травм и воспалений.

    Цитокины секретируются другими типами клеток в высоких концентрациях и могут влиять либо на клетку происхождения (аутокринное действие), на ближайшие к ним клетки (паракринное действие) или на отдаленные клетки (эндокринное или системное действие) (). Как правило, цитокины могут действовать синергически (работая вместе) или антагонистически (действуя в оппозиции). Существует несколько различных групп или семейств цитокинов, которые структурно сходны, но имеют разнообразный спектр функций.

    Классификация цитокинов

    Выделяют несколько подкатегорий цитокинов, которые включают как провоспалительные, так и противовоспалительные цитокины.

    Статьи по теме:

    Провоспалительные цитокины в основном продуцируются активированными макрофагами и участвуют в активизации воспалительных реакций.

    Научные данные связывают эти провоспалительные белки с различными заболеваниями, а также с процессом патологической боли. Между тем, противовоспалительные цитокины являются молекулами, которые помогают регулировать иммунную систему и контролировать провоспалительный ответ цитокинов ().

    Согласно классификации цитокинов, существуют следующие основные семейства цитокинов и их ключевые характеристики или действия: ( , )

    • Хемокины: прямая миграция клеток, адгезия и активация
    • Интерфероны: противовирусные белки
    • Интерлейкины: разнообразие действий, зависящих от типа клеток интерлейкина
    • Монокины : мощные молекулы, вырабатываемые моноцитами и макрофагами, которые помогают направлять и регулировать иммунные реакции
    • Лимфокины. Белковые медиаторы, как правило, вырабатываются лимфоцитами (лейкоцитами) для направления реакции иммунной системы путем передачи сигналов между ее клетками.
    • Фактор некроза опухоли: регулирует воспалительные и иммунные реакции

    Есть также эритропоэтин, также называемый гемопоэтин, который является цитокиновым гормоном, который регулирует выработку эритроцитов (эритроцитов).

    Свойства цитокинов

    1. Регулирование иммунной системы

    Цитокины играют очень важную роль в нашем иммунном ответе. Двумя основными продуцентами цитокинов являются Т-хелперные клетки и макрофаги. Что это такое? Т-хелперные клетки помогают другим клеткам в иммунном ответе, распознавая чужеродные антигены и секретируя цитокины, которые затем активируют Т и В-клетки. Макрофаги окружают и убивают микроорганизмы, поглощают инородный материал, удаляют мертвые клетки и усиливают иммунные реакции.

    Воздействуя на клетки иммунной системы и взаимодействуя с ними, цитокины способны регулировать реакцию организма на болезни и инфекции. Цитокины влияют как на наши врожденные, так и на адаптивные иммунные реакции (). Оптимальное производство и поведение наших цитокинов является ключом к здоровью нашей иммунной системы.

    В одной научной статье, опубликованной в 2014 году, рассматривалось влияние цитокинов, таких как интерфероны (INF) и интерлейкины (IL), на микобактериальные инфекции, в частности, туберкулез. Исследователи приходят к выводу: «В целом семейство цитокинов IFN, по-видимому, является критическим для исхода микобактериальной инфекции» и играет важную роль в сдерживании роста бактерий ().

    3. Уменьшение боли при артрите

    Поскольку цитокины регулируют различные воспалительные реакции, неудивительно, что исследования показывают, какую важную роль играют эти белки в артрите, воспалительном заболевании суставов. Как упоминалось ранее, перепроизводство или неправильное производство определенных цитокинов организмом может привести к заболеванию.

    Согласно опубликованной в 2014 году научной статье под названием «Роль воспалительных и противовоспалительных цитокинов в патогенезе остеоартрита», интерлейкин-1-бета и фактор некроза опухолей-альфа, как полагают, являются основными воспалительными цитокинами, вовлеченными в остеоартрит (ОА). В то время как интерлейкин-15 связан с патогенезом ревматоидного артрита (РА) ().

    Хотя очевидно, что провоспалительные цитокины находятся на повышенных уровнях у пациентов с артритом, их противовоспалительные варианты также были обнаружены в синовиальной оболочке и в синовиальной жидкости пациентов с РА. На сегодняшний день научные исследования на животных моделях продемонстрировали способность противовоспалительных цитокинов уменьшать боль, возникающую в результате артрита. Однако они не препятствуют повреждению суставов. Клинические испытания на людях продолжаются, и мы надеемся, что в скором времени появятся некоторые полезные результаты для больных артритом ().

    4. Уменьшение воспаления

    Противовоспалительные цитокины известны своей способностью уменьшать воспаление в организме. А мы знаем, что воспаление является причиной большинства заболеваний (). Согласно научной статье под названием «Цитокины, воспаление и боль», которая была опубликована в журнале International Anesthesiology Clinics , из всех противовоспалительных цитокинов интерлейкин 10 (IL-10) обладает одними из самых сильных воспалительных свойств и способен подавлять экспрессию провоспалительных цитокинов, таких как интерлейкин 6 (IL-6), интерлейкин 1 (IL-1) и фактор некроза опухоли альфа (TNF-α).

    IL-10 также способен подавлять провоспалительные рецепторы цитокинов, поэтому он способен снижать продукцию, а также функцию молекул провоспалительных цитокинов на нескольких уровнях. Согласно этой статье, введение белка IL-10 продемонстрировало облегчение боли в разнообразных состояниях, таких как периферический неврит, экситотоксическое повреждение спинного мозга и повреждение периферического нерва.

    Кроме того, недавние клинические исследования показывают, что низкие уровни в крови IL-10 и интерлейкина 4 (также противовоспалительного цитокина) могут быть важными факторами, когда речь идет о хронической боли. Потому что было обнаружено, что пациенты, борющиеся с хронической широко распространенной болью, имеют низкие концентрации из этих двух цитокинов ().

    4. Противоопухолевая активность

    Определенные цитокины в настоящее время используются в иммунотерапии рака, включая лечение лейкемии, лимфомы, меланомы, рака мочевого пузыря и рака почек. Наш организм естественным образом вырабатывает цитокины. Но когда они используются для естественного лечения рака, эти белки создаются в лаборатории, а затем вводятся в больших дозах, чем организм обычно делает самостоятельно.

    По данным Национального института рака, интерлейкин-2 был первым цитокином, который оказал терапевтическое действие при раке. В 1976 году Роберт Галло, доктор медицины и Фрэнсис Рускетти, доктор философи, продемонстрировали, что этот цитокин может «значительно стимулировать рост Т-клеток и естественных киллеров, которые являются неотъемлемой частью иммунного ответа человека».

    Спустя почти 10 лет другая группа исследователей во главе со Стивеном Розенбергом, доктором медицинских наук, как сообщается, успешно вылечила нескольких пациентов с распространенным метастатическим почечно-клеточным раком (тип почечного рака) и меланомой, дав им интерлейкин-2. Интерлейкин-2 стал первой противораковой иммунотерапией, одобренной FDA в США. На сегодняшний день он все еще используется для лечения метастатической меланомы и рака почки ().

    Побочные эффекты интерлейкина-2 могут включать озноб, лихорадку, усталость, увеличение веса, тошноту, рвоту, диарею и низкое кровяное давление. Редко, но наблюдаются также нарушение сердечного ритма, боль в груди и другие проблемы с сердцем. Другие интерлейкины продолжают изучаться как возможное лечение рака ().

    Как обеспечить здоровый баланс цитокинов

    Цитокины являются важной темой научных исследований, которые продолжаются и по сей день. Но до сих пор считается, что здоровая диета, богатая полезными питательными веществами, физические упражнения и снижение стресса, могут помочь в поддержании здорового баланса цитокинов в организме.

    Предполагается, что состояние цитокинов зависит от состояния питания. Хронический дефицит питательных веществ отрицательно влияет на наш иммунный ответ, который включает снижение выработки и активности цитокинов (). Таким образом, употребление в пищу цельных и противовоспалительных продуктов является ключевым способом повышения статуса цитокинов в нашем организме.

    Исследования in vitro также показали, что экстракт корицы повышает уровень интерлейкина-10, одновременно подавляя провоспалительные цитокины на экспериментальных моделях индуцированного воспалительного заболевания кишечника ().

    Одним из растительных продуктов, уменьшающих провоспалительные цитокины является конопляное масло. Подробнее о читайте на нашем сайте.

    Есть также продукты, которые нужно избегать. В первую очередь, это:

    • рафинированный сахар
    • молочные продукты.

    Как указывает Фонд Артрита США, исследования показали, что обработанные сахара вызывают выброс воспалительных цитокинов ().

    В исследовании, опубликованном в Journal of Physiology , изучалось влияние длительных физических нагрузок на провоспалительные и противовоспалительные цитокины. Исследователи обнаружили, что в то время как физические упражнения увеличивали некоторые провоспалительные цитокины, уровни противовоспалительного интерлейкина-10 в плазме показали 27-кратное увеличение сразу после физической нагрузки, и ингибиторы цитокинов также высвобождались. Таким образом, в целом, исследование предполагает, что физические упражнения могут увеличить противовоспалительные цитокины, которые помогают уменьшить воспалительный ответ, который может возникнуть в результате длительной напряженной деятельности ().

    Исследования показали, что вначале стресс может вызывать подавление воспалительных цитокинов и активацию противовоспалительных цитокинов. Однако длительный хронический стресс дополнительно увеличивает провоспалительные цитокины, которые затем приводят к воспалительным реакциям и в конечном итоге могут вызывать различные заболевания (). Так что это еще одна причина ежедневно практиковать медитации, горячий или контрастный душ как естественные способы снятия стресса.

    Ключевые моменты о цитокинах

    • Цитокины — группа белков, созданных иммунной системой, которые действуют как химические мессенджеры.
    • Существует несколько семейств этих сигнальных белков, включая воспалительные или противовоспалительные цитокины.
    • Они особенно важны для иммунной функции и воспалительных реакций.
    • Исследования цитокинов продолжаются, но пока что текущие или потенциальные преимущества включают в себя: усиление иммунной системы, обезболивание артрита, уменьшение воспаления и роста опухолей.

    Способы стимулирования здоровой функции и баланса цитокинов включают здоровую диету, основанную на цельных продуктах, которые содержат противовоспалительные компоненты и исключает воспалительные продукты, такие как сахар и молоко. Снижение стресса, в том числе регулярные физические упражнения, также могут способствовать оптимальному статусу цитокинов.

    А. Интерфероны (ИФН ):

    1. Природные ИФН (1 поколение):

    2. Рекомбинанатные ИФН (2 поколение):

    а) короткого действия:

    ИФН a2b: интрон-А

    ИФН β: авонекс и др.

    (пэгилированные ИФН): пэгинтерферон

    Б. Индукторы интерферона (интерфероногены):

    1. Синтетические – циклоферон, тилорон, дибазол и др.

    2. Природные – ридостин и др.

    В. Интерлейкины : рекомбинантный интерлейкин-2 (ронколейкин, альдеслейкин, пролейкин,) , рекомбинантный интерлейкин 1-бета (беталейкин).

    Г. Колониестимулирующие факторы (молграмостим и др.)

    Пептидные препараты

    Препараты тимических пептидов .

    Пептидные соединения, вы­рабатываемые вилочковой железой, стимулируют созревание Т-лимфоцитов (тимопоэтины).

    При исходно пониженных показателях препараты типических пептидов повышают количество Т-клеток и их функциональную активность.

    Родоначальником тимических препаратов первого поколения в России стал Тактивин , представляющий собой комплекс пептидов, экстрагированных из тимуса крупного рогатого скота. К препаратам, содержащим комплекс тимических пептидов, относятся также Тималин, Тимоптин и другие, а к содержащим экстракты тимуса – Тимостимулин и Вилозен .

    Препараты пептидов из тимуса крупного рогатого скота тималин, тимостимулин вводят внутримышечно, а тактивин, тимоптин - под кожу в основном при недостаточности клеточного иммунитета:

    При Т-иммунодефицитах,

    Вирусных инфекциях,

    Для профилактики инфекций при лучевой терапии и химиотерапии опухолей.

    Клиническая эффективность тимических препаратов первого поколения не вызывает сомнения, но у них есть один недостаток: они представляют собой неразделенную смесь биологически активных пептидов, достаточно трудно поддающихся стандартизации.

    Прогресс в области лекарственных средств тимического происхождения шел по линии создания препаратов II и III поколений – синтетических аналогов природных гормонов тимуса или фрагментов этих гормонов, обладающих биологической активностью.

    Современный препарат Имунофан – гексапептид, синтетический аналог активного центра тимопоэтина, применяют при иммунодефицитах, опухолях. Препарат стимулирует образование ИЛ-2 иммунокомпетентными клетками, повышает чувствительность лимфоидных кле­ток к этому лимфокину, снижает продукцию ФНО (фактора некроза опухолей), оказывает регулирующее вли­яние на выработку медиаторов иммунитета (воспаления) и иммуноглобулинов.

    Препараты пептидов костного мозга

    Миелопид получают из культуры клеток костного мозга млекопитающих (телят, свиней). Ме­ханизм действия препарата связан со стимуляцией пролиферации и функциональ­ной активности В- и Т-клеток.



    В организме мишенью этого препарата считаются В-лимфоциты. При нарушении иммуно- или гемопоэза введение миелопида ведет к усилению общей митотической активности клеток костного мозга и направлению их дифференцировки в сторону зрелых В-лимфоцитов.

    Миелопид применяют в комплексной терапии вторичных иммуно­дефицитных состояний с преимущественным поражением гуморального звена им­мунитета, для профилактики инфекционных осложнений после хирургических вмешательств, травм, перенесенного остеомиелита, при неспецифических легоч­ных заболеваниях, хронических пиодермиях. Побочные эффекты препарата - головокружение, слабость, тошнота, гиперемия и болезненность в месте введения.

    Все препараты этой группы противопоказаны беременным, миелопид и имунофан противопоказаны при наличии резус-конфликта матери и плода.

    Препараты иммуноглобулинов

    Иммуноглобулины человека

    а) Иммуноглобулины для внутримышечного введения

    Неспецифические: иммуноглобулин человека нормальный

    Специфические: иммуноглобулин против гепатита В человека, иммуноглобулин человека антистафилококковый, иммуноглобулин человека противостолбнячный, иммуноглобулин человека против клещевого энцефалита, иммуноглобулин человека против вируса бешенства и др.

    б)Иммуноглобулины для внутривенного введения

    Неспецифические: иммуноглобулин человека нормальный для внутривенного введения (габриглобин, иммуновенин, интраглобин, хумаглобин)

    Специфические: иммуноглобулин против гепатита В человека (неогепатект), пентаглобин (содержит антибактериальные IgM, IgG, IgA), иммуноглобулин против цитомегаловируса (цитотект), иммуноглобулин человека против клещевого энцефалита, антирабический ИГ и др..

    в)Иммуноглобулины для перорального применения: иммуноглобулиновый комплексный препарат (КИП) для энтерального применения при острых кишечных инфекциях; антиротавирусный иммуноглобулин для перорального введения.

    Гетерологичные иммуноглобулины:

    иммуноглобулин антирабический из сыворотки лошади, сыворотка противогангренозная поливалентная лошадиная и др.

    Препараты неспецифических иммуноглобулинов применяют при первичных и вторичных иммунодефицитах, препараты специфических иммуноглобулинов – при соответствующих инфекциях (с лечебной или профилактической целью).

    Цитокины и препараты на их основе

    Регуляция развившегося иммунного ответа осуществляется цитокинами – сложным комплексом эндогенных иммунорегуляторных молекул , которые являются основой для создания большой группы как естественных, так и рекомбинантных иммуномодулируюших препаратов.

    Интерфероны (ИФН):

    1. Природные ИФН (1 поколение):

    Альфафероны: человеческий лейкоцитарный ИФН и др.

    Бетафероны: человеческий фибробластный ИФН и др.

    2. Рекомбинанатные ИФН (2 поколение):

    а) короткого действия:

    ИФН a2а: реаферон, виферон и др.

    ИФН a2b: интрон-А

    ИФН β: авонекс и др.

    б) пролонгированного действия (пэгилированные ИФН): пэгинтерферон (ИФН a2b+Полиэтиленгликоль) и др.

    Основная направленность действия препаратов ИФН – Т-лимфоциты (естественные киллеры и цитотоксические Т-лимфоциты).

    Природные интерфероны получают в культуре клеток лейкоцитов донорс­кой крови (в культуре лимфобластоидных и других клеток) под воздействием вируса-индуктора.

    Рекомбинантные интерфероны получают генно-инженерным методом - путем культивирования бактериальных штаммов, содержащих в своем гене­тическом аппарате встроенную рекомбинантную плазмиду гена интерферона человека.

    Интерфероны оказывают противовирусное, противоопухолевое и иммуномодулирующее действие.

    Как противовирусные средства препараты интерферона наиболее эффективны при лечении герпетических заболеваний глаз (местно в виде капель, субконъюнктивально), простого герпеса с локализацией на коже, слизистых оболочках и гени­талиях, опоясывающего лишая (местно в виде мази на гидрогелевой основе), ос­трого и хронического вирусного гепатита В и С (парентерально, ректально в суппозиториях), при лечении и профилактике гриппа и ОРВИ (интраназально в форме капель). При ВИЧ-инфекции препараты рекомбинантного интерферона нормализуют иммунологические параметры, снижают остроту течения заболева­ния более чем в 50% случаев, вызывают уменьшение уровня виремии и содержа­ния сывороточных маркеров заболевания. При СПИДе проводят комбинирован­ную терапию с азидотимидином.

    Противоопухолевое действие препаратов интерферона связано с антипроли-феративным эффектом и стимуляцией активности естественных киллеров. Как противоопухолевые средства применяются ИФН-альфа, ИФН-аль­фа 2а, ИФН-альфа-2b, ИФН-альфа-n1, ИФН-бета.

    В качестве иммуномодулятора при рассеянном склерозе применяется ИФН-бета-lb.

    Препараты интерферонов вызывают сходные побочные эффекты . Характер­ны - гриппоподобный синдром; изменения со стороны ЦНС: головокружение, нарушение зрения, спутанность сознания, депрессия, бессонница, парестезии, тремор. Со стороны желудочно-кишечного тракта: по­теря аппетита, тошнота; со стороны сердечно-сосудистой системы возможно про­явление симптомов сердечной недостаточности; со стороны мочевыделительной системы - протеинурия; со стороны системы кроветворения - преходящая лей­копения. Также могут возникнуть сыпь, зуд, алопеция, временная импотенция, носовые кровотечения.

    Индукторы интерферона (интерфероногены):

    1. Синтетические – циклоферон, тилорон, полудан и др.

    2. Природные – ридостин и др.

    Индукторы интерферона - это препараты, усиливающие синтез эндогенного интерферона. Эти препараты имеют ряд преимуществ по сравнению с рекомбинантными интерферонами. Они не обладают антигенной активностью. Стимули­рованный синтез эндогенного интерферона не вызывает гиперинтерферонемии.

    Тилорон (амиксин) относится к низкомолекулярным синтетическим соединениям, является пероральным индуктором интерферона. Обладает широким спектром противовирусной активности в отношении ДНК- и РНК-содержащих вирусов. Как противовирусное и иммуномодулирующее средство применяется для профи­лактики и лечения гриппа, ОРВИ, гепатита А, для лечения вирусных гепатитов, герпеса простого (в том числе урогенитального) и опоясывающего, при комплек­сной терапии хламидийных инфекций, нейровирусных и инфекционно-аллергических заболеваний, при вторичных иммунодефицитах. Препарат хорошо переносится. Возможны диспептические явления, кратковременный озноб, по­вышение общего тонуса, что не требует отмены препарата.

    Полудан представляет собой биосинтетический полирибонуклеотидный комплекс полиадениловой и полиуридиловой кислот (в эквимолярных соотно­шениях). Препарат оказывает выраженное ингибирующее влияние на вирусы про­стого герпеса. Применяется в виде глазных капель и инъекций под конъюнктиву. Препарат назначают взрослым для лечения вирусных заболеваний глаз: герпети­ческих и аденовирусных конъюнктивитов, кератоконъюнктивитов, кератитов и кератоиридоциклитов (кератоувеитов), иридоциклитов, хориоретинитов, неври­тов зрительного нерва.

    Побочные эффекты возникают редко и проявляются развитием аллергичес­ких реакций: зуд и ощущение инородного тела в глазу.

    Циклоферон - низкомолекулярный индуктор интерферона. Оказывает противовирусное, иммуномодулирующее и противовоспалительное действие. Циклоферон эффективен в отношении вирусов клещевого энцефалита, герпеса, цитомегаловируса, ВИЧ и др. Обладает антихламидийным действием. Эффекти­вен при системных заболеваниях соединительной ткани. Установлено радиоза­щитное и противовоспалительное действие препарата.

    Арбидол назначают внутрь для профилактики и лечения гриппа и других ОРВИ, а также при герпетических заболеваниях.

    Интерлейкины:

    рекомбинантный ИЛ-2 (альдеслейкин, пролейкин, ронколейкин) , рекомбинантный ИЛ-1бета (беталейкин ).

    Для цитокиновых препаратов естественного происхождения, содержащих достаточно большой набор цитокинов воспаления и первой фазы иммунного ответа, характерно многогранное воздействие на организм человека. Эти препараты действуют на клетки, участвующие в воспалении, процессах регенерации и иммунном ответе.

    Альдеслейкин - рекомбинантный аналог ИЛ-2. Оказывает иммуномодулирующее и противоопухолевое действие. Активирует клеточный иммунитет. Усиливает пролиферацию Т-лимфоцитов и ИЛ-2-зависимых клеточных популяций. Повышает цитотоксичность лимфоцитов и клеток - киллеров, которые распознают и уничтожают клетки опухоли. Усиливает продукцию гамма-интерферона, ФНО, ИЛ-1. Применяется при раке почек.

    Беталейкин - рекомбинантный человеческий ИЛ-1 бета. Сти­мулирует лейкопоэз и иммунную защиту. Вводят под кожу или внутривенно при гнойных процессах с иммунодефи­цитом, при лейкопении в результате химиотерапии, при опухолях.

    Ронколейкин - рекомбинантный препарат интерлейкина-2 -вводят внутривенно при сепсисе с иммунодефицитом, а также при раке почки.

    Колониестимулирующие факторы:

    Молграмостим (Лейкомакс) - рекомбинантный препарат человеческого гранулоцитарно-макрофагального колониестимулирующего фактора. Стимулирует лейкопоэз, обладает иммунотропной актив­ностью. Усиливает пролиферацию и дифференцировку предшественников, увеличивает содержание зрелых клеток в периферической крови, рост гранулоцитов, моноцитов, макрофагов. Повышает функциональную активность зрелых нейтрофилов, усиливает фагоцитоз и окислительный метаболизм, обеспечиваю­щий механизмы фагоцитоза, повышает цитотоксичность в отношении злокаче­ственных клеток.

    Филграстим (Нейпоген) - рекомбинантный препарат человеческого гранулоцитарного колониестимулирующего факто­ра. Филграстим регулирует продукцию нейтрофилов и их поступление в кровь из костного мозга.

    Ленограстим - рекомбинантный препарат человеческого гранулоцитарного колониестимулирующего фактора. Представляет со­бой высокоочищенный протеин. Является иммуномодулятором и стимулятором лейкопоэза.

    Синтетические иммуностимуляторы: левамизол, изопринозин полиоксидоний, галавит.

    Левамизол (декарис), производным имидазола, применяют в качестве иммуностимулятора, а также в качестве противоглистного средства при аскаридозе. Иммуностимулирующие свойства левамизола связывают с повышением активности макрофагов и Т-лимфоцитов.

    Левамизол назначают внутрь при рецидивирующих герпетических инфекциях, хроническом вирусном гепатите, аутоиммунных заболеваниях (ревматоидный артрит, системная красная волчанка, болезнь Крона). Препарат применяют также при опухолях толстого кишечника после хирургической, лучевой или лекарственной терапии опухолей.

    Изопринозин - препарат, содержащий инозин. Стимулирует активность макрофагов, продукцию интерлейкинов, пролиферацию Т-лимфоцитов.

    Назначают внутрь при вирусных инфекциях, хронических инфекциях дыхательных и мочевыводящих путей, иммунодефицитах.

    Полиоксидоний - синтетическое водорастворимое полимерное соеди­нение. Препарат обладает иммуностимулирующим и детоксицирующим действи­ем, увеличивает иммунную резистентность организма в отношении локальных и генерализованных инфекций. Полиоксидоний активирует все факторы естествен­ной резистентности: клетки моноцитарно-макрофагальной системы, нейтрофилы и естественные киллеры, повышая их функциональную активность при ис­ходно сниженных показателях.

    Галавит – производное фталгидразида. Особенность этого препарата заключается в наличии не только иммуномодулирующих, но и выраженных противовоспалительных свойств.

    Препараты других фармакологических классов с иммуностимулирующей активностью

    1. Адаптогены и препараты растительного происхождения (фитопрепараты): препараты эхинацеи (иммунал), элеутерококка, женьшеня, родиолы розовой и др.

    2. Витамины: кислота аскорбиновая (витамин С), токоферола ацетат (витамин Е), ретинола ацетат (витамин А) (см. раздел «Витамины»).

    Препараты эхинацеи обладают иммуностимулирующими и противовоспалительными свойствами. При приеме внутрь эти препараты повышают фагоцитарную активность макрофагов и нейтрофилов, стимулируют продукцию интерлейкина-1, активность Т-хелперов, дифференцировку В-лимфоцитов.

    Применяют препараты эхинацеи при иммунодефицитах и хронических воспалительных заболеваниях. В частности, иммунал назначают внутрь в каплях для профилактики и лечения острых респираторных инфекций, а также совместно с антибактериальными средствами при инфекциях кожи, дыхательных и мочевыводящих путей.

    Общие принципы применения иммуностимуляторов у больных с вторичными иммунодефицитами

    Наиболее обоснованным применение иммуномостимуляторов представляется при иммунодефицитах, проявляющихся повышенной инфекционной заболеваемостью. Главной мишенью иммуностимулирующих препаратов остаются вторичные иммунодефициты, которые проявляются частыми рецидивирующими, трудно поддающимися лечению инфекционно-воспалительными заболеваниями всех локализаций и любой этиологии. В основе каждого хронического инфекционно-воспалительного процесса лежат изменения в иммунной системе, которые являются одной из причин персистенции этого процесса.

    · Иммуномодуляторы назначают в комплексной терапии одновременно с антибиотиками, противогрибковыми, противопротозойными или противовирусными средствами.

    · При проведении иммунореабилитационных мероприятий, в частности при неполном выздоровлении после перенесенного острого инфекционного заболевания, иммуномодуляторы можно применять в виде монотерапии.

    · Применять иммуномодуляторы целесообразно на фоне иммунологического мониторинга, который следует осуществлять вне зависимости от наличия или отсутствия исходных изменений в иммунной системе.

    · Иммуномодуляторы, действующие на фагоцитарное звено иммунитета, можно назначать больным как с выявленными, так и с невыявленными нарушениями иммунного статуса, т.е. основанием для их применения является клиническая картина.

    Понижение какого-либо параметра иммунитета, выявленное при иммунодиагностическом исследовании у практически здорового человека, не обязательно является основанием для назначения ему иммуномодулирующей терапии.

    Контрольные вопросы:

    1. Что такое иммуностимуляторы, какие бывают показания к проведению иммунотерапии, на какие виды подразделяют иммунодефицитные состояния?

    2. Классификация иммуномодуляторов по преимущественной изберательности действия?

    3. Иммуностимуляторы микробного происхождения и их синтетические аналоги, их фармакологичекие свойства, показания к применения, противопоказания, побочные эффекты?

    4. Эндогенные иммуностимуляторы и их синтетические аналоги, их фармакологичекие свойства, показания к применения, противопоказания, побочные эффекты?

    5. Препараты тимических пептидов и пептидов костного мозга их фармакологичекие свойства, показания к применения, противопоказания, побочные эффекты?

    6. Препараты иммуноглобулинов и интерфероны (ИФН), их фармакологичекие свойства, показания к применения, противопоказания, побочные эффекты?

    7. Препараты индукторов интерферона (интерфероногены), их фармакологичекие свойства, показания к применения, противопоказания, побочные эффекты?

    8. Препараты интерлейкинов и колониестимулирующих факторов, их фармакологичекие свойства, показания к применения, противопоказания, побочные эффекты?

    9. Синтетические иммуностимуляторы их фармакологичекие свойства, показания к применения, противопоказания, побочные эффекты?

    10. Препараты других фармакологических классов с иммуностимулирующей активностью и общие принципы применения иммуностимуляторов у больных с вторичными иммунодефицитами?

    До последнего времени 4 стадия рака была фактически приговором пациенту. Традиционные методы лечения помогали слабо, вся терапия сводилась к купированию симптоматики. Однако несколько десятилетий назад начали активно развивать иммуноонкологию и, конкретно, цитокинотерапию – способ лечения препаратами на основе белков организма, который, по отзывам, имеет очень высокую эффективность. Клиника онкоиммунологии и цитокинотерапии в Москве по положительным показателям считается одной из лучших в мире.

    Что такое цитокинотерапия

    Данная методика лечения развилась на основе иммуноонкологии – разделе онкологии, который изучает функционирование иммунной системы при раковых заболеваниях. В основе метода – лечение рака, других заболеваний препаратами на основе белков (цитокинов) организма человека. В определенных условиях они могут уничтожать разные патогены: чужеродные клетки, вирусы, антигены, эндотоксины и др. Принцип работы цитокинов:

    • активизация иммунологического ответа организма на атаку патогенов;
    • контроль работы иммунитета, киллерных клеток (элементов, которые непосредственно борются с заболеванием);
    • провоцирование обновления клеточной массы на здоровую;
    • нормализация работы систем организма.

    Положительное действие

    Добавление работы с цитокинами при комплексном лечении онкологии помогает добиться абсолютной положительной терапии у 10-30% пациентов, а частичный успех достигает 90%. Может показаться, что это мало, но для тяжелых раковых опухолей последних стадий – это огромное достижение. Тем более, что методика может и должна сочетаться с традиционными методами (медикаментозным, химиотерапией).

    Цитокинотерапия качественно и точечно работает против опухолей, метастазов и при этом не имеет токсического эффекта на организм. Отдельно стоит отметить положительное усиление качества химиотерапии. Методика уже доказала свою эффективность в клинических исследованиях (в РФ допускается к лечению данной методикой уже более 50 патологий разного типа). Кроме онкологических заболеваний, цитокинотерапия успешно борется с другими патологиями:

    • онкология вплоть до 4 стадии;
    • вирусный гепатит В, С;
    • меланомы;
    • саркома Капоши на фоне ВИЧ;
    • СПИД и ВИЧ;
    • ОРВИ, грипп, бактериальные кишечные и ротавирусные инфекции;
    • туберкулез;
    • опоясывающий лишай;
    • шизофрения;
    • рассеянный склероз.

    Онкоиммунология и цитокинотерапия

    Фактически все злокачественные опухоли с тяжелым течением происходят на фоне угнетенного иммунитета. Онкоиммунологи (специалисты в иммуноонкологии) разрабатывают на фоне клинического изучения новые методики и препараты лечения раковых заболеваний, основываясь на действиях иммунной системы. Базируется метод цитокинотерапии на использовании цитокинов, особых белков, а сама методика появилась еще в 80-х годах 20 века. Основной проблемой была высокая токсичность препаратов. Современные средства на основе цитокинов имеют токсичность ниже в 100 раз.

    Функции цитокинов в организме

    Цитокинов огромное количество в организме человека, все они выполняют разные функции. Цитокинотерапия использует это многообразие для лечения большого спектра болезней и активизации внутренних процессов организма. Доказано, что фактически человеческие системы могут бороться с любой проблемой. Главное – запустить нужные процессы. Функции цитокинов в организме:

    • контроль за продолжительностью и качеством иммунной реакции;
    • противовоспалительные цитокины контролируют воспалительные процессы;
    • стимулирование развития аутоиммунных реакций (противовоспалительные и провоспалительные цитокины);
    • участие в механике аллергии;
    • уменьшение опухоли или ее разрушение;
    • стимулирование или подавление роста клеток;
    • замедление развития онкологии;
    • координирование иммунной, эндокринной и нервной систем;
    • предупреждение рецидива опухоли;
    • поддержание гомеостаза (здорового постоянства) организма.

    Количество изученных белков-цитокинов превышает уже 200 наименований. Виды взаимодействия цитокинов – это сложный комплекс с различными функциями. Первоначально их разделяют по типу активности. Упрощенная классификация предполагает разделение по биологическому воздействию: регуляторы воспалений (противовоспалительные и провоспалительные цитокины), регулирующие клеточный иммунитет и гуморальный иммунный отдел. Более точная систематизация разбивает белки по их характеру воздействия. Виды цитокинов:

    • регуляторы иммунной активности (интерлейкины и их биологические функции обеспечивают правильное взаимодействие иммунитета с другими системами организма);
    • противовирусные регуляторы – интерфероны;
    • ФНО (факторы некроза опухолей) – регуляторное или токсическое воздействие на клетки;
    • хемокины – контроль перемещения лейкоцитов всех типов, других клеток;
    • факторы роста – управление ростом клеток;
    • колониестимулирующие факторы – стимулирование развития кроветворных клеток.

    Цитокины как лекарственные препараты

    Ингарон – цитокинотерапевтическое средство для усиления эффекта химиотерапии, одновременной защиты организма от токсических последствий. Дополнительно снижает возможное возникновение метастаз и опухолей. Препарат Ингарон провоцирует развитие иммунитета, который после химии не позволит развиваться инфекционным заболеваниям, снизит потребность в антибактериальных препаратах. Средство обладает минимальной токсичностью по сравнению с западными аналогами.

    Препарат Рефнот направлен на ограничение развития новообразований за счет цитокина ФНО в составе. Средство также обладает качественно сниженной токсичностью, что допускает его подкожное или внутривенное введение, стимулирует разрушение злокачественных образований без поражения сопутствующих тканей. Для определения динамики лечения требуется 1-2 курса. Для получения максимального эффекта применяют оба препарата в комплексе, чтобы активировать нужные цитокины при онкологии.

    Побочные проявления

    Лечение цитокинами может вызывать негативные эффекты в зависимости от морфологии заболевания, общего состояния пациента, комбинации препаратов. В большинстве своем побочные явления не несут опасности для пациента, а указывают на реакцию опухоли на лекарство. При появлении вторичных реакций курс терапии приостанавливают или корректируют схему лечения. Возможные негативные проявления организма:

    • повышение температуры тела на 2-3 градуса через 4-6 часов после введения цитокинов;
    • болезненные ощущения и покраснение в месте инъекции;
    • отравление организма продуктами распада опухоли (в случае большого размера образования).

    Кому метод цитокинотерапии не подходит

    Препараты на основе цитокинов фактически не имеют противопоказаний и могут использоваться для любых пациентов. Однако, как и для других лекарственных средств, существует ряд больных, которым не рекомендуют использовать подобную методику лечения. Не применяют цитокинотерапию беременным, в период кормления грудью, при наличии аутоиммунных заболеваний, редкой личной аллергии организма на препараты.

    Стоимость цитокинотерапии

    Эффективное использование цитокиновых препаратов достигается в специализированных центрах (например, Центр онкоиммунологии и цитокинотерапии в Москве – лучшая клиника по отзывам спасенных пациентов). Стоимость такого типа лечения сильно варьируется от типа используемого препарата и конкретного заболевания. Примерные цены на некоторые цитокинопрепараты в Москве.