Нарушения регуляции углеводного обмена. Углеводный обмен в организме человека: улучшаем без таблеток и регулируем процесс похудения Сказ про то, почему нельзя выбирать одно и игнорировать другое

Содержание углеводов в живом организме - не более 2 % от сухого остатка массы тела. Основная часть находится в мышцах и печени в виде гликогена. Энергетические расходы организма покрываются преимущественно за счёт окисления углеводов. Они используются для синтеза глюкопротеидов, мукополисахаридов, нуклеиновых кислот, коферментов и аминокислот, а также входят в состав клеточных структур элементов.

Углеводы представляют собой важный источник энергии. Хотя непосредственным донором энергии в процессах жизнедеятельности является АТФ, его ресинтез в значительной мере является результатом расщепления углеводов. (Зимкин Н.В. 1975 ). При полном окислении 1 г. углеводов освобождается 4,1 ккал энергии, т.е. в 2,3 раза меньше, чем при окислении жиров.

Углеводы в пище человека в основном растительного происхождения. После всасывания моносахариды попадают через брыжеечную и воротную вены в печень, где фруктоза и галактоза превращаются в глюкозу. Глюкоза подвергается окислению, а также накапливается в виде гликогена. Гликоген составляет 5 % всей массы печени. Это важное дело углеводов в организме. (Платонов В.Н. 1988 ). В печени осуществляется синтез углеводов также из жирных кислот, лактата, жерувата и безазотистого остатка аминокислот. Одновременно с окислением и депонированием в печени идут процессы ферментативного образования свободной глюкозы (в присутствии глюкозо-6-фосфатозы). В отличие от печени, в мышцах нет глюкозо-6-фосфатозы. Поэтому в них свободная глюкоза не образуется.

В печёночные клетки глюкоза проходит свободно, без затрат энергии. Проницаемость мышечной клетки для глюкозы по сравнению с печёночными клетками понижена. В мышцах, как и в печени, депонируется гликоген. Его содержание в скелетных мышцах доходит до 1,5-2 % от всей массы этой ткани. Общая емкость депо углеводов организма человека, имеющего массу 70 кг, составляет 400-700 г. Однако гликоген мышц не может служить регулятором уровня глюкозы в крови, а является резервным горючим для мышечной работы. Освобождение энергии гликогена происходит при гликогенолизе: на каждый глюкозный остаток гликогена синтезируется 3 молекулы АТФ. При изобильном поступлении углеводов в организм они превращаются в жирные кислоты и депонируются в виде жира. (Петровский Б.В. 1984 ).

В процессе окисления углеводов освобождается энергия, которая используется для биосинтеза, образования тепла, а также для осуществления специфических форм жизнедеятельности. В организме происходит постоянный обмен глюкозой между печенью, кровью, мышцами, мозгом и другими органами. Главный потребитель глюкозы - скелетные мышцы. Расщепление в них углеводов осуществляется по типу анаэробных и аэробных реакций. Окислительное фосфорирование глюкозы является энергетически более выгодным, чем её бескислородный распад. В условиях относительного мышечного покоя анаэробные процессы расщепления глюкозы (гликолиз) тормозятся аэробным обменом. И только в зрелых электролитах гликолитические процессы являются ведущими. (Ноздрачёв А.Д. 1991 ). В клетках новообразований окислительные процессы подавлены гликолетическим распадом углеводов. Анаэробные расщепления гликогена или глюкозы заканчивается образованием молочной кислоты, большинство которой превращается в лактат и выходит в кровь. Лактат крови может быть использован в сердечной мышце как непосредственный субстрат окисления, а в покоящихся мышцах и печени - для ресинтеза гликогена. Продуктами аэробного расщепления углеводов является вода и углекислый газ, которые выводятся из организма по своим каналам. (Коц Я.М. 1982 ).

Многие ткани организма удовлетворяют свои запросы в энергетических веществах за счёт поглощения глюкозы из крови. Нормальный уровень глюкозы в крови (80-120 мг %) поддерживается с помощью регуляторных воздействий на синтез или расщепление гликогена в печени. Снижение содержания глюкозы в крови ниже 70 мг % (гипогликемия) нарушает снабжение тканей глюкозой. Превышение нормального уровня глюкозы в крови наблюдается после приёма пищи (алиментарная гипергликемия), во время кратковременной и интенсивной мышечной работы (миогенная, или рабочая гипергликемия) и при эмоциональном возбуждении (эмоциональная гипергликемия). Если содержание глюкозы в крови превышает 150-180 мг %, то глюкоза обнаруживается в моче (глюкозурия). Это представляет собой путь выведения из организма лишнего количества углеводов. Опасность для жизни представляет нарушение углеводного обмена, при котором гипергликемия является результатом нарушения проницаемости клеточных мембран для сахара при недостатке инсулина. При этом с мочой выделяется не избыточный, а жизненно необходимый клеткам сахар. (Воробьёва Е.А. 1981 ).

Углеводный обмен в организме регулируется нервной системой. Это было установлено Клодом Бернаром, который после укола иглой в дно IX желудочка мозга ("сахарный укол") наблюдал усиленный выход углеводов из печени с последующими гипергликемией и гликозурией. Эти наблюдения свидетельствуют о наличии в продолговатом мозгу центров, регулирующих углеводный обмен. Позднее было установлено, что высшие центры, регулирующие обмен углеводов, находятся в подбугровой области промежуточного мозга. При раздражении этих центров наблюдаются такие же явления, как и при уколе в дно IX желудочка. Большое значение в регуляции углеводного обмена имеют условнорефлекторные раздражители. Одним из доказательств этого служит увеличение концентрации глюкозы в крови при возникновении эмоций (например, у спортсменов перед ответственными стартами). (Геселевич В.А. 1969 ).

Влияние центральной нервной системы на углеводный обмен осуществляется главным образом посредствам симпатической иннервации. Раздражение симпатических нервов усиливает образование адреналина в надпочечниках. Он вызывает расщепления гликогена в печени и скелетных мышцах и повышение в связи с этим концентрации глюкозы в крови. Гормон поджелудочной железы глюкоген также стимулирует эти процессы. Гормон поджелудочной железы инсулин является антагонистом адреналина и глюкогена. Он непосредственно влияет на углеводный обмен печёночных клеток, активирует синтез глюкогена и тем самым способствует его депонированию. В регуляции углеводного обмена участвуют гормоны надпочечников, щитовидной железы и гипофиза. (Зимкин Н.В. 1975 ).

Углеводный обмен при мышечной деятельности.

В начале мышечной работы, а иногда еще в предстартовый период мобилизируются углеводные ресурсы организма. Результатом усиленного расщепления гликогена печени является умеренная гипергликемия. Скорость выхода глюкозы из печени составляет при работе большой мощности 300 мг/мин. Основным потребителем глюкозы крови во время работы является мозговая ткань. Определённую часть глюкозы крови поглощает сердечная мышца. Относительно мало потребляют глюкозы крови скелетные мышцы, которые предпочтительно используют в энергетических процессах собственный гликоген, расщепление которого начинается с самого начала работы. Лишь по мере снижения уровня собственного гликогена в мышцах усиливается использование глюкозы крови. (Ноздрачёв А.Д. 1991 ).

По мере продолжения работы содержание глюкозы в крови нормализуется, и оно поддерживается в течение весьма длительного периода в пределах нормы. В то же время происходит снижение содержания гликогена в мышцах и печени, что приводит в конце концов к падению концентрации глюкозы в крови, сопровождающееся ухудшением работоспособности. Гипогликемию и сопровождающие её явления можно успешно предотвратить при длительных физических нагрузках своевременным приёмом углеводных растворов. Если уровень глюкозы в крови снижается до 40 мг %, резко нарушается деятельность Ц.Н.С., вплоть до потери сознания. Это состояние называется гипогликемическим шоком. (Ильин Е.П. 1980 ).

Регуляция углеводного обмена осуществляется на всех его этапах нервной системой и гормонами. Помимо этого, активность ферментов отдельный путей метаболизма углеводов регулируется по принципу «обратной связи», в основе которого лежит аллостерический механизм взаимодействия фермента с эффектором. Регуляция углеводного обмена осуществляется на всех его этапах нервной системой и гормонами. Помимо этого, активность ферментов отдельный путей метаболизма углеводов регулируется по принципу «обратной связи», в основе которого лежит аллостерический механизм взаимодействия фермента с эффектором. К аллостерическим эффекторам можно отнести конечные продукты реакции, субстраты, некоторые метаболиты, адениловые мононуклеотиды. Важнейшую роль в направленности углеводного обмена (синтез или распад углеводов) играет соотношение коферментов НАД + / НАДН∙Н + и энергетический потенциал клетки.

Постоянство уровня глюкозы в крови – важнейшее условие поддержания нормальной жизнедеятельности организма. Нормогликемия является результатом слаженной работы нервной системы, гормонов и печени.

Печень – единственный орган, депонирующий глюкозу (в виде гликогена) для нужд всего организма. Благодаря активной фосфатазе глюкозо-6-фосфата гепатоциты способны образовывать свободную глюкозу, которая, в отличие от её фосфорилированных форм, может проникать через мембрану клеток в общий круг кровообращения.

Из гормонов выдающуюся роль играет инсулин . Инсулин оказывает свое действие только на инсулинзависимые ткани, прежде всего, на мышечную и жировую. Мозг, лимфатическая ткань, эритроциты относятся к инсулиннезависимым. В отличие от других органов, действие инсулина не связано с рецепторными механизмами его влияния на метаболизм гепатоцитов. Хотя глюкоза свободно проникает в печёночные клетки, но это возможно только при условии повышенной её концентрации в крови. При гипогликемии, напротив, печень отдаёт глюкозу в кровь (даже несмотря на высокий уровень инсулина в сыворотке).

Наиболее существенным действием инсулина на организм является снижение нормального или повышенного уровня глюкозы в крови – вплоть до развития гипогликемического шока при введении высоких доз инсулина. Уровень глюкозы в крови снижается в результате: 1. Ускорения поступления глюкозы в клетки. 2. Повышения использования глюкозы клетками.

1. Инсулин ускоряет поступление моносахаридов в инсулинзависимые ткани, особенно глюкозы (а также сахаров схожей конфигурации в положении С 1 -С 3), но не фруктозы. Связывание инсулина со своим рецептором на плазматической мембране приводит к перемещению запасных белков-переносчиков глюкозы (глют 4 ) из внутриклеточных депо и включению их в мембрану.


2. Инсулин активирует использование клетками глюкозы путём:

· активирования и индукции синтеза ключевых ферментов гликолиза (глюкокиназы, фосфофруктокиназы, пируваткиназы).

· Увеличения включения глюкозы в пентозофосфатный путь (активирование дегидрогеназ глюкозо-6-фосфата и 6-фосфоглюконата).

· Повышения синтеза гликогена за счёт стимуляции образования глюкозо-6-фосфата и активирования гликогенсинтазы (одновременно инсулин ингибирует гликогенфосфорилазу).

· Торможения активности ключевых ферментов глюконеогенеза (пируваткарбоксилазы, фосфоенолПВКкарбоксикиназы, бифосфатазы, глюкозо-6-фосфатазы) и реп-рессии их синтеза (уставлен факт репрессии гена фосфоенолПВКкарбоксикиназы).

Другие гормоны, как правило, способствуют увеличению содержания глюкозы в крови.

Глюкагон и адреналин приводят к росту гликемии путём активации гликогенолиза в печени (активирование гликогенфосфорилазы), однако в отличие от адреналина глюкагон не влияет на гликогенфосфорилазу мышц . Кроме того, глюкагон активирует глюконеогенез в печени, следствием чего также является увеличение концентрации глюкозы в крови.

Глюкокортикоиды способствуют повышению уровня глюкозы в крови за счёт стимуляции глюконеогенеза (ускоряя катаболизм белков в мышечной и лимфоидной тканях, эти гормоны увеличивают содержание в крови аминокислот, которые, поступая в печень, становятся субстратами глюконеогенеза). Кроме того, глюкокортикоиды препятствуют утилизации глюкозы клетками организма.

Гормон роста вызывает увеличение гликемии опосредованно: стимулируя распад липидов, он приводит увеличению уровня жирных кислот в крови и клетках, снижая тем самым потребность последних в глюкозе (жирные кислоты – ингибиторы использования глюкозы клетками).

Тироксин, особенно вырабатываемый в избыточных количествах при гиперфункции щитовидной железы, также способствует повышению уровня глюкозы в крови (за счёт увеличения гликогенолиза).

При нормальном уровне глюкозы в крови почки полностью её реабсорбируют и сахар в моче не определяется. Однако если гликемия превышает 9-10 ммоль/л (почечный порог ), то появляется глюкозурия . При некоторых поражениях почек глюкоза может обнаруживаться в моче и при нормогликемии.

Проверка способности организма регулировать содержание глюкозы в крови (толерантность к глюкозе ) используется для диагностики сахарного диабета при постановке перорального глюкозо-толерантного теста:

Первая проба крови берётся натощак после ночного голодания. Затём больному в течение 5 мин. дают выпить раствор глюкозы (75г глюкозы, растворённой в 300 мл воды). После этого каждые 30 мин. на протяжении 2-х часов определяют содержание глюкозы в крови

По биологической химии

для студентов_____2-го_____ курса ___лечебного___________________факультета

Тема:___Углеводы 4. Патология углеводного обмена

Время__90 мин___________________

Учебная цель:

1.Сформировать представления о молекулярных механизмах основных нарушений углеводного обмена.

ЛИТЕРАТУРА

1.Биохимия человека:, Р.Марри, Д.Греннер, П.Мейес, В.Родуэлл.- М.книга,2004.- т.1.с..

2.Основы биохимии:А.Уайт, Ф.Хендлер,Э.Смит, Р.Хилл, И.Леман.-М. книга,

1981,т. -.2,.с. 639- 641,

3.Наглядная биохимия: Кольман., Рем К.-Г-М.книга 2004г.

4.Биохимические основы...под. ред. член- корр. РАН Е.С. Северина. М.Медицина,2000.-с.179-205.

МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ

1.Мультимедийная презентация

РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ

Лекция № 24. Промежуточный обмен веществ.

1. Азотистый обмен и его регуляция.

2.

3.

1.Промежуточный обмен веществ это совокупность химических реакций последовательно протекающих на уровне клеточных структур с участием специфических катализаторов. В результате этого организм животного получает необходимые пластические вещества и энергию для поддержания жизнедеятельности, роста, развития и получения продукции (молоко, мясо, яйца и т. д.)

2.Различают две стороны промежуточного обмена: анаболизм и катаболизм. Анаболизм (от греч. anabole-подъем) - это совокупность процессов синтеза сравнительно крупных клеточных компонентов, а также биологически активных соединений из простых предшественников. Эти про­цессы ведут к усложнению структуры клеток и связаны с затратами свободной энергии.

3.Катаболизм (от греч. Katabole – сбрасывание) - это совокупность окислительных, ферментативных реакций в результате которых происходит деградация сложных крупных молекул до простых компонентов. Это приводит к упрощению структуры, образованию и выделение свободной энергии.

4.В процессе промежуточного обмена происходит, с одной стороны, даль­нейшее превращение всосавшихся в пищеварительном тракте блоков - аминокислот, глюкозы, глицерина и жирных кислот, а с другой стороны - синтез свойственных (видоспецифических) организму белков, углеводов, жиров и их комплексов - нуклеопротеидов, фосфолипидов и т. д.

5.Для изучения промежуточного обмена используют как общие физиологи­ческие методы (метод изолированных органов, ангиостомию, биопсию), так и специальные методы. Среди последних - метод меченых атомов, основанный на использовании со­единений, в молекулы которых включены атомы тяжелых или радиоактивных изотопов биоэлементов (N15 , С14, Р32, S35 и др.). Введение в организм меченных изотопов, позволяет просле­дить за судьбой элемента или соединения в организме и его участием в мета­болических процессах.

1. Азотистый обмен - это совокупность пластиче­ских и энергетических процессов превращений белков, аминокислот и других азотсодержащих веществ (амидов, пептидов, промежуточных и конечных продуктов распада аминокислот) в организме животных.

7.Белок это уникальная биологическая суперструктура клеток и тканей, занимающего наибольший удельный вес в массе тела животного и человека (более 50% сухого вещества).

8.Белки делятся на простые и сложные. Простые состоят только из остатков α – аминокислот. Сложные, кроме белковой части имеют небелковую. К простым белкам относятся: альбумин, глобулин, проламины, гистоны, протамины и другие. К сложным белкам относятся: фосфопротеиды, гликопротеиды, липопротеиды, хромопротеиды, нуклеопротеиды.

ФУНКЦИИ БЕЛКОВ

9.Пластическая функция белков состоит в обеспечении роста и развития организма за счет процессов биосинтеза. Белки входят в состав всех клеток организма и межтканевых структур. Сокращения мышц связаны с особыми свой­ствами белков миозина и актина, входящих в состав мышечной ткани.

10.Ферментативная активность белков регулирует скорость протекания биохимических реакций. Белки–ферменты определяют все стороны обмена веществ и образования энергии не только из самих протеинов, но из углеводов и жиров. Принимают участие в пищеварении.

11.Защитная функция белков состоит в образовании иммунных белков - антител. Белки способны связывать токсины и яды а также обеспечивать свертываемость крови (гемостаз).

12.Транспортная функция заключается в переносе кислорода и двуокиси углерода эритроцитным белком гемоглобином, а также в связывании и переносе некоторых ионов (железо, медь, водород), лекарственных веществ, токсинов.

13.Энергетическая роль белков обусловлена их способностью освобождать при окислении энергию. Энергетическая ценность 1 г белка составляет 4,1 ккал (17,2 кДж).

14.Регуляторную функцию выполняют белки-гормоны. Инсулин (простой белок) снижает содержание сахара в крови, способствует синтезу гликогена в печени и мышцах, увеличивает образование жиров из углеводов. Вазопрессин подавляет мочеобразование и повышает кровяное давление.

15. Новые исследования дают много фактов, позволяющих выделять группы белков с новыми функциями. Среди них уникальные вещества - нейропептиды (ответственные за важнейшие жизненные процессы: сна, памяти, боли, чувства страха, тревоги).

16.Синтез и распад белка в организ­ме происходят непрерывно, на протяжении всей жизни. Методом меченных атомов установлено, что около 50% всех белков в организме млекопитаюших обновляются за 6 – 7 месяцев. Наиболее быстро этот процесс происходит у беков плазмы крови, белков печени, слизистой оболочки кишечника и в сером веществе головного мозга. Медленно обновляются белки, входящие в состав клеток сердца, половых желез. Еще медленнее обновляются белки кожи, мышц, особенно опорных тканей - сухожилий, хрящей и костей.

17.В состав белков входят: углерод, водород, кислород, азот, сера и иногда фосфор. Наиболее характерно для белка наличие в его молекуле азота. Другие питательные вещества азота не содержат. Следовательно, белки в организме животного не могут образовываться из других питательных веществ – углеводов и жиров т. к. в них отсутствует азот. Поэтому белки считаются незаменимыми питательными веществами и должны содержаться в необходимом количестве в пище и кормах.

18.Белки корма никогда не вступают в состав тканей тела без предварительного расщепления. В пищеварительном тракте они перевариваются до аминокислот и простых пептидов, которые лишены видовой и тканевой специфичности и способны проходить через клеточную мембрану эпителиоцитов.

19.Введение животному чужеродного белка парентерально (т. е. минуя желудочно-кишечный канал) вызывает сильную реакцию организма в виде озноба, повышения температуры, угнетения функций. Белок, являясь антигеном, вызывает активизацию иммунной системы, выработку антител и повышение чувствительности к антигену (сенсибилизацию). Повторное введение того же белка может вызвать анафилактический шок (от греч. ana - против и phylaxis -защита), проявляющийся комплексом патологических реакций (падение кровяного давления, бронхоспазм, застой крови в печени или легких), вплоть до паралича сосудодвигательного или дыхательного центра.

20.Биологическая ценность различных белков неодинакова и зависит от их аминокислотного состава. Биологи­чески полноценным является белок, состав которого обеспечивает потреб­ность организма во всех аминокислотах при данном физиологическом состоя­нии. К таким белкам относятся белки яиц, молока, рыбы, мяса. Растительные белки в большинстве своем неполноценны, что объясняется сравнительно низким содержанием в них некоторых незаменимых амино­кислот.

21. Аминокислоты по биологическому значению подразделяются на три группы:

22.1. Заменимые - глицин, аланин, серин, цистеин, тирозин, аспарагин, глутамин, аспарагиновая и глутаминовые кислоты. Синтезируются в организме человека и животного в достаточном количестве.

23.2. Полузаменимые - аргинин, гистидин. Образуются в организме, но в недостаточном количестве, поэтому их недостаток должен восполняться с белковой пищей и кормом.

24.3. Незаменимые аминокислоты - валин, лейцин, изолейцин, треонин, лизин, метионин, фенилаланин, триптофан. Эти восемь аминокислот не синтезируются в организме и должны поступать только с пищей и кормом.

25.Биологическая ценность животных белков, сбалансированных по амино­кислотному составу, составляет 75-90 %, белков растительного происхож­дения - 60-65 %.

26.В практических условиях лимитирующими аминокислотами являются метионин и лизин, иногда триптофан и гистидин. В питании животных полно­ценность рациона достигается либо сочетанием кормов, дополняющих друг друга по аминокислотам (например, кукуруза плюс соя), либо добавлением соответствующих синтетических аминокислот. Перспективна также селекция растений по показателям полноценности протеина.

27.Полноценные белки крайне необходимы для растущих, беременных и лактирующих животных, т. к. при этих физиологических состояниях организма происходит усиленный обмен белковых веществ.

28.Азотистый баланс. Баланс азота - это разница между количеством азо­та, принятым с кормом за сутки и выделенным из организма за то же время с экскретами и продуктами.

В наиболее простом виде:

29. Баланс N = N корма-( N фекалий+ N мочи).

31.При опре­делении баланса у лактирующих животных учитывают дополнительно выде­ление азота с молоком. Потерями азота с потом и шерстью пренебрегают.

32.По балансу азота можно с достаточной точностью судить о полноценности белкового питания животных и степени усвоения белка. Поскольку в белке содержится в среднем 16 % азота (или 1 г азота соответствует 6,25 г белка), найденное количество потребленного или экскретированного азота следует умножить на 6,25. По разнице определяют количество отложенного или выде­ленного из организма белка.

33.Азотистый баланс может быть положительным, отрицательным и уравно­вешенным. Положительный баланс свидетельствует о преобладании синтеза белка над его распадом (поступление азота с кормом превышает его выведе­ние из организма). Это бывает в период роста животных, при вынашивании плода, при восстановлении после вынужденного голодания, при использова­нии анаболических препаратов, в частности андрогенов

34.Отрицательный баланс азота (когда выведение превышает поступление) указывает на преобладание распада тканевого белка. Это состояние наблю­дается при голодании, недостаточном белковом питании, дефиците незамени­мых аминокислот в рационе или их дисбалансе, недостатке витаминов и мине­ральных веществ, необходимых для использования протеина

35.Уравновешенный азотистый баланс (азотистое равновесие) -это нор­мальное физиологическое состояние взрослого животного, закончившего рост и содержащегося на сбалансированном рационе. Он наблюдается и у лакти­рующих животных, так как выделение у них азота с молоком компенсируется большим поступлением его с кормом.

36.Минимальное количество белка в корме, при котором еще сохраняется азотистое равновесие, называется белковым минимумом . Он определяется в граммах на килограмм массы тела животного:

37. - у свиней и овец белковый минимум равен – 1,0;

38. - лошади в покое – 0,7 – 0,8, в работе – 1,2 – 1,4;

39. - коровы нелактирующие – 0,7 – 0,8, лактирующие – 1,0.

41.Резкий и длительный дефицит белка приводит к снижению массы тела и отрицательному азотистому балансу вследствие расхода собственных бел­ков - крови, печени (кроме ферментов), скелетных мышц. У молодняка на­блюдается отставание в росте и развитии, трудноустранимое в последующие периоды.

42.Избыток белка в рационе ведет к его непроизводительной трате, по­скольку значительная часть аминокислот дезаминируется и используется в энергетических целях. Вследствие усиленного распада кетогенных ами­нокислот, а также неполного окисления жирных кислот в тканях и крови увеличивается содержание кетоновых тел. Возникают ацидоз, аутоинто­ксикация, падает продуктивность. Особенно резкие изменения наступают при избытке белка и одновременном дефиците углеводов.

43. Роль печени в белковом обмене.

44.Печёночные клетки животного организма располагают большим набором ферментов участвующих в превращении аминокислот и белков.

45.1. Печень синтезирует многие белки на экспорт – это тканевые белки и белки плазмы крови (альбумины, глобулины) и белки, принимающие участие в свертывание крови (протромбин, фибриноген, проконвертин и проакцелерин).

46.2. В печени идет образование заменимых аминокислот и азотистых оснований нуклеиновых кислот из простых предшественников.

47.3. Дезаминирование аминокислот и распад углеродного скелета для выработки энергии и обеспечение глюконеогенеза.

48.4. Катаболизм гемопротеидов и образование жёлчных пигментов (билирубин и билливердин) и выделение их в кишечник. В этом активное участие принимает глюкуроновая кислота.

49.5. Обезвреживание аммиака и образование мочевины.

50.6. Инактивация (действие серной и глюкуроновой кислот) ядовитых аминов: индол, скатол, крезол, фенол, пуриновые основания, которые образуются в кишечнике при гидролизе и под влиянием на белок бактерий.

Регуляцию обмен белков в организме осуществляется структурами центральной нервной системы главным образом через органы внутренней секреции (систему гипотала­мус- гипофиз - периферические эндокринные железы).

Гормон роста - полипептид, выделяемый передней долей гипофиза. Он стимулирует синтез РНК и белка практически во всех тканях организма. Однако характер его действия и мишени меняются по мере роста организма.

Инсулин, помимо углеводного обмена, регулирует и обмен белков. При повышении содержания аминокислот в крови он стимулирует их поступление в клетки, усиливает анаболизм тканевых белков и подавляет катаболизм аминокислот.

Тироксин - гормон щитовидной железы. Его действие проявляется в периоды, когда организм нуждается в повышении процессов синтеза белка. Он также стимулирует рост и дифференцировку тканей, обладает специфическим усиливающим действием на синтез окислительных митохондриальных ферментов.

Эстрогены - стероидные гормоны, образующиеся в женском организме (в яичниках) и стимулирующие синтез РНК и белка в клетках матки. Андрогены - мужские стероидные гормоны, образующиеся в яичках. По сравнению с женскими стероидами мужские оказывают более широкое влияние, так как стимулируют синтез РНК и белков во многих тканях организма, включая клетки поперечно-полосатых мышц.

51.Из ряда катаболических гормонов влияние на обмен белков оказывают глюкокортикоиды, вырабатывающиеся корой надпочечников. Эти гормоны усиливают расщепление белков в клетках различных тканей и тормозят синтез белка. В то же время они стимулируют синтез белка в печени.

2. Обмен углеводов и его регуляция.

53.Углеводный обмен - совокупность процессов превращения моносахаридов и их производных, а также гомополисахаридов и различных углеводсодержащих биополимеров (гликоконъюгатов) в организме человека и животных.

54.В организме постоянно происходит обмен углеводов. Однако уровень сахара в крови (гликемия) является величиной относительно постоянной для животных одного вида и возраста: у лошадей - 65–95 мг %, у жвачных - 40–60, у человека - 80–120 мг %, свиней -60–90 мг % , кролик – 80 – 100мг%, куры – 160 – 200мг%. Повышение уровня сахара в крови выше нормы – гипергликемия, понижение – гипогликемия. Углеводы в организме животного находятся в виде моносахаров: глюкоза, фруктоза, галактоза; в виде сложных сахаров – гликогена в печени 3 – 5% и в мышечной ткани около 1% от массы тела животного.

55.Основная часть (70 %) переваренных углеводов корма окисляется в тканях моногастричных животных до углекислого газа и воды с образованием энергии, часть (25- 27 %) превращается в жир и небольшое количество (3-5 %) используется для синтеза гликогена.

56. Биологическая роль углеводов в организме животного.

57.Углеводы в организме животного выполняют пластическую, энергетическую и защитную роль.

58.1. Основная биологическая роль углеводов для животного определяется их энергетической ценностью. Они легко и быстро извлекаются из депо, окисляются с выделением большого количества энергии (4,1 ккал; 17,2 кДж/г). Примерно 60-75% потребности организма в энергии обеспечивается углеводами.

59.2. Углеводы являются составной частью биологических жидкостей (плазма крови, суставная и плевральная жидкость, слизь и т. д.).

60.3. Углеводы принимают участие в образовании органических веществ костей и хрящей (остеобласты – основные клетки костной ткани – богаты РНК , неколлагеновые белки костной ткани ).

61.4. Углеводы служат компонентами ряда сложных соединений (рибоза, дезоксирибоа) входящих в структуру ДНК и РНК.

62.5. Углеводы образуют гликопротеиды и мукополисахариды (слизь, гликокаликс), которые защищают слизистые оболочки пищеварительного тракта от воздействий механических, химических и биологических факторов.

63. Роль печени в углеводном обмене.

64.1. Печень является гомеостатическим органом в регуляции уровня глюкозы в крови.

65.2. В печени происходит синтез (гликогенез) и депонирование глико­гена или его распад (гликогенолиз) до свободной глюкозы.

66.3. В печени, в процессе обмена углеводов, окисляется глюкоза с выделением энергии и используется в качестве сырья для синтеза жиров. Возможен и обратный процесс, когда из продуктов распада жиров и белков образуются углеводы (глюконеогенез).

67.4. Из глюкозы в печени образуются глюкуроновая кислота, обеспечивающая детоксикационную функцию печени.

68.Превращение углеводов в тканях. Важная роль в обмене углеводов принадлежит: печени – орган превращения и депо углеводов; мышцам – депо углеводов и как главные потребители энергии; головной мозг – энергетические потребности покрываются исключительно за счет углеводов; молочной железе – глюкоза является предшественником молочного сахара; почки – как орган, выводящий избыточное количество сахара. В скелетных мышцах (как и в сердечной) преобладает анаэробный гликогенолиз и гликолиз. Образующаяся при этом энергия частично выделяется в виде тепла, а частично аккумулируется в макроэргических связях АТФ. Образовавшаяся молочная кислота подвергается дальнейшим превраще­ниям в мышцах и печени (85% молочной кислоты ресинтезируется в гликоген в аэробных условиях (путем, обратным гликогенолизу, а 15 % окисляется сначала до пирувата, затем до СО 2 и Н 2 О). В мозгу преобладает аэробное прямое окисление глюкозы с поэтапным, цикличным освобождением СО 2 и Н 2 0 и выделением большого количества энергии, часть которой используется на синтез АТФ.

69. Регуляция углеводного обмена.

70.Перемещение глюкозы из крови в ткани и наоборот регулируется дея­тельностью шести гормонов: инсу­лина (основной фактор), глюкагона, кортизола, адреналина, СТГ и тиро­ксина.

71.Инсулин - единственный гормон, обладающий гипогликемическим действием, поэтому он жизненно важен для обеспечения органов обменной энергией.

72.Остальные гормоны способствуют повышению уровня глюкозы в крови, хотя и разными путями. Глюкагон и адреналин активируют гликогенолиз, кортизол усиливает глюконеогенез, СТГ замедляет поступление глюкозы в клетки и угнетает (при длительном введении) продукцию инсулина, тироксин в умеренных дозах усиливает всасывание глюкозы в кишечнике и её катаболизм в тканях. Падение уровня глюкозы в крови стимулирует секрецию этих гормонов, объединяемых в группу контринсулярных гормонов. Их совместное действие предохраняет организм от резкой гипогликемии, опасной для жизни.

73.Гормональные механизмы регуляции гликемии «запускаются» и контро­лируются центральной нервной системой, прежде всего гипоталамическими центрами. В вентромедиальном отделе гипоталамуса имеются центральные, а в печени и сосудах периферические глюкорецепторы, воспринимающие изме­нения уровня глюкозы. При раздражении центров гипоталамуса можно вы­звать гипергликемию.

3. Обмен липидов и его регуляция.

75.Липиды - органические вещества, входящие в состав животных и растительных тканей , нерастворимые в воде, но растворимые в органических растворителях и друг в друге. Липиды - жиры большая группа органических соединений , включающая в себя триглицериды, холестерол, эфиры холестерола, свободные жирные кислоты, фосфолипиды, сфинголипиды.

76.Жировым обменом называют совокупность процессов переваривания и всасывания нейтральных жиров (триглицеридов) и продуктов их распада в желудочно-кишечном тракте, промежуточного обмена жиров и жирных кислот и выведение жиров, а также продуктов их обмена из организма.

77.Липиды составляют в среднем 10-20% тела животных. В основном это триглицериды, содержащие насыщенные (преимущественно) и ненасыщенные жирные кислоты. У свиней при сальном откорме, у волов и валухов содержание липидов может возрастать до 35-50 %. У курдючных, овец масса курдючного жира иногда превышает 50 % живой массы.

78.Свободный жир , содержащийся в теле, разделяют на протоплазматический и резервный. Протоплазматический жир входит в состав мембран, митохондрий, микросом и других клеточных структур. Его состав и содержание довольно постоянны (примерно 25 % общего жира). Наиболее богатыми жирами клетки мозга, яичников, семенников, а также сперма.

79.Резервный жир представляет собой запас энергии и откладывается в клетках жировой ткани - адипоцитах. Депо резервного жира являются подкожная клетчатка, сальник, околопочечная и околосердечная капсулы. Адипоциты располагаются также между мышечными пучками, в межальвеолярной ткани и в других местах.

80.В состав жира входят насыщенные жирные кислоты (стеариновая, пальмитиновая) и ненасыщенные (олеиновая, линолевая, линоленовая, арахидоновая). У разных животных жирные кислоты могут находится в различных пропорциях, поэтому они отличаются по температуре плавления и йодному числу. Жиры, содержащие в большом количестве насыщенные жирные кислоты, имеют более высокую точку плавления. Температура плавления жиров следующая: коровье масло – 19-24,50, свиное сало – 36-46, куриный жир – 33-40, гусиный жир – 26-34, баранье сало – 44-50, говяжье сало – 31-38, собачье сало – 37-40, подсолнечное масло минус 21, хлопковое 34, конопляное и льняное - 170.

81.Наряду со свободным жиром в организме имеется жир, связанный с углеводами и белками в виде липопротеидов, гликолипидов, фосфолипидов, функции которых весьма разнообразны.

Биологическая роль жиров.

Структурная функция . Липиды принимают участие в построении мембран клеток всех органов и тканей. Липиды, входящие в состав нервных клеток и их отростков, обеспечивают направленность потоков нервных сигналов, участвуют в передаче нервного импульса, создании межклеточных контактов.

Они участвуют в образовании многих биологически активных соединений - служат предшественниками простагландинов, стероидных гормонов (половых и коры надпочечников), холина (витамина В4).

Энергетическая функция . Липиды обеспечивают 50% всей энергии, необходимой организму. При полном распаде 1 г жира выделяется 38,9 кДж энергии, что примерно в 2 раза больше по сравнению с углеводами и белками.

82.Функция терморегуляции . Будучи плохим проводником тепла, жировая ткань защищает организм от резких колебаний температуры внешней среды. Это имеет важное значение для животных северных широт. Например, у кита слой подкожного жира достигает 1 м. Это позволяет теплокровному животному жить в холодной воде полярного океана.
У многих млекопитающих (в раннем постнатальном периоде и взрослых животных впадающих в спячку) существует специальная жировая ткань, играющая в основном роль терморегулятора, своеобразного биологического «обогревателя». Эту ткань называют «бурым жиром». Она содержит большое количество митохондрий и железосодержащих пигментов – цитохромов. Такой жир интенсивно окисляется и быстро выделяет тепло, выполняя важную роль в поддержании температурного гомеостаза.

83.Жир – поставщик так называемой эндогенной воды - при окислении 100 г жира выделяются 107 мл воды. Благодаря такой воде существуют многие пустынные животные.

84.Защитная (амортизационная) - слой жира защищает нежные органы от ударов и сотрясений (например, околопочечная капсула, жировая подушка около глаза).

85.Жиры являются растворителями витаминов А, E, D, К и способствуют их всасыванию в кишечнике.

86.Липиды, выделяемые сальными железами, придают коже эластичность, предохраняют ее от высыхания и растрескивания.

87.Обмен липидов в тканях. В кишечнике под влиянием ферментов поджелудочного и кишечного сока часть потребленного жира (~30-40 %) гидролизуется с образованием жирных кислот, моно- и диглицеридов. После абсорбции жирных кислот и глицеридов в виде холеиновых комплексов или мицеллярного раствора в энтероцитах кишечника к ним присоединяется белок и образуются хиломикроны и липопротеиды низкой плотности. Эти соединения с лимфой, через грудной лимфатический проток, попадают в венозную кровь каудальной полой вены, а затем попадают в легкие, печень и периферийные ткани.

88.В легких имеются особые клетки гистиоциты, которые задерживают часть хиломикронов и липопротеидов, что предохраняет артериальную кровь от избыточного поступления жира. Увеличение концентрации жира в крови повышает ее свертываемость и вызывает закупорку мелких кровеносных сосудов. Гистиоциты легких не только задерживают жир, но и окисляют его. Освободившееся при этом энергия используется в метаболизме самого легкого и часть идет на согревание вдыхаемого воздуха.

89.В гепатоцитах печени хиломикроны подвергаются гидролизу с образованием жирных кислот. Они окисляются или используются для синтеза специ­фических для организма триглицеридов, фосфолипидов, холестерина, кето­новых тел, которые снова поступают в кровь. Часть жира может откладывать­ся в виде запаса в жировых депо.

90.В адипоцитах жировой ткани из поступивших с кровью компонентов (хиломикроны и липопротеиды) выделяются жирные кислоты, триглицериды и депонируются в виде жира, характерного для данного вида животного. Однако следует подчеркнуть, что основным источником для синтеза жира в клетках жировой ткани служат углеводы. Регулируется данный процесс гормоном поджелудочной железы – инсулином.

91.В крови хиломикроны и липопротеиды частично расщепляются липопротеидлипазой на более мелкие комплексы. Энергия, котороя пр этом освобождается, утилизируется организмом.

92.Регуляция обмена липидов. В основе регуляции жирового обмена лежит нейроэндокринный механизм поддержании баланса между процессами мобилизации и отложения жира. Ведущим звеном этого механизма являются ядра гипоталамуса, ведающие пищевой активностью животных, чувством голода и аппетита. Длительное пищевое возбуждение и потребление избытка корма усиливают отложение жира, потеря аппетита, наоборот, ведет к исхуданию.

93.Регулирующие влияния гипоталамического пищевого центра могут осуществляться через симпатоадреналовую и гипоталамо-гипофизарную системы или путем непосредственного влияния вегетативных нервов на адипоциты жировых депо (симпатические нервы стимулируют липолиз, парасимпатические - липогенез).

94.Жиромобилизующим эффектом обладают гормоны адреналин, норадреналин, СТГ, ТТГ, тироксин, глюкагон, депонирующим - инсулин.

95.В печени происходит важнейшее превращение жирных кислот, из которых синтезируются жиры, свойственные для данного вида животного. Под действием фермента липазы жиры расщепляются на жирные кислоты и глицерин. Дальнейшая судьба глицерина похожа на судьбу глюкозы. Его превращение начинается с участием АТФ и заканчивается распадом до молочной кислоты с последующим окислением до углекислого газа и воды. Иногда при необходимости печень может синтезировать гликоген из молочной кислоты.

В печени также осуществляется синтез жиров и фосфатидов, которые поступают в кровь, транспортируются по всему организму. Значительную роль она играет в синтезе холестерина и его эфиров. При окислении холестерина в печени образуются желчные кислоты, которые выделяются с желчью и участвуют в процессах пищеварения.

Печень принимает участие в обмене жирорастворимых витаминов, является главным депо ретинола и его провитамина - каротина. Она способна синтезировать цианокобаламин.

10320 0

Основные энергетические ресурсы живого организма — углеводы и жиры обладают высоким запасом потенциальной энергии, легко извлекаемой из них в клетках с помощью ферментных катаболических превращений. Энергия, высвобождаемая в процессе биологического окисления продуктов углеводного и жирового обменов, а также гликолиза, превращается в значительной степени в химическую энергию фосфатных связей синтезируемого АТФ.

Аккумулированная же в АТФ химическая энергия макроэргических связей, в свою очередь, расходуется на разного вида клеточную работу — создание и поддержание электрохимических градиентов, сокращение мышц, секреторные и некоторые транспортные процессы, биосинтез белка, жирных кислот и т.д. Помимо «топливной» функции углеводы и жиры наряду с белками выполняют роль важных поставщиков строительных, пластических материалов, входящих в основные структуры клетки, — нуклеиновых кислот, простых белков, гликопротеинов, ряда липидов и т.д.

Синтезируемая благодаря распаду углеводов и жиров АТФ не только обеспечивает клетки необходимой для работы энергией, но и является источником образования цАМФ, а также участвует в регуляции активности многих ферментов, состояния структурных белков, обеспечивая их фосфорилирование.

Углеводными и липидными субстратами, непосредственно утилизируемыми клетками, являются моносахариды (прежде всего глюкоза) и неэстерифицированные жирные кислоты (НЭЖК), а также в некоторых тканях кетоновые тела. Их источниками служат пищевые продукты, всасываемые из кишечника, депонированные в органах в форме гликогена углеводов и в форме нейтральных жиров липиды, а также неуглеводные предшественники, в основном аминокислоты и глицерин, образующие углеводы (глюконеогенез).

К депонирующим органам у позвоночных относятся печень и жировая (адипозная) ткань, к органам глюконеогенеза — печень и почки. У насекомых депонирующим органом является жировое тело. Кроме этого, источниками глюкозы и НЭЖК могут быть и некоторые запасные или другие продукты, хранящиеся или образующиеся в работающей клетке. Разные пути и стадии углеводного и жирового обменов взаимосвязаны многочисленными взаимовлияниями. Направление и интенсивность течения этих обменных процессов находятся в зависимости от ряда внешних и внутренних факторов. К ним относятся, в частности, количество и качество потребляемой пищи и ритмы ее поступления в организм, уровень мышечной и нервной деятельности и т.д.

Животный организм адаптируется к характеру пищевого режима, к нервной или мышечной нагрузке с помощью сложного комплекса координирующих механизмов. Так, контроль течения различных реакций углеводного и липидного обменов осуществляется на уровне клетки концентрациями соответствующих субстратов и ферментов, а также степенью накопления продуктов той или иной реакции. Эти контролирующие механизмы относятся к механизмам саморегуляции и реализуются как в одноклеточных, так и в многоклеточных организмах.

У последних регуляция утилизации углеводов и жиров может происходить на уровне межклеточных взаимодействий. В частности, оба вида обмена реципрокно взаимоконтролируются: НЭЖК в мышцах тормозят распад глюкозы, продукты же распада глюкозы в жировой ткани тормозят образование НЭЖК. У наиболее высокоорганизованных животных появляется особый межклеточный механизм регуляции межуточного обмена, определяемый возникновением в процессе эволюции эндокринной системы, имеющей первостепенное значение в контроле метаболических процессов целого организма.

Среди гормонов, участвующих в регуляции жирового и углеводного обменов у позвоночных, центральное место занимают следующие: гормоны желудочно-кишечного тракта, контролирующие переваривание пищи и всасывание продуктов пищеварения в кровь; инсулин и глюкагон — специфические регуляторы межуточного обмена углеводов и липидов; СТГ и функционально связанные с ним «соматомедины» и СИФ, глкжокортикоиды, АКТГ и адреналин — факторы неспецифической адаптации. Следует отметить, что многие названные гормоны принимают также непосредственное участие и в регуляции белкового обмена (см. гл. 9). Скорость секреции упомянутых гормонов и реализация их эффектов на ткани взаимосвязаны.

Мы не можем специально останавливаться на функционировании гормональных факторов желудочно-кишечного тракта, секретируемых в нервно-гуморальную фазу сокоотделения. Их главные эффекты хорошо известны из курса общей физилогии человека и животных и, кроме того, о них уже достаточно полно упоминалось в гл. 3. Более подробно остановимся на эндокринной регуляции межуточного метаболизма углеводов и жиров.

Гормоны и регуляция межуточного углеводного обмена. Интегральным показателем баланса обмена углеводов в организме позвоночных является концентрация глюкозы в крови. Этот показатель стабилен и составляет у млекопитающих примерно 100 мг% (5 ммоль/л). Его отклонения в норме обычно не превышают ±30%. Уровень глюкозы в крови зависит, с одной стороны, от притока моносахарида в кровь преимущественно из кишечника, печени и почек и, с другой — от его оттока в работающие и депонирующие ткани (рис. 95).


Рис. 95. Пути поддержания динамического баланса глюкозы в крови
Мембраны мышечных и адилозных клеток имеют «барьер» для транспорта глюкозы; Гл-6-ф — глюкозо-6-фосфат


Приток глюкозы из печени и почек определяется соотношением активностей гликогенфосфорилазной и гликогенсинтетазной реакции в печени, соотношением интенсивности распада глюкозы и интенсивности глюконеогенеза в печени и отчасти в почке. Поступление глюкозы в кровь прямо коррелирует с уровнями фосфорилазной реакции и процессов глюконеогенеза.

Отток глюкозы из крови в ткани находится в прямой зависимости от скорости ее транспорта в мышечные, адипозные и лимфоидные клетки, мембраны которых создают барьер для проникновения в них глюкозы (напомним, что мембраны клеток печени, мозга и почек легко проницаемы для моносахарида); метаболической утилизации глюкозы, в свою очередь зависимой от проницаемости к ней мембран и от активности ключевых ферментов ее распада; превращения глюкозы в гликоген в печеночных клетках (Левин и др., 1955; Ньюсхолм, Рэндл, 1964; Фоа, 1972).

Все эти процессы, сопряженные с транспортом и метаболизмом глюкозы, непосредственно контролируются комплексом гормональных факторов.

Гормональные регуляторы углеводного обмена по действию на общее направление обмена и уровень гликемии могут быть условно разделены на два типа. Первый тип гормонов стимулирует утилизацию глюкозы тканями и ее депонирование в форме гликогена, но тормозит глюконеогенез, и, следовательно, вызывает снижение концентрации глюкозы в крови.

Гормоном такого типа действия является инсулин. Второй тип гормонов стимулирует распад гликогена и глюконеогенез, а следовательно, вызывает повышение содержания глюкозы в крови. К гормонам этого типа относятся глюкагон (а также секретин и ВИП) и адреналин. Гормоны третьего типа стимулируют глюконеогенез в печени, тормозят утилизацию глюкозы различными клетками и, хотя усиливают образование гликогена гепатоцитами, в результате преобладания первых двух эффектов, как правило, также повышают уровень глюкозы в крови. К гормонам данного типа можно отнести глюкокортикоиды и СТГ — «соматомедины». Вместе с тем, обладая однонаправленным действием на процессы глюконеогенеза, синтеза гликогена и гликолиза, глюкокортикоиды и СТГ — «соматомедины» по-разному влияют на проницаемость мембран клеток мышечной и адипозной ткани к глюкозе.

По направленности действия на концентрацию глюкозы в крови инсулин является гипогликемическим гормоном (гормон «покоя и насыщения»), гормоны же второго и третьего типов — гипергликемическими (гормоны «стресса и и голодания») (рис. 96).



Рис 96. Гормональная регуляция углеводного гомеостаза:
сплошными стрелками обозначена стимуляция эффекта, пунктирными — торможение


Инсулин можно назвать гормоном усвоения и депонирования углеводов. Одной из причин усиления утилизации глюкозы в тканях является стимуляция гликолиза. Она осуществляется, возможно, на уровне активации ключевых ферментов гликолиза гексокиназы, особенно одной из четырех известных ее изоформ — гексокиназы II, и глюкокиназы (Вебер, 1966; Ильин, 1966, 1968). По-видимому, определенную роль в стимуляции катаболизма глюкозы инсулином играет и ускорение пентозофосфатного пути на стадии глюкозо-6-фосфатдегидрогеназной реакции (Лейтес, Лаптева, 1967). Считается, что в стимуляции захвата глюкозы печенью при пищевой гипергликемии под влиянием инсулина важнейшую роль играет гормональная индукция специфического печеночного фермента глюкокиназы, избирательно фосфорилирующего глюкозу при высоких ее концентрациях.

Главная причина стимуляции утилизации глюкозы мышечными и жировыми клетками — прежде всего избирательное повышение проницаемости клеточных мембран к моносахариду (Лунсгаард, 1939; Левин, 1950). Таким путем достигается повышение концентрации субстратов для гексокиназной реакции и пентозофосфатного пути.

Усиление гликолиза под влиянием инсулина в скелетных мышцах и миокарде играет существенную роль в накоплении АТФ и обеспечении работоспособности мышечных клеток. В печени усиление гликолиза, по-видимому, важно не столько для повышения включения пирувата в систему тканевого дыхания, сколько для накопления ацетил-КоА и малонил-КоА как предшественников образования многоатомных жирных кислот, а следовательно, и триглицеридов (Ньюсхолм, Старт, 1973).

Образующийся в процессе гликолиза глицерофосфат также включается в синтез нейтрального жира. Кроме того, и в печени, и особенно в адипозной ткани для повышения уровня липогенеза из глюкозы существенную роль играет стимуляция гормоном глюкозо-6-фосфатдегидрогеназной реакции, приводящей к образованию НАДФН — восстанавливающего кофактора, необходимого для биосинтеза жирных кислот и глицерофосфата. При этом у млекопитающих только 3-5% всасываемой глюкозы превращается в печеночной гликоген, а более 30% накапливается в виде жира, откладываемого в депонирующих органах.

Таким образом, основное направление действия инсулина на гликолиз и пентозофоофатный путь в печени и особенно в жировой клетчатке сводится к обеспечению образования триглицеридов. У млекопитающих и птиц в адипоцитах, а у низших позвоночных в гепатоцитах глюкоза — один из главных источников депонируемых триглицеридов. В данных случаях физиологический смысл гормональной стимуляции утилизации углеводов сводится в значительной мере к стимуляции депонирования липидов. Одновременно с этим инсулин непосредственно влияет на синтез гликогена — депонируемой формы углеводов — не только в печени, но и в мышцах, почке, и, возможно, жировой ткани.

Гормон оказывает стимулирующий эффект на гликогенообразование, повышая активность гликогенсинтетазы (переход неактивной D-формы в активную I-форму) и ингибируя гликогенфосфорилазу (переход малоактивной 6-формы в л-форму) и тем самым тормозя гликогенолиз в клетках (рис. 97). Оба эффекта инсулина на эти ферменты в печени опосредуются, по-видимому, активацией мембранной протеиназы, накоплением гликопептидов, активацией фосфодиэстеразы цАМФ.


Рис 97. Основные этапы гликолиза, глюконеогенеза и синтеза гликогена (по Ильину, 1965 с изменениями)


Еще одним важным направлением действия инсулина на углеводной обмен является торможение процессов глюконеогенеза в печени (Кребс, 1964; Ильин, 1965; Икстон и др., 1971). Торможение глюконеогенеза гормоном осуществляется на уровне снижения синтеза ключевых ферментов фосфоенолпируваткарбоксикиназы и фруктозо- 16-дифосфатазы. Эти эффекты опосредуются также повышением скорости образования гликопептидов — медиаторов гормона (рис. 98).

Глюкоза при любых физиологических состояниях — главный источник питания нервных клеток. При увеличении секреции инсулина происходит некоторое повышение потребления глюкозы нервной тканью, по-видимому, благодаря стимуляции в ней гликолиза. Однако при высоких концентрациях гормона в крови, вызывающих гипогликемию, возникает углеводное голодание мозга и торможение его функций.

После введения очень больших доз инсулина глубокое торможение мозговых центров может приводить сначала к развитию судорог, затем к потере сознания и падению кровяного давления. Такое состояние, возникающее при концентрации глюкозы в крови ниже 45-50 мг%, называют инсулиновым (гипогликемическим) шоком. Судорожную и шоковую реакцию на инсулин используют для биологической стандартизации препаратов инсулина (Смит, 1950; Стюарт, 1960).

Пути регуляции обмена углеводов крайне разнообразны. На любых уровнях организации живого углеводный обмен регулируется факторами, влияющими на активность ферментов, участвующих в реакциях углеводного обмена. К этим факторам относятся: концентрация субстратов, содержание продуктов (метаболитов) отдельных реакций, кислородный режим, температура, проницаемость биологических мембран, концентрация коферментов, необходимых для отдельных реакций, и т. д. По ходу изложения материала в данной главе мы старались показать влияние перечисленых выше факторов на активность ферментных систем углеводного обмена.

У человека и животных на всех стадиях синтеза и распада углеводов регуляция углеводного обмена осуществляется с участием ЦНС и гормонов.

Например, установлено, что падение концентрации глюкозы в крови ниже 3,3-3,4 ммоль/л (60-70 мг/100 мл) приводит к рефлекторному возбуждению высших метаболических центров, расположенных в гипоталамусе. Возбуждение, возникающее в ЦНС, быстро распространяется по нервным путям в спинном мозгу, переходит в симпатический ствол и по симпатическому нерву достигает печени. В результате часть гликогена печени распадается с образованием глюкозы. Концентрация глюкозы в крови при этом повышается. В регуляции углеводного обмена ЦНС особая роль принадлежит ее высшему отделу - коре головного мозга. Наряду с ЦНС важное влияние на содержание глюкозы в крови оказывают гормональные факторы, т. е. регуляция уровня сахара в крови осуществляется ЦНС не только путем прямого воздействия на печень, но через ряд эндокринных желез.

Нарушения углеводного обмена

При ряде состояний можно наблюдать повышение содержания сахара в крови - гипергликемию, а также понижение концентрации сахара - гипогликемию.

Гипергликемия

Гипергликемия является довольно частым симптомом при различных заболеваниях, прежде всего связанных с поражением эндокринной системы.

Сахарный диабет . В регуляции гликолиза и глюконеогенеза большую роль играет инсулин. При недостаточности инсулина возникает заболевание, которое носит название сахарного диабета. Повышается концентрация глюкозы в крови (гипергликемия), появляется глюкоза в моче (глюкозурия) и уменьшается содержание гликогена в печени. При этом мышечная ткань утрачивает способность утилизировать глюкозу крови. В печени при общем снижении интенсивности биосинтетических процессов (биосинтеза белков, синтеза жирных кислот из продуктов распада глюкозы) наблюдается усиленный синтез ферментов глюконеогеназа. При введении инсулина больным диабетом происходит коррекция метаболических сдвигов: нормализуется проницаемость мембран мышечных клеток для глюкозы, восстанавливается соотношение между гликолизом и глюконеогенезом. Инсулин контролирует эти процессы на генетическом уровне как индуктор синтеза ключевых ферментов гликолиза: гексокиназы, фосфофруктокиназы и пируваткиназы. Инсулин также индуцирует синтез гликогенсинтазы. Одновременно инсулин действует как репрессор синтеза ключевых ферментов глюконеогенеза. Заметим, что индукторами синтеза ферментов глюконеогенеза служат глюкокортикоиды. В связи с этим при инсулярной недостаточности и при сохранении или даже повышении инкреции кортикостероидов (в частности, при диабете) устранение влияния инсулина приводит к резкому повышению синтеза и концентрации ферментов глюконеогенеза, особенно фосфоенол-пируваткарбоксикиназы, определяющей возможность и скорость глюконеогенеза в печени и почках.

Развитие гипергликемии при диабете можно рассматривать также как результат возбуждения метаболических центров в ЦНС импульсами с хеморецепторов клеток, испытывающих энергетический голод в связи с недостаточным поступлением глюкозы в клетки ряда тканей.

Гипергликемия может возникнуть не только при заболевании поджелудочной железы, но и в результате расстройств функции других эндокринных желез, участвующих в регуляции углеводного обмена. Так, например, гипергликемия может наблюдаться при гипофизарных заболеваниях, при опухолях коры надпочечников, гиперфункции щитовидной железы. Гипергликемий иногда появляется во время беременности. Наконец, гипергликемия может встречаться также при органических поражениях ЦНС, при расстройствах мозгового кровообращения или сопровождать заболевания печени воспалительного или дегенеративного характера. Поддержание постоянства уровня сахара крови, как уже отмечалось, является важнейшей функцией печени, резервные возможности ее в этом направлении весьма велики, поэтому гипергликемия, связанная с нарушением функции печени, выявляется обычно лишь при тяжелых поражениях печени.

Большой клинический интерес представляет изучение реактивности организма на сахарную нагрузку у здорового и больного человека. В связи с этим в клинике довольно часто применяют многократное исследование уровня сахара обычно после приема per os 50 или 100 г глюкозы, растворенной в теплой воде,- так называемые сахарные кривые. При оценке сахарных кривых обращают внимание на время максимального подъема, высоту этого подъема и время возврата концентрации сахара к исходному уровню. Для оценки сахарных кривых введено несколько показателей, из которых наиболее важное значение имеет коэффициент Бодуэна: ((B-A) / A) x 100%, где А - уровень сахара в крови натощак; В - максимальное содержание сахара в крови после нагрузки глюкозой. В норме этот коэффициент составляет около 50%. Цифры, превышающие 80%, говорят о серьезном нарушении углеводного обмена.

Гипогликемия

Гипогликемия нередко связана с понижением функций тех эндокринных желез, повышение функции которых приводит, как это было отмечено выше, к гипергликемии. В частности, гипогликемию можно наблюдать при гипофизарной кахексии, аддисоновой болезни, гипотиреозе. Резкое снижение сахара в крови отмечается при аденомах островковой ткани поджелудочной железы вследствие повышенной продукции инсулина β-клетками островков Лангерганса. Кроме того, гипогликемия может быть вызвана голоданием, продолжительной физической работой, приемом β-ганглиоблокаторов. Низкий уровень сахара в крови иногда отмечается при беременности, лактации.

Гипогликемия может возникнуть также при введении больным сахарным диабетом больших доз инсулина. Гипогликемия, как правило, сопровождает почечную глюкозурию, возникающую вследствие снижения почечного порога для сахара.

Глюкозурия

Чаще всего присутствие глюкозы в моче (глюкозурия) является результатом расстройства углеводного обмена на почве патологических изменений в поджелудочной железе (сахарный диабет, острый панкреатит и т. д.). Реже встречается глюкозурия почечного происхождения, связанная с недостаточностью резорбции глюкозы в почечных канальцах. Как временное явление глюкозурия может возникнуть при некоторых острых инфекционных и нервных заболеваниях, после приступов эпилепсии, сотрясения мозга.

Отравления морфином, стрихнином, хлороформом, фосфором и др. также обычно сопровождаются глюкозурией. Наконец, необходимо помнить о глюкозурии алиментарного происхождения, глюкозурии беременных и глюкозурии на почве нервных стрессовых состояний (эмоциональная глюкозурия).

Изменение углеводного обмена
при гипоксических состояниях

Отставание окисления пирувата от интенсивности гликолиза наблюдается чаще всего при гипоксических состояниях, обусловленных различными нарушениями кровообращения или дыхания, высотной болезнью, анемией, понижением активности системы тканевых окислительных ферментов при некоторых инфекциях и интоксикациях, гипо- и авитаминозах, а также развивается в результате относительной гипоксии при чрезмерной мышечной работе.

При усилении гликолиза происходит накопление пирувата и лактата в крови, что сопровождается обычно изменением кислотно-основного состояния, уменьшением щелочных резервов.

Увеличение содержания лактата и пирувата в крови может наблюдаться также при поражениях паренхимы печени (поздние стадии гепатита, цирроз печени и т. п.) в результате торможения процессов глюконеогенеза в печени.

Таблица 28. Типы гликогенозов и их характеристика
Тип гликогеном и название болезни Фермент с нарушенной активностью Структура гликогена Основные органы ткани и клетки, депонирующие гликоген
I тип Болезнь Гирке Глюкозо-6-фосфатаза Нормальная Печень, почки
II тип Болезнь Помпе Кислая α-1,4-глюкозидаза " Печень, селезенка, почки, мышцы, нервная ткань, эритрициты
III тип Болезнь Форбса Амило-(1-->6)-глюкозидаза Короткие многочисленные внешние ветви (лимитдекстрин) Печень, мышцы, лейкоциты, эритроциты
IV тип Болезнь Андерсена Гликоген-ветвящий фермент Длинные внешние и внутренние ветви с малым числом точек ветвления (амилопектин) Печень, мышцы, лейкоциты
V тип Болезнь Мак-Ардла Фосфорилаза мышц Нормальная Скелетная мускулатура
VI тип Болезнь Херса Фосфорилаза печени " Печень, лейкоциты
VII тип Болезнь Томсона Фосфоглюкомутаза " Печень и (или) мышцы
VIII тип Болезнь Тарун Фосфофруктокиназа " Мышцы, эритроциты
IX тип Болезнь Хага Киназа фосфорилазы "в" " Печень

Гликогенозы