Что определяет сложную форму электрокардиограммы. Электрокардиография (ЭКГ). Из чего состоит электрокардиограмма

Электрокардиография (ЭКГ) – один из электрофизиологических методов регистрации биопотенциалов сердца. Электрические импульсы сердечной ткани передаются на накожные электроды, расположенные на руках, ногах и грудной клетке. Затем эти данные выводятся либо в графическом виде на бумаге, либо отображаются на дисплее.

В классическом варианте в зависимости от места расположения электрода выделяют, так называемые, стандартные, усиленные и грудные отведения. Каждое из них показывает биоэлектрические импульсы, снятые с сердечной мышцы под определенным углом. Благодаря такому подходу в итоге на электрокардиограмме вырисовывается полная характеристика работы каждого участка сердечной ткани.

Рисунок 1. ЭКГ лента с графическими данными

Что же показывает ЭКГ сердца? При помощи этого распространенного диагностического метода можно определить конкретное место, в котором происходит патологический процесс. Помимо каких-либо нарушений в работе миокарда (сердечной мышце), ЭКГ показывает пространственное расположение сердца в грудной клетке.

Основные задачи электрокардиографии

  1. Своевременное определение нарушений ритмичности и частоты сердечных сокращений (выявление аритмий и экстрасистол).
  2. Определение острых (инфаркт миокарда) либо хронических (ишемия) органических изменений сердечной мышцы.
  3. Выявление нарушений внутрисердечных проведений нервных импульсов (нарушение проводимости электрического импульса по проводящей системе сердца (блокады)).
  4. Определение некоторых острых (ТЭЛА – тромбоэмболия легочной артерии) и хронических (хронический бронхит с дыхательной недостаточностью) легочных заболеваний.
  5. Выявление электролитных (уровень калия, кальция) и иных изменений миокарда (дистрофия, гипертрофия (увеличение толщины сердечной мышцы)).
  6. Косвенная регистрация воспалительных заболеваний сердца (миокардит).

Недостатки метода

Основным недостатком электрокардиографии является кратковременная регистрация показателей. Т.е. на записи отображается работа сердца только в момент снятия ЭКГ в состоянии покоя. Ввиду того, что вышеописанные нарушения могут быть преходящими (появляться и исчезать в любое время), специалисты нередко прибегают к суточному мониторированию и регистрации ЭКГ с нагрузкой (нагрузочные тесты).

Показания к проведению ЭКГ

Электрокардиография проводится в плановом, либо в экстренном порядке. Плановая регистрация ЭКГ осуществляется при ведении беременности, при поступлении пациента в больницу, в процессе подготовки человека к операциям или сложным медицинским процедурам, для оценки сердечной деятельности после определенного лечения либо оперативных медицинских вмешательств.

С профилактической целью ЭКГ назначается:

  • людям с высоким артериальным давлением;
  • при атеросклерозе сосудов;
  • в случае ожирения;
  • при гиперхолистеринемии (повышение уровня холестерина в крови);
  • после некоторых перенесенных инфекционных заболеваний (ангина и др.);
  • при заболеваниях эндокринной и нервной систем;
  • лицам старше 40 лет и людям, подверженным стрессам;
  • при ревматологических заболеваниях;
  • людям с профессиональными рисками и вредностями для оценки профпригодности (пилоты, моряки, спортсмены, водители…).

В экстренном порядке, т.е. «в сию минуту» ЭКГ назначается:

  • при болях или ощущениях дискомфорта за грудиной либо в грудной клетке;
  • в случае появления резкой одышки;
  • при длительных сильных болях в животе (особенно в верхних отделах);
  • в случае стойкого повышения артериального давления;
  • при возникновении необъяснимой слабости;
  • при потере сознания;
  • при травме грудной клетки (с целью исключить повреждения сердца);
  • в момент или после нарушения сердечного ритма;
  • при болях в грудном отделе позвоночника и спине (особенно слева);
  • при сильной боли в области шеи и нижней челюсти.

Противопоказания к ЭКГ

Абсолютных противопоказаний к снятию ЭКГ нет. Относительными противопоказаниями к электрокардиографии могут являться различные нарушения целостности кожных покровов в местах прикрепления электродов. Однако следует помнить, что в случае экстренных показаний ЭКГ следует снимать всегда без исключений.

Подготовка к электрокардиографии

Особенной подготовки к ЭКГ также не существует, но есть некоторые нюансы выполнения процедуры, о которых пациента должен предупредить врач.

  1. Необходимо знать принимает ли пациент сердечные препараты (должна быть сделана пометка на бланке направления).
  2. Во время процедуры нельзя разговаривать и двигаться, необходимо лежать, расслабившись и дышать спокойно.
  3. Слушать и выполнять несложные команды медперсонала, если это необходимо (вдохнуть и не дышать на протяжении нескольких секунд).
  4. Важно знать, что процедура безболезненная и безопасная.

Искажение записи электрокардиограммы возможно при движениях пациента или в случае неправильного заземления аппарата. Причиной неправильной записи также может быть неплотное прилегание электродов к кожным покровам или их неправильное подсоединение. Помехи в записи нередко бывают при мышечной дрожи или при электрической наводке.

Проведение электрокардиографии или как делают ЭКГ


Рисунок 2. Наложение электродов при ЭКГ При записи кардиограммы пациент лежит на спине на горизонтальной поверхности, руки вытянуты вдоль туловища, ноги выпрямлены и не согнуты в коленях, грудь обнажена. К лодыжкам и запястьям крепятся по одному электроду согласно общепринятой схеме:
  • к правой руке – красный электрод;
  • к левой руке – желтый;
  • к левой ноге – зеленый;
  • к правой ноге – черный.

Затем на грудную клетку накладывается еще 6 электродов.

После полного подключения пациента к аппарату ЭКГ производится процедура записи, которая на современных электрокардиографах длится не более одной минуты. В некоторых случаях медработник просит пациента вдохнуть и не дышать на протяжении 10-15 секунд и проводит в это время дополнительную запись.

В конце процедуры на ЭКГ-ленте указывается возраст, Ф.И.О. пациента и скорость, на которой снята кардиограмма. Затем специалистом проводится расшифровка записи.

Расшифровка ЭКГ и интерпретация

Расшифровкой электрокардиограммы занимается либо кардиолог, либо врач функциональной диагностики, либо фельдшер (в условия скорой помощи). Данные сравниваются с эталонной ЭКГ. На кардиограмме обычно различаются пять основных зубцов (P, Q, R, S, T) и малозаметную U-волну.


Рисунок 3. Основные характеристики кардиограммы

Таблица 1. ЭКГ расшифровка у взрослых норма


ЭКГ расшифровка у взрослых, норма в таблице

Различные изменения зубцов (их ширины) и интервалов могут свидетельствовать о замедлении проведения нервного импульса по сердцу. Инверсия зубца T и/или подъем или снижение интервала ST относительно изометрической линии говорит о возможном повреждении клеток миокарда.

Во время расшифровки ЭКГ, кроме изучения форм и интервалов всех зубцов, проводится комплексная оценка всей электрокардиограммы. В этом случае изучается амплитуда и направление всех зубцов в стандартных и усиленных отведениях. К ним относятся I, II, III, avR, avL и avF. (см рис.1) Имея суммарную картину этих элементов ЭКГ можно судить об ЭОС (электрической оси сердца), которая показывает наличие блокад и помогает определить расположение сердца в грудной клетке.

К примеру, у тучных лиц ЭОС может быть отклонена влево и вниз. Таким образом, расшифровка ЭКГ содержит все сведения об источнике сердечного ритма, проводимости, величине сердечных камер (предсердия и желудочки), изменениях миокарда и электролитных нарушениях в сердечной мышце.

Основное и наиболее важное клиническое значение ЭКГ имеет при инфаркте миокарда, нарушениях проводимости сердца. Анализируя электрокардиограмму, можно получить сведения об очаге некроза (локализация инфаркта миокарда) и его давности. Следует помнить, что оценка ЭКГ должна проводиться в комплексе с эхокардиографией, суточным (холтеровским) мониторированием ЭКГ и функциональными нагрузочными пробами. В некоторых случаях ЭКГ может быть практически неинформативна. Такое наблюдается при массивных внутрижелудочковых блокадах. К примеру, ПБЛНПГ (полная блокада левой ножки пучка Гисса). В этом случае необходимо прибегнуть к иным диагностическим методам.

Видео по теме «ЭКГ норма»

Патология сердечно-сосудистой системы – одна из наиболее распространенных проблем, которой подвержены люди всех возрастов. Своевременное лечение и диагностика работы системы кровообращения может существенно снизить риск развития опасных заболеваний.

На сегодняшний день самым эффективным и легкодоступным методом исследования работы сердца является электрокардиограмма.

При изучении результатов обследования пациента, врачи обращают внимание на такие составляющие ЭКГ, как:

  • Зубцы;
  • Интервалы;
  • Сегменты.

Оценивается не только их наличие или отсутствие, но и высота, продолжительность, расположение, направление и последовательность.

Существуют строгие параметры нормы для каждой линии на ленте ЭКГ, малейшее отклонение от которых может свидетельствовать о нарушениях в работе сердца.

Анализ кардиограммы

Вся совокупность линий ЭКГ исследуется и измеряется математически, после чего врач может определить некоторые параметры работы сердечной мышцы и её проводящей системы: ритм сердца, частоту сердечных сокращений, водитель ритма, проводимость, электрическую ось сердца.

На сегодняшний день все эти показатели исследуют высокоточные электрокардиографы.

Синусовый ритм сердца

Это параметр, отражающий ритмичность сердечных сокращений, возникающих под влиянием синусового узла (в норме). Он показывает слаженность работы всех отделов сердца, последовательность процессов напряжения и расслабления сердечной мышцы.

Ритм очень легко определить по самым высоким зубцам R : если расстояние между ними одинаковое на протяжении всей записи или отклоняется не более чем на 10%, значит пациент не страдает аритмией.

ЧСС

Количество ударов в минуту можно определить не только считая пульс, но и по ЭКГ. Для этого необходимо знать скорость, с которой проводилась запись ЭКГ (обычно это 25, 50 или 100мм/с), а также расстояние между самыми высокими зубцами (от одной вершины к другой).

Умножая продолжительность записи одного мм на длину отрезка R-R , можно получить ЧСС. В норме его показатели колеблются от 60 до 80 ударов в минуту.

Источник возбуждения

Автономная нервная система сердца устроена таким образом, что процесс сокращения зависит от скопления нервных клеток в одной из зон сердца. В норме это синусовый узел, импульсы от которого расходятся по всей нервной системе сердца.

В некоторых случаях роль водителя ритма могут брать на себя другие узлы (предсердный, желудочковый, атриовентрикулярный). Определить это можно, исследуя зубец P - малозаметный, находящийся чуть выше изолинии.

Детальную и исчерпывающую информацию о симптомах кардиосклероза сердца вы можете прочесть .

Проводимость

Это критерий, показывающий процесс передачи импульса. В норме импульсы передаются последовательно от одного водителя ритма к другому, не меняя порядок.

Электрическая ось

Показатель, основанный на процессе возбуждения желудочков. Математический анализ зубцов Q, R, S в I и III отведениях позволяет рассчитать некий результирующий вектор их возбуждения. Это необходимо для установления функционирования ветвей пучка Гиса.

Полученный угол наклона оси сердца оценивается по величине: 50-70° норма, 70-90° отклонение вправо, 50-0° отклонение влево.

В тех случаях, когда наблюдается наклон более чем на 90° или более чем -30°, имеет место быть серьёзное нарушение в работе пучка Гиса.

Зубцы, сегменты и интервалы

Зубцы – участки ЭКГ, лежащие выше изолинии, их значение таково:

  • P – отражает процессы сокращения и расслабления предсердий.
  • Q, S – отражают процессы возбуждения межжелудочковой перегородки.
  • R – процесс возбуждения желудочков.
  • T – процесс расслабления желудочков.

Интервалы – участки ЭКГ, лежащие на изолинии.

  • PQ – отражает время распространения импульса от предсердий до желудочков.

Сегменты – участки ЭКГ, включающие в себя интервал и зубец.

  • QRST – длительность сокращения желудочков.
  • ST – время полного возбуждения желудочков.
  • TP – время электрической диастолы сердца.

Норма у мужчин и женщин

Расшифровка ЭКГ сердца и нормы показателей у взрослых представлены в этой таблице:

Здоровые детские результаты

Расшифровка результатов измерений ЭКГ у детей и их норма в этой таблице:

Опасные диагнозы

Какие опасные состояния можно определить по показаниям ЭКГ при расшифровке?

Экстрасистолия

Это явление характеризуется сбоем сердечного ритма . Человек ощущает временное увеличение частоты сокращений с последующей паузой. Связано с активацией других водителей ритма, посылающих наравне с синусовым узлом дополнительный залп импульсов, что и приводит к внеочередному сокращению.

Если экстрасистолы появляются не чаще 5 раз в час, то существенного вреда здоровью они нанести не могут.

Аритмия

Характеризуется изменением периодичности синусового ритма , когда импульсы поступают с разной частотой. Только 30% подобных аритмий требуют лечения, т.к. способны спровоцировать более серьёзные заболевания.

В остальных случаях это может быть проявлением физической активности, изменением гормонального фона, результатом перенесенной лихорадки и не угрожает здоровью.

Брадикардия

Возникает при ослаблении синусового узла, неспособного генерировать импульсы с должной частотой, вследствие чего замедляется и ЧСС, вплоть до 30-45 ударов в минуту .

Тахикардия

Противоположное явление, характеризующееся увеличением ЧСС более 90 ударов в минуту. В некоторых случаях временная тахикардия возникает под действием сильных физических нагрузках и эмоциональных стрессах, а также в период болезней связанных с повышением температуры.

Нарушение проводимости

Помимо синусового узла, существуют и другие нижележащие водители ритма второго и третьего порядков. В норме они проводят импульсы от водителя ритма первого порядка. Но если их функции ослабевают, человек может ощущать слабость, головокружение , вызванные угнетением работы сердца.

Также возможно понижение артериального давления, т.к. желудочки будут сокращаться реже или аритмично.

Множество факторов могут привести к нарушениям в работе и самой сердечной мышцы. Развиваются опухоли, нарушается питание мышцы, сбои в процессах деполяризации. Большинство из этих патологий требуют серьёзного лечения.

Почему могут быть различия в показателях

В некоторых случаях, при проведении повторного анализа ЭКГ, выявляются отклонения от ранее полученных результатов. С чем это может быть связано?

  • Разное время суток . Обычно ЭКГ рекомендуется делать утром или днём, когда организм ещё не успел подвергнуться влиянию стрессовых факторов.
  • Нагрузки . Очень важно, что бы при записи ЭКГ пациент был спокоен. Выброс гормонов может увеличить ЧСС и исказить показатели. Кроме того, перед обследованием также не рекомендуется заниматься тяжёлым физическим трудом.
  • Прием пищи . Процессы пищеварения влияют на кровообращение, а спиртные напитки, табак и кофеин могут отразиться на ЧСС и давлении.
  • Электроды . Неправильное их наложение или случайное смещение могут серьёзно изменить показатели. Поэтому важно не двигаться во время записи и обезжиривать кожу в области наложения электродов (использование кремов и других средств для кожи перед обследованием крайне нежелательно).
  • Фон . Иногда повлиять на работу электрокардиографа могут посторонние приборы.

Дополнительные методики обследования

Холтер

Метод долговременного изучения работы сердца , возможный благодаря переносному компактному магнитофону, который способен фиксировать результаты на магнитную пленку. Метод особенно хорош, когда необходимо исследовать периодически возникающие патологии, их частоту и время появления.

Беговая дорожка

В отличие от обычной ЭКГ, записывающейся в состоянии покоя, данный метод основывается на анализе результатов после физической нагрузки . Чаще всего это используется для оценки риска возможных патологий, не выявленных на стандартной ЭКГ, а также при назначении курса реабилитации пациентам, перенесшим инфаркт.

Фонокардиография

Позволяет анализировать тоны и шумы сердца. Их продолжительность, периодичность и время возникновения соотносятся с фазами сердечной активности, что дает возможность оценить работу клапанов, риски развития эндо- и ревмокардита.

Стандартная ЭКГ представляет собой графическое изображение работы всех отделов сердца. На ее точность могут повлиять множество факторов, поэтому следует соблюдать рекомендации врача .

Обследование выявляет большую часть патологий сердечно-сосудистой системы, однако для точного диагноза могут потребоваться дополнительные анализы.

Напоследок предлагаем посмотреть видео-курс по расшифровке «ЭКГ под силу каждому»:

Электрокардиография - это метод графической регистрации разности потенциалов электрического поля сердца, возникающего при его деятельности. Регистрация производится при помощи аппарата - электрокардиографа. Он состоит из усилителя, позволяющего улавливать токи очень малого напряжения; гальванометра, измеряющего величину напряжения; системы питания; записывающего устройства; электродов и проводов, соединяющих пациента с аппаратом. Записываемая кривая называется электрокардиограммой (ЭКГ). Регистрация разности потенциалов электрического поля сердца с двух точек поверхности тела называют отведением. Как правило, ЭКГ записывают в двенадцати отведениях: трех - двухполюсных (три стандартных отведения) и девяти - однополюсных (три однополюсных усиленных отведения от конечностей и 6 однополюсных грудных отведений). При двухполюсных отведениях к электрокардиографу подключают по два электрода, при однополюсных отведениях один электрод (индифферентный) является объединенным, а второй (дифферентный, активный) помещается в выбранную точку тела. Если активный электрод помещают на конечность, отведение называют однополюсным, усиленным от конечности; если этот электрод помещен на грудь - однополюсным грудным отведением.

Для регистрации ЭКГ в стандартных отведениях (I, II и III) на конечности накладывают матерчатые салфетки, смоченные физиологическим раствором, на которые кладут металлические пластинки электродов. Один электрод с красным проводом и одним рельефным кольцом помещают на правое , второй - с желтым проводом и двумя рельефными кольцами - на левое предплечье и третий - с зеленым проводом и тремя рельефными кольцами - на левую голень. Для регистрации отведений к электрокардиографу по очереди подключают по два электрода. Для записи I отведения подключают электроды правой и левой рук, II отведения - электроды правой руки и левой ноги, III отведения - электроды левой руки и левой ноги. Переключение отведений производится поворотом ручки. Кроме стандартных, от конечностей снимают однополюсные усиленные отведения. Если активный электрод расположен на правой руке, отведение обозначают как aVR или уП, если на левой руке - aVL или уЛ, и если на левой ноге - aVF или уН.


Рис. 1. Расположение электродов при регистрации передних грудных отведений (указано цифрами соответствующими их порядковым 1 номерам). Вертикальные полосы, пересекающие цифры, соответствуют анатомическим линиям: 1 - правой грудинной; 2 - левой грудинной; 3 - левой окологрудинной; 4-левой среднеключичной; 5-левой передней подмышечной; 6 - левой средней подмышечной.

При регистрации однополюсных грудных отведений активный электрод помещают на грудной клетке. ЭКГ регистрируют в следующих шести позициях электрода: 1) у правого края грудины в IV межреберье; 2) у левого края грудины в IV межреберье; 3) по левой окологрудинной линии между IV и V межреберьями; 4) по среднеключичной линии в V межреберье; 5) по передней подмышечной линии в V межреберье и 6) по средней подмышечной линии в V межреберье (рис. 1). Однополюсные грудные отведения обозначают латинской буквой V или русскими - ГО. Реже регистрируют двухполюсные грудные отведения, при которых один электрод располагался на грудной клетке, а другой на правой руке или левой ноге. Если второй электрод располагался на правой руке, грудные отведения обозначали латинскими буквами CR или русскими - ГП; при расположении второго электрода на левой ноге грудные отведения обозначали латинскими буквами CF или русскими - ГН.

ЭКГ здоровых людей отличается вариабельностью. Она зависит от возраста, телосложения и др. Однако в норме на ней всегда можно различить определенные зубцы и интервалы, отражающие последовательность возбуждения сердечной мышцы (рис. 2). По имеющейся отметке времени (на фотобумаге расстояние между двумя вертикальными полосами равно 0,05 сек., на миллиметровой бумаге при скорости протяжки 50 мм/сек 1 мм равен 0,02 сек., при скорости 25 мм/сек - 0,04 сек.) можно рассчитать продолжительность зубцов и интервалов (сегментов) ЭКГ. Высоту зубцов сравнивают со стандартной отметкой (при подаче на прибор импульса напряжением 1 мв регистрируемая линия должна отклоняться от исходного положения на 1 см). Возбуждение миокарда начинается с предсердий, и на ЭКГ появляется предсердный зубец Р. В норме он небольшой: высотой - 1-2 мм и продолжительностью 0,08-0,1 сек. Расстояние от начала зубца Р до зубца Q (интервал Р-Q) соответствует времени распространения возбуждения от предсердий к желудочкам и равно 0,12-0,2 сек. Во время возбуждения желудочков записывается комплекс QRS, причем величина его зубцов в разных отведениях выражена различно: продолжительность комплекса QRS - 0,06- 0,1 сек. Расстояние от зубца S до начала зубца Т - сегмент S-T, в норме располагается на одном уровне с интервалом Р- Q и смещения его не должны превышать 1 мм. При угасании возбуждения в желудочках записывается зубец Т. Интервал от начала зубца Q до конца зубца Т отражает процесс возбуждения желудочков (электрическую систолу). Его продолжительность зависит от частоты сердечного ритма: при учащении ритма он укорачивается, при замедлении - удлиняется (в среднем он равен 0,24-0,55 сек.). Частоту сердечного ритма легко подсчитать по ЭКГ, зная сколько времени продолжается один сердечный цикл (расстояние между двумя зубцами R) и сколько таких циклов содержится в минуте. Интервал Т- Р соответствует диастоле сердца, аппарат в это время записывает прямую (так называемую изоэлектрическую) линию. Иногда после зубца Т регистрируется зубец U, происхождение которого не вполне ясно.


Рис. 2. Электрокардиограмма здорового человека.

В патологии величина зубцов, их продолжительность и направление, так же как и продолжительность и расположение интервалов (сегментов) ЭКГ, может значительно изменяться, что дает основание использовать электрокардиографию в диагностике многих заболеваний сердца. С помощью электрокардиографии диагностируются различные нарушения сердечного ритма (см. ), на ЭКГ находят отражение воспалительные и дистрофические поражения миокарда. Особенно важную роль играет электрокардиография в диагностике коронарной недостаточности и инфаркта миокарда.

По ЭКГ можно определить не только наличие инфаркта, но и выяснить, какая стенка сердца поражена. В последние годы для изучения разности потенциалов электрического поля сердца используется метод телеэлектрокардиографии (радиоэлектрокардиографии), основанный на принципе беспроволочной передачи электрического поля сердца при помощи радиопередатчика. Этот метод позволяет зарегистрировать ЭКГ во время физической нагрузки, в движении (у спортсменов, летчиков, космонавтов).

Электрокардиография (греч. kardia - сердце, grapho - пишу, записываю) - метод регистрации электрических явлений, возникающих в сердце во время его сокращения.

История электрофизиологии, а следовательно, и электрокардиография начинается с опыта Гальвани (L. Galvani), обнаружившего в 1791 г. электрические явления в мышцах животных. Маттеуччи (С. Matteucci, 1843) установил наличие электрических явлений в вырезанном сердце. Дюбуа-Реймон (Е. Dubois-Reymond, 1848) доказал, что и нервах и мышцах возбужденная часть электроотрицательна по отношению к находящейся в покое. Келликер и Мюллер (A. Kolliker, Н. Muller, 1855), накладывая на сокращающееся сердце нервно-мышечный препарат лягушки, состоящий из седалищного нерва, соединенного с икроножной мышцей, получали при сокращении сердца двойное сокращение: одно в начале систолы и другое (непостоянное) в начале диастолы. Таким образом, была впервые зарегистрирована электродвижущая сила (ЭДС) обнаженного сердца. Зарегистрировать ЭДС сердца с поверхности человеческого тела впервые удалось Уоллеру (A. D. Waller, 1887) посредством капиллярного электрометра. Уоллер считал,что человеческое тело является проводником, окружающим источник ЭДС - сердце; различные точки человеческого тела имеют потенциалы различной величины (рис. 1). Однако полученная капиллярным электрометром запись ЭДС сердца неточно воспроизводила ее колебания.


Рис. 1. Схема распределения изопотенциальных линий на поверхности человеческого тела, обусловленных электродвижущей силой сердца. Цифрами обозначены величины потенциалов.

Точная запись ЭДС сердца с поверхности человеческого тела - электрокардиограмма (ЭКГ) - была произведена Эйнтховеном (W. Einthoven, 1903) посредством струнного гальванометра, построенного по принципу аппаратов для приема трансатлантических телеграмм.

Согласно современным представлениям клетки возбудимых тканей, в частности клетки миокарда, покрыты полупроницаемой оболочкой (мембраной), проницаемой для ионов калия и непроницаемой для анионов. Заряженные положительно ионы калия, находящиеся в избытке в клетках по сравнению с окружающей их средой, удерживаются на наружной поверхности мембраны отрицательно заряженными анионами, расположенными на внутренней ее поверхности, непроницаемой для них.

Таким образом, на оболочке живой клетки возникает двойной электрический слой - оболочка поляризована, причем наружная поверхность ее заряжена положительно по отношению к внутреннему содержимому, заряженному отрицательно.

Эта поперечная разность потенциалов является потенциалом покоя. Если к наружной и внутренней сторонам поляризованной мембраны приложить микроэлектроды, то в наружной цепи возникает ток. Запись получившейся разности потенциалов дает монофазную кривую. При возникновении возбуждения мембрана возбужденного участка утрачивает полунепроницаемость, деполяризуется и поверхность ее становится электроотрицательной. Регистрация двумя микроэлектродами потенциалов наружной и внутренней оболочки деполяризованной мембраны также дает монофазную кривую.

Вследствие разности потенциалов между поверхностью возбужденного деполяризованного участка и поверхностью поляризованного, находящегося в покое, возникает ток действия - потенциал действия. Когда возбуждение охватывает все мышечное волокно, поверхность его становится электроотрицательной. Прекращение возбуждения вызывает волну реполяризации, и восстанавливается потенциал покоя мышечного волокна (рис. 2).


Рис. 2. Схематическое изображение поляризации, деполяризации и реполяризации клетки.

Если клетка находится в состоянии покоя (1), то с обеих сторон клеточной мембраны отмечается электростатическое равновесие, состоящее в том, что поверхность клетки является электроположительной (+) по отношению к ее внутренней стороне (-).

Волна возбуждения (2) моментально нарушает это равновесие, и поверхность клетки становится электроотрицательной по отношению к ее внутренней стороне; такое явление называют деполяризацией или же, правильнее, инверсионной поляризацией. После того как возбуждение прошло по всему мышечному волокну, оно становится полностью деполяризированным (3); вся его поверхность обладает одинаковым отрицательным потенциалом. Такое новое равновесие не продолжается долго, так как после волны возбуждения следует волна реполяризации (4), которая восстанавливает поляризацию состояния покоя (5).

Процесс возбуждения в нормальном человеческом сердце - деполяризация - идет следующим образом. Возникающая в синусовом узле, расположенном в правом предсердии, волна возбуждения распространяется со скоростью 800-1000 мм в 1 сек. лучеобразно по мышечным пучкам сначала правого, а затем левого предсердия. Длительность охвата возбуждением обоих предсердий 0,08-0,11 сек.

Первые 0,02 - 0,03 сек. возбуждено только правое предсердие, затем 0,04 - 0,06 сек.- оба предсердия и последние 0,02 - 0,03 сек.- только левое предсердие.

По достижении атрио-вентрикулярного узла распространение возбуждения замедляется. Затем с большой и постепенно увеличивающейся скоростью (от 1400 до 4000 мм в 1 сек.) оно направляется по пучку Гиса, его ножкам, их ветвям и разветвлениям и достигает конечных окончаний проводниковой системы. Достигнув сократительного миокарда, возбуждение со значительно уменьшенной скоростью (300-400 мм в 1 сек.) распространяется по обоим желудочкам. Так как периферические разветвления проводниковой системы рассеяны преимущественно под эндокардом, раньше всего приходит в возбуждение внутренняя поверхность сердечной мышцы. Дальнейший ход возбуждения желудочков не связан с анатомическим расположением мышечных волокон, а направлен от внутренней поверхности сердца к наружной. Время возникновения возбуждения в мышечных пучках, расположенных на поверхности сердца (субэпикардиальные), определяется двумя факторами: временем возбуждения наиболее близко расположенных к этим пучкам разветвлений проводниковой системы и толщиной мышечного слоя, отделяющего субэпикардиальные мышечные пучки от периферических разветвлений проводниковой системы.

Раньше всего возбуждаются межжелудочковая перегородка и правая сосочковая мышца. В правом желудочке возбуждение сначала охватывает поверхность его центральной части, так как мышечная стенка в этом месте тонка и ее мышечные слои тесно соприкасаются с периферическими разветвлениями правой ножки проводниковой системы. В левом желудочке раньше всего приходит в возбуждение верхушка, так как стенка, отделяющая ее от периферических разветвлений левой ножки, тонка. Для различных точек поверхности правого и левого желудочков нормального сердца период возбуждения наступает в строго определенное время, причем раньше всего приходит в возбуждение большинство волокон на поверхности тонкостенного правого желудочка и лишь небольшое количество волокон на поверхности левого желудочка благодаря их близости к периферическим разветвлениям проводниковой системы (рис. 3).


Рис. 3. Схематическое изображение нормального возбуждения межжелудочковой перегородки и внешних стенок желудочков (по Соди-Пальяресу с сотр.). Возбуждение желудочков начинается на левой стороне перегородки в средней ее части (0,00- 0,01 сек.) и затем может достигнуть основания правой сосочковой мышцы (0,02 сек.). После этого возбуждаются субэндокардиальные мышечные слои наружной стенки левого (0,03 сек.) и правого (0,04 сек.) желудочков. Последними возбуждаются базальные части внешних стенок желудочков (0,05-0,09 сек.).

Процесс прекращения возбуждения мышечных волокон сердца - реполяризацию - нельзя считать полностью изученным. Процесс реполяризации предсердий совпадает большей частью с процессом деполяризации желудочков и отчасти с процессом их реполяризации.

Процесс реполяризации желудочков идет значительно медленнее и в несколько иной последовательности, чем процесс деполяризации. Объясняется это тем, что длительность возбуждения мышечных пучков поверхностных слоев миокарда меньше длительности возбуждения субэндокардиальных волокон и сосочковых мышц. Запись процесса деполяризации и реполяризации предсердий и желудочков с поверхности человеческого тела и дает характерную кривую - ЭКГ, отражающую электрическую систолу сердца.

Запись ЭДС сердца производится в настоящее время несколько иными методами, чем регистрировалась Эйнтховеном. Эйнтховен регистрировал ток, получающийся при соединении двух точек поверхности человеческого тела. Современные аппараты - электрокардиографы - регистрируют непосредственно напряжение, обусловленное электродвижущей силой сердца.

Напряжение, обусловленное сердцем, равное 1-2 мВ, усиливается радиолампами, полупроводниками или электроннолучевой трубкой до 3-6 В, в зависимости от усилителя и регистрирующего аппарата.

Чувствительность измерительной системы устанавливают таким образом, чтобы разность потенциалов в 1 мВ давала отклонение в 1 см. Запись производится на фотобумаге или фотопленке либо непосредственно на бумаге (чернильнопишущие, с тепловой записью, со струйной записью). Наиболее точные результаты дают запись на фотобумаге или фотопленке и струйная запись.

Для объяснения своеобразной формы ЭКГ были предложены различные теории ее генеза.

А. Ф. Самойлов рассматривал ЭКГ как результат взаимодействия двух монофазных кривых.

Учитывая, что при регистрации двумя микроэлектродами наружной и внутренней поверхности мембраны в состояниях покоя, возбуждения и повреждения получается монофазная кривая, М. Т. Удельнов считает, что монофазная кривая отражает основную форму биоэлектрической активности миокарда. Алгебраическая сумма двух монофазных кривых дает ЭКГ.

Патологические изменения ЭКГ обусловлены сдвигами монофазных кривых. Эта теория генеза ЭКГ носит название дифференциальной.

Наружную поверхность мембраны клетки в периоде возбуждения можно представить схематически как состоящую из двух полюсов: отрицательного и положительного.

Непосредственно перед волной возбуждения в любом месте ее распространения поверхность клетки является электроположительной (состояние поляризации в состоянии покоя), а непосредственно за волной возбуждения поверхность клетки является электроотрицательной (состояние деполяризации; рис. 4). Данные электрические заряды противоположных знаков, группирующиеся в пары с одной и другой стороны каждого места, охваченного волной возбуждения, образуют электрические диполи (а). Реполяризация также создает неисчислимое количество диполей, но, в отличие от вышеуказанных диполей, отрицательный полюс находится спереди, а положительный полюс - сзади по отношению к направлению распространения волны (б). Если деполяризация или реполяризация закончена, поверхность всех клеток обладает одинаковым потенциалом (отрицательным или положительным); диполи полностью отсутствуют (см. рис. 2, 3 и 5).


Рис. 4. Схематическое изображение электрических диполей при деполяризации (а) и реполяризации (б), возникающих с обеих сторон волны возбуждения и волны реполяризации в результате изменения электрического потенциала на поверхности волокон миокарда.


Рис. 5. Схема равностороннего треугольника по Эйнтховену, Фару и Варту.

Мышечное волокно является маленьким двухполюсным генератором, продуцирующим маленькую (элементарную) ЭДС - элементарный диполь.

В каждый момент систолы сердца происходит деполяризация и реполяризация огромного числа волокон миокарда, расположенных в различных частях сердца. Сумма образовавшихся элементарных диполей создает соответствующую величину ЭДС сердца в каждый момент систолы. Таким образом, сердце представляет как бы один суммарный диполь, изменяющий в течение сердечного цикла свою величину и направление, но не меняющий места расположения своего центра. Потенциал в различных точках поверхности человеческого тела имеет различную величину в зависимости от расположения суммарного диполя. Знак потенциала зависит от того, по какую сторону от линии, перпендикулярной к оси диполя и проведенной через его центр, расположена данная точка: на стороне положительного полюса потенциал имеет знак +, а на противоположной стороне - знак -.

Большую часть времени возбуждения сердца поверхность правой половины туловища, правой руки, головы и шеи имеет отрицательный потенциал, а поверхность левой половины туловища, обеих ног и левой руки - положительный (рис. 1). Таково схематическое объяснение генеза ЭКГ согласно теории диполя.

ЭДС сердца в течение электрической систолы меняет не только свою величину, но и направление; следовательно, она является векторной величиной. Вектор изображается отрезком прямой линии определенной длины, размер которой при определенных данных регистрирующего аппарата указывает на абсолютную величину вектора.

Стрелка на конце вектора указывает направление ЭДС сердца.

Возникшие одновременно векторы ЭДС отдельных волокон сердца суммируются по правилу сложения векторов.

Суммарный (интегральный) вектор двух векторов, расположенных параллельно и направленных в одну сторону, равняется по абсолютной величине сумме составляющих его векторов и направлен в ту же сторону.

Суммарный вектор двух векторов одинаковой величины, расположенных параллельно и направленных в противоположные стороны, равен 0. Суммарный вектор двух векторов, направленных друг к другу под углом, равняется диагонали параллелограмма, построенного из составляющих его векторов. Если оба вектора образуют острый угол, то их суммарный вектор направлен в сторону составляющих его векторов и больше любого из них. Если оба вектора образуют тупой угол и, следовательно, направлены в противоположные стороны, то их суммарный вектор направлен в сторону наибольшего вектора и короче его. Векторный анализ ЭКГ заключается в определении по зубцам ЭКГ пространственного направления и величины суммарной ЭДС сердца в любой момент его возбуждения.

Электрокардиограмма – простая и безболезненная методика регистрации электрической активности сердечной мышцы. ЭКГ преобразовывает электрические токи сердца в бумажные пленки. Этот метод используется для диагностики сердечно-сосудистых патологий: инфаркта миокарда, гипертрофии желудочков (правого или левого), тахикардии или брадикардии.

Электрокардиография

Метод электрокардиографии изобрел в двадцатом веке нидерландский физиолог В. Эйнтховен. Позже он был удостоен Нобелевской премии. Ученый занимался изучением физиологии дыхания и сердечной деятельности, неплохо знал физику. Первый изобретенный струнный гальванометр (элекрокардиограмма) совершил переворот в медицине и изменил подход к диагностике сердечно-сосудистых заболеваний. В нашем веке кардиография выглядит по-другому, однако основные принципы работы остались неизменными.

Что такое ЭКГ и как оно работает?

Метод уходит корнями в оригинальную работу Гальвани, в которой он вызывал мышечные сокращения у лягушек с помощью электричества. Матуеци, а позднее Колликер и Мюллер продемонстрировали, что воздействие электрического тока на сердце вызывает синхронные сокращения мышечных волокон, которые неразрывно связаны с нервной тканью. Габриэль Липпман разработал капиллярный электрометр, позволяющий измерять мельчайшие токи в биологических системах. С помощью электрометра Август Уоллер записал первую кардиограмму здорового человека в госпитале Сент-Мэри. Виллем Эйнтховен улучшил ЭКГ с помощью электрометра Липпмана, а затем изобрел струнный гальванометр, который совершил прорыв в медицинской науке.

Функционирование и сокращение сердца возможно благодаря возникновению спонтанных электрических разрядов. Предсердно-синусовый узел – один из источников электрических импульсов в сердце. Каждый электрический импульс суммируется и проходит через отделы сердца. При прохождении электрических импульсов через предсердия мышца сокращается. Такое сокращение мышцы принято называть систолой. Отсутствие сокращений и фаза расслабления сердечной мышцы – диастола.


Предсердно-синусовый узел

Деполяризация (возбуждение) в сердечной мышце начинается с предсердно-синусового узла, который расположен в верхней части правой камеры сердца. Через проводящие структуры импульс попадает в атриовентрикулярный узел и оттуда распространяется на нижние камеры сердечной мышцы. Когда электрический импульс проходит по предсердиям, они сокращаются. Этот эффект проталкивает кровь из предсердий в нижние камеры сердечной мышцы до начала сокращения. Совокупность вышеперечисленных действий приводит к слаженному и упорядоченному сокращению сердца.

ЭКГ-диагностика (кардиограмма сердца) регистрирует потенциалы действия, которые возникают в сердечной мышце. Для этих задач используется специальное устройство – электрокардиограф. Принцип работы в том, что с поверхности человеческого тела улавливают разность потенциалов, возникающих в момент расслабления разных частей сердца (диастолы) и в момент их сокращения (систолы). Электрические процессы в сердце записываются на бумагу, чувствительную к тепловому излучению. Бумажная лента представлена в виде графика, на котором изображены остроконечные, горизонтальные или полусферические зубцы.

Что позволяет определить электрокардиограмма сердца:

  • Как быстро бьется сердце.
  • Является ли сердечный ритм устойчивым или аномальным.
  • Силу и время электрических сигналов, проходящих через каждую часть сердца.

Внимание! Врачи используют кардиографию для определения и изучения многих болезней сердечно-сосудистой системы: инфаркта миокарда, аритмии и сердечной недостаточности. Результаты обследования указывают на другие нарушения, которые влияют на функцию сердца.

Показания и противопоказания к проведению ЭКГ

Электрокардиография оказалась одним из наиболее полезных диагностических обследований в клинической медицине. Она обычно используется для определения травм миокарда, ишемии и наличия предшествующего инфаркта. Также метод для оценки состояния пациентов с электролитными нарушениями или электрокардиостимулятором.

  • Грудная боль.
  • Быстрое или медленное сердцебиение.
  • Трудности с дыханием.
  • Слабость и синдром хронической усталости.
  • Шумы в сердце.

Врачу может понадобиться более одной процедуры для подтверждения диагноза. ЭКГ нередко проводят у пациентов в качестве обязательной части медицинского осмотра. Обследование может выявить ранние признаки болезни сердца, которая проявляется бессимптомно. Врач, скорее всего, будет искать сердечные болезни у родителей, чтобы определить влияние генетических факторов на заболевание.

Особое диагностическое значение электрокардиографическое исследование имеет при выявлении ишемической болезни сердца, аритмий или сердечной недостаточности. Другие распространенные применения кардиографии включают исследование метаболических нарушений и побочных эффектов фармакотерапии, оценку развития первичных и вторичных кардиомиопатических процессов.

Основные виды процедуры:

  • Холтер-мониторинг.
  • Стресс-тест (с «хорошей» нагрузкой или предварительным введением гликозидов).
  • ЭКГ в покое (стандартное).

ЭКГ-холтер – небольшое портативное устройство, позволяющее фиксировать кардиограмму в течение 24 или 48 часов. Аппарат регистрирует кардиограмму сердца только в определенное время, пока его носят. Позволяет определить нарушения в ритме, возникающие при выполнении повседневных задач.


Холтер-мониторинг

Абсолютных противопоказаний к проведению процедуры нет, кроме отказа пациента. Некоторые пациенты могут иметь аллергию или высокую чувствительность к адгезиву, используемому для прикрепления электродов; в этих случаях применяют гипоаллергенные вещества. Перед проведением процедуры уточните у лечащего врача, можно ли делать ЭКГ при аллергии.

Как подготовиться к регистрации ЭКГ?

Измерение электрической деятельности сердца обычно проводят без особой подготовки. Перед тем как делать ЭКГ, необходимо:

  • Не употреблять психостимуляторы (кокаин, амфетамины или кофеин).
  • Отказаться от алкоголя.
  • Исключить прием любых других нетипичных веществ, влияющих на сердечный ритм (зверобойная трава, мята перечная или другое).

Вышеперечисленные условия могут исказить результаты у здорового человека. На ЭКГ может влиять недавно перенесенная физическая нагрузка, сильный психоэмоциональный стресс или простуда. Волосяной покров в местах крепления электродов вы должны сбрить.

Как снимают параметры кардиограммы?

После подготовки пациента наносят электрокардиографические способом, описанным ниже:

  1. Отведение V1 помещается в четвертое межреберье правой грудины.
  2. Отведение V2 размещается на левой грудной границе напротив отведения V1 и в четвертом межреберье.
  3. Отведение V4 помещается в пятое межреберье в средней кнопочной линии, отведение V3 может располагаться посередине, между отведениями V2 и V4;
  4. Отведение V6 помещается в горизонтальную плоскость V4 на середине подмышечной линии, а затем V5 помещается в ту же горизонтальную плоскость, что и V4.

Обратите внимание, что размещение прекардиального электрода у женщин с большой грудью может быть проблематичным. Также необходимо корректировать расположение электродов у тучных людей. Поэтому рекомендуется расположить электроды ниже, а не над грудью. Следует подчеркнуть важность надлежащего размещения отведений.


Размещение электродов на теле

Кроме того, было отмечено, что специально обученные специалисты с большей вероятностью правильно размещают отведения, чем медсестры или врачи, в том числе кардиологи.

Важно! Неправильное размещение отведений повлияет на результаты исследования, а потом и на постановку диагноза. Как только процедура завершена, результаты должны быть проверены врачом. Не рекомендуется ставить себе диагноз самостоятельно, без консультации со специалистом.

ЭКГ: как правильно «читать» аритмию?

Мы выяснили, что такое электрокардиография, теперь необходимо научиться ее «читать». «Чтение» протокола электрокардиографии с 12 отведениями включает следующие параметры: сердечный ритм, морфологию Р-QRS-Т, наличие сегмента ST и интервалы PR-QRS-QT. Каждая бумажная лента должна быть тщательно проанализирована («прочитана»), чтобы избежать возможных ошибок. Для постановки диагноза необходимо изучить следующие элементы:

  • Скорость: тахикардия, нормокардия или брадикардия.
  • Ритм: синусовый или нерегулярный.
  • Интервалы: PR, QRS, QT.
  • Ось: нормальная или отклоняющаяся.
  • Аномалии в строении камер сердца: расширение предсердий, гипертрофия желудочков.
  • Продолжительность QRST: волны Q, слабая R-волновая прогрессия, депрессия/высота сегмента ST или изменения T-волны.

Схема ЭКГ

На изображении ниже кардиограмма записывается на стандартной бумаге с большими клетками по 0,5 см. На горизонтальной оси каждая большая клетка составляет 0,2 секунды при обычной скорости бумаги 25 мм в секунду. Затем она делится на пять меньших клеток, каждая из которых составляет 0,04 секунды.


Бумага ЭКГ

На вертикальной оси большая клетка состоит из пяти подразделений, каждый из которых имеет высоту 1 мм. При стандартной калибровке каждые 10 мм равно 1 мВ. Нормальная частота сердечных сокращений колеблется от 60 до 100 в минуту; скорость ниже 60 в минуту и, иногда, менее 50 в минуту, обычно наблюдаются у тренированных спортсменов. Обязательно учитывать особенности кардиограммы у спортсменов, чтобы избежать гипердиагностики.

Как часто бьется сердце у человека и как определить это по результатам исследования?

Если сердечный ритм регулярный, то частота сокращений сердца может определяться интервалом между двумя последовательными комплексами QRS. На стандартной бумаге с наиболее распространенными настройками трассировки частота сердечных сокращений рассчитывается путем деления количества больших клеток (5 мм или 0,2 секунды) между двумя последовательными комплексами QRS на число 300.

Например, если интервал между двумя комплексами QRS составляет две большие клетки, то скорость составляет 150 ударов в минуту (300 ÷ 2 = 150 уд/мин). Если частота сердечных сокращений нерегулярна, подсчитайте количество комплексов QRS на ЭКГ и умножьте их на 6 для получения средней частоты сердечных сокращений в bpm.


Нормальный синусовый ритм

Синусовая тахикардия – пограничное состояние, при которой наблюдается частота сердечных сокращений выше ста ударов в минуту. Пограничной электрокардиографией принято называть состояние, которое не выходит за рамки верхних границ нормы. Пограничная ЭКГ наблюдается при передозировке лекарственными препаратами, избыточной физической нагрузке или при глубоком вдохе.

Что означают интервалы в ЭКГ, и для чего они нужны?

Интервал PR – это время от начала деполяризации в синусовом узле до его окончания в желудочках. Измерение осуществляется от начала волны P до первой части комплекса QRS с продолжительностью от 0,12 до 0,20 секунд. Укорочение этого интервала наблюдается при синдроме преждевременного возбуждения нижних камер сердца, а удлинение – при AV-блокаде 1 степени.

Длительность QRS – это время деполяризации желудочков. Продолжительность у здорового человека составляет от 0,06 до 0,10 секунды. Q-волны вводятся, когда исходный вектор QRS направлен от положительного электрода. R-волна является первым положительным прогибом комплекса QRS; его амплитуда варьируется в зависимости от возраста, расы и сердечной патологии.

Сегмент ST представляет собой интервал между деполяризацией и реполяризацией желудочков. Это конец комплекса QRS и начало T-волны. Конец T-волны до начала P-волны описывается как сегмент TP.
Изменения сегмента волны ST может быть связано с патологическими состояниями, такими как острая ишемия, травма миокарда, перикардит и задержки внутрижелудочковой проводимости. В отсутствие гипертрофии левого желудочка или блокады пучков Гиса рост сегмента ST является признаком инфаркта миокарда.

Интервал QT измеряет деполяризацию и реполяризацию желудочков. Удлинение QT связано с развитием желудочковых аритмий и внезапной смертью. Обычно такое состояние наблюдается при приеме различных лекарствах или может быть проявлением скрытой ионной каналопатии. Интервал QT зависит от частоты сердечных сокращений. Более быстрая частота сердечных сокращений (ЧСС) приводит к более короткому интервалу QT, тогда как более низкая частота сердечных сокращений приводит к более длинному интервалу QT. Нормальное значение для QTcb у мужчин составляет 0,44 секунды, а у женщин – 0,46.

Несмотря на прогрессивное развитие медицинских методов диагностики, электрокардиография является наиболее востребованным. Данная процедура позволяет быстро и точно установить нарушения работы сердца и их причину. Обследование является доступным, безболезненным и неинвазивным. Декодирование результатов производится незамедлительно, кардиолог может достоверно определить заболевание, и своевременно назначить правильную терапию.

Метод ЭКГ и обозначения на графике

Вследствие сокращения и расслабления сердечной мышцы возникают электрические импульсы. Так, создается электрополе, охватывающее все тело (включая ноги и руки). В ходе своей работы, сердечная мышца образует электрические потенциалы с положительным и отрицательным полюсом. Разность потенциалов между двумя электродами сердечного электрического поля регистрируется в отведениях.

Таким образом, отведения ЭКГ – это схема расположения сопряженных точек тела, которые имеют различные потенциалы. Электрокардиограф регистрирует сигналы, полученные за определенный временной период, и преобразует их в наглядный график на бумаге. На горизонтальной линии графика производится регистрация временного диапазона, на вертикальной – глубина и частота трансформации (изменения) импульсов.

Направление тока к активному электроду фиксирует положительный зубец, удаление тока – зубец отрицательный. На графическом изображении зубцы представлены острыми углами, расположенными сверху (зубец «плюс») и снизу (зубец «минус»). Слишком высокие зубцы свидетельствуют о патологии в том, или ином сердечном отделе.

Обозначения и показатели зубцов:

  • Т-зубец – это показатель восстановительного этапа мышечной ткани желудочков сердца между сокращениями среднего мышечного слоя сердца (миокарда);
  • зубец Р отображает уровень деполяризации (возбуждения) предсердий;
  • Q, R, S – эти зубцы показывают ажитацию сердечных желудочков (возбужденное состояние);
  • зубец U отражает восстановительный цикл отдаленных участков желудочков сердца.

Диапазонный промежуток между зубцами, расположенными по соседству, составляет сегмент (сегменты обозначаются, как ST,QRST, TP). Соединение сегмента и зубца является интервалом прохождения импульса.

Подробнее об отведениях

Для точной диагностики фиксируется разность показателей электродов (электрический потенциал отведения), закрепленных на теле пациента. В современной кардиологической практике принято 12 отведений:

  • стандартные – три отведения;
  • усиленные – три;
  • грудные – шесть.

Диагностику проводят только те специалисты, которые получили соответствующую квалификацию

Стандартные или двухполюсные отведения фиксируются разностью потенциалов, исходящих от электродов, закрепленных в следующих областях тела пациента:

  • левая рука – электрод «+», правая – минус (первое отведение - I);
  • левая нога – датчик «+», правая рука – минус (второе отведение - II);
  • левая нога – плюс, левая рука – минус (третье отведение - III).

Электроды для стандартных отведений закрепляются клипсами в нижней части конечностей. Проводником между кожей и датчиками служат обработанные физраствором салфетки или медицинский гель. Отдельный вспомогательный электрод, установленный на правой ноге, выполняет функцию заземления. Усиленные или однополюсные отведения, по способу фиксации на теле, идентичны стандартным.

Электрод, который регистрирует изменения разности потенциалов между конечностями и электрическим нулем, на схеме имеет «V»-обозначение. Левая и правая рука, обозначаются «L» и «R» (от английского «левые», «правые»), нога соответствует букве «F» (нога). Таким образом, место прикрепления электрода к телу на графическом изображении определяется, как аVL, аVR, аVF. Они фиксируют потенциал конечностей, на которых закреплены.

Усиленные электроды необходимы для удобного декодирования кардиограммы, поскольку без них зубцы на графике будут выражены слабо.

Двухполюсные стандартные и однополюсные усиленные отведения обуславливают формирование системы координат из 6 осей. Угол между стандартными отведениями составляет 60 градусов, между стандартным и близлежащим к нему усиленным отведением – 30 градусов. Сердечный электроцентр разбивает оси пополам. Минусовая ось направлена к отрицательному электроду, плюсовая ось, соответственно, обращена к положительному.

Грудные отведения ЭКГ регистрируются однополюсными датчиками, прикрепленными к кожному покрову грудной клетки посредством шести присосок, соединенных лентой. Они фиксируют импульсы с окружности сердечного поля, которая является равно потенциальной к электродам на конечностях. На бумажном графике грудным отведениям соответствует обозначение «V» с порядковым номером.

Кардиологическое исследование выполняется по определенному алгоритму, поэтому стандартная система установки электродов в области груди, не может быть изменена:

  • в районе четвертого анатомического пространства между ребрами с правой стороны грудины – V1. В том же сегменте, только с левой стороны – V2;
  • соединение линии, идущей от середины ключицы и пятого межреберья – V4;
  • на одинаковом расстоянии от V2 и V4 располагается отведение V3;
  • соединение передней подмышечной линии слева и пятого межреберного пространства – V5;
  • пересечение левой средней части подмышечной линии и шестого пространства между ребрами – V6.


Дополнительные электроды используются в случае затруднения постановки диагноза, когда декодирование шести основных показателей не дает объективной картины заболевания

Каждое отведение на груди осью соединено с электроцентром сердца. При этом угол расположения V1–V5 и угол V2–V6 равняется 90 градусам. Клиническая картина работы сердца может фиксироваться кардиографом при помощи 9-ти ответвлений. К шести обычным добавляются три однополюсных отведения:

  • V7 – в месте соединения 5-го межреберного пространства и задней линии подмышки;
  • V8 – та же межреберная область, но по средней линии подмышки;
  • V9 – околопозвоночная зона, параллельно V7 и V8 по горизонтали.

Отделы сердца и отвечающие за них отведения

Каждое из шести основных отведений отображает тот, или иной отдел сердечной мышцы:

  • I и II стандартные отведения – передняя и задняя сердечные стенки, соответственно. Их совокупность отражает III стандартное отведение.
  • aVR – боковая сердечная стенка справа;
  • aVL – боковая сердечная стенка впереди слева;
  • aVF – нижняя стенка сердца сзади;
  • V1 и V2 – правый желудочек;
  • VЗ – перегородка между двумя желудочками;
  • V4 – верхний сердечный отдел;
  • V5 – боковая стенка левого желудочка спереди;
  • V6 – левый желудочек.

Таким образом, упрощается расшифровка электрокардиограммы . Сбои в каждом отдельном ответвлении характеризуют патологию определенной области сердца.

ЭКГ по Небу

В методике ЭКГ по Небу принято использование только трех электродов. Датчики красного и желтого цвета фиксируются на пятом межреберном пространстве. Красный справа на груди, желтый – на задней поверхности подмышечной линии. Зеленый электрод располагается на линии середины ключицы. Чаще всего, электрокардиограмма по Небу применяется для диагностики некроза задней сердечной стенки (заднебазальный инфаркт миокарда), и для контроля состояния сердечных мышц у профессиональных спортсменов.


Схематичное расположение желудочков и предсердий, на основании локализации которых и располагают электроды

Нормативные показатели основных ЭКГ-параметров

Нормальными ЭКГ показателями принято считать следующее расположение зубцов в отведениях:

  • равноценное расстояние между R-зубцами;
  • зубец Р всегда положительный (возможно его отсутствие в отведениях III, V1, aVL);
  • горизонтальный интервал между Р-зубцом и Q-зубцом – не более 0,2 сек.;
  • зубцы S и R присутствуют во всех отведениях;
  • Q-зубец – исключительно отрицательный;
  • зубец Т – положительный, всегда изображен после QRS.

Снятие ЭКГ производится амбулаторно, в условиях стационара, и на дому. Декодированием результатов занимается врач-кардиолог или терапевт. В случае несоответствия полученных показателей установленной норме, пациента госпитализируют или назначают лечение медикаментами.