Что вырабатывает лейкоциты. Место образования и продолжительность жизни лейкоцитов в крови. Повышенные лейкоциты в крови – что это значит

человека или животных , выделенная по признакам наличия ядра и отсутствия самостоятельной окраски.

Главная сфера действия лейкоцитов - защита. Они играют главную роль в специфической и неспецифической защите организма от внешних и внутренних патогенных агентов, а также в реализации типичных патологических процессов.

Все виды лейкоцитов способны к активному движению и могут переходить через стенку капилляров и проникать в межклеточное пространство, где они поглощают и переваривают чужеродные частицы. Этот процесс называется фагоцитоз , а клетки, его осуществляющие, - фагоциты .

Если чужеродных тел проникло в организм очень много, то фагоциты, поглощая их, сильно увеличиваются в размерах и в конце концов разрушаются. При этом освобождаются вещества, вызывающие местную воспалительную реакцию, которая сопровождается отеком, повышением температуры и покраснением пораженного участка.

Вещества, вызывающие реакцию воспаления, привлекают новые лейкоциты к месту внедрения чужеродных тел. Уничтожая чужеродные тела и поврежденные клетки, лейкоциты гибнут в больших количествах. Гной , который образуется в тканях при воспалении, - это скопление погибших лейкоцитов.

Энциклопедичный YouTube

  • 1 / 5

    В крови взрослого человека лейкоцитов содержится в 1000 раз меньше, чем эритроцитов , и в среднем их количество составляет 4-9⋅10 9 / . У новорождённых детей, особенно в первые дни жизни, количество лейкоцитов может сильно варьировать от 9 до 30⋅10 9 / . У детей в возрасте 1-3 года количество лейкоцитов в крови колеблется в пределах 6,0-17,0⋅10 9 / , а в 6-10 лет в пределах 6,0-11,0⋅10 9 / .

    Увеличение общего абсолютного количества лейкоцитов в единице объёма выше верхней границы нормы называется абсолютным лейкоцитозом , а уменьшение её ниже нижней границы - абсолютная лейкопения .

    Лейкоцитоз

    Истинный лейкоцитоз возникает при усилении образования лейкоцитов и выхода их из костного мозга . Если же увеличение содержания лейкоцитов в крови связано с поступлением в циркуляцию тех клеток, которые в обычных условиях прикреплены к внутренней поверхности сосудов, такой лейкоцитоз называют перераспределительным .

    Именно перераспределением лейкоцитов объясняются колебания в течение дня. Так, количество лейкоцитов обычно несколько повышается к вечеру, а также после еды.

    Физиологический лейкоцитоз наблюдается в предменструальный период , во второй половине беременности , через 1-2 недели после родоразрешения.

    Физиологический перераспределительный лейкоцитоз может наблюдаться после приёма пищи, после физического или эмоционального напряжения, воздействия холода или тепла.

    Лейкоцитоз как патологическая реакция чаще всего свидетельствует об инфекционном или асептическом воспалительном процессе в организме. Кроме того, лейкоцитоз часто выявляется при отравлениях нитробензолом , анилином , в начальную фазу лучевой болезни , как побочный эффект некоторых медикаментов, а также при злокачественных новообразованиях, острой кровопотере и многих других патологических процессах. В наиболее тяжёлой форме лейкоцитоз проявляется при лейкозах .

    Лейкопения

    Лейкопения также может быть физиологической (конституциональная лейкопения) и патологической, перераспределительной и истинной.

    Некоторые причины лейкопении:

    • хронические инфекции: туберкулёз , ВИЧ ;
    • синдром гиперспленизма;
    • апластические состояния костного мозга;

    Виды лейкоцитов

    Лейкоциты - собирательное понятие, введённое в XIX веке и сохраняемое для простоты противопоставления «белая кровь - красная кровь». По современным данным, лейкоциты различаются по происхождению, функциям и внешнему виду. Часть лейкоцитов способна захватывать и переваривать чужеродные микроорганизмы (фагоцитоз), а другие могут вырабатывать антитела . Вследствие этого существует несколько видов деления лейкоцитов, простейший из которых основан на наличии/отсутствии специфических гранул в их цитоплазме.
    По морфологическим признакам лейкоциты, окрашенные по Романовскому - Гимзе , со времён Эрлиха традиционно делят на две группы:

    • зернистые лейкоциты , или гранулоциты - клетки, имеющие крупные сегментированные ядра и обнаруживающие специфическую зернистость цитоплазмы; в зависимости от способности воспринимать красители они подразделяются на

    Количество лейкоцитов – важный показатель для диагностики патологических состояний. В организме лейкоциты постоянно вырабатываются, а их содержание в крови может меняться в течение дня. Как вырабатываются эти клетки и какую роль играют в организме человека?

    В крови плавают несколько видов форменных элементов, которые поддерживают здоровье целого организма. Белые клетки, внутри которых есть ядро, называются лейкоцитами. Их особенностью является способность проникать через стенку капилляров и попадать в межклеточное пространство. Именно там они находят чужеродные частицы и поглощают их, нормализуя жизнедеятельность клеток человеческого организма.


    К лейкоцитам относятся несколько видов клеток, которые немного отличаются по происхождению и внешнему виду. Наиболее популярно их деление по морфологическим признакам.

    Соотношение этих клеток одинаково у всех здоровых людей и выражается лейкоцитарной формулой. По изменению количества любого вида клеток врачи делают выводы о характере патологического процесса.


    Важно: именно лейкоциты поддерживают здоровье человека на должном уровне. Большинство инфекций, которые попадают в организм человека, протекают бессимптомно из-за своевременного иммунного ответа.

    Важность лейкоцитов объясняется их участием в иммунном ответе и защите организма от попадания любых чужеродных агентов. Главные функции белых клеток следующие:

    1. Выработка антител.
    2. Поглощение чужеродных частиц – фагоцитоз.
    3. Разрушение и удаление токсинов.


    Каждый вид лейкоцитов отвечает за определенные процессы, которые помогают в осуществлении главных функций:

    1. Эозинофилы. Считаются главными агентами по уничтожению аллергенов. Участвуют в нейтрализации многих чужеродных компонентов, имеющих белковую структуру.
    2. Базофилы. Ускоряют процессы заживления в очаге воспаления, благодаря наличию в своей структуре гепарина. Обновляются каждые 12 часов.
    3. Нейтрофилы. Участвуют непосредственно в фагоцитозе. Способны проникать в межклеточную жидкость и внутрь клетки, где обитает микроб. Одна такая клетка иммунитета может переварить до 20 бактерий. Борясь с микробами, нейтрофил погибает. Острые воспаления провоцируют резкую выработку таких клеток организмом, что сразу отражается в лейкоцитарной формуле, как повышенное количество.
    4. Моноциты. Помогают нейтрофилам. Более активны, если в очаге воспаления развивается кислая среда.
    5. Лимфоциты. Отличают собственные клетки от чужих по структуре, участвуют в выработке антител. Живут несколько лет. Являются наиболее важным компонентом иммунной защиты.


    Важно : многие доктора перед назначением лечения заставляют делать клинический анализ крови. Вирусные и бактериальные заболевания вызывают разные изменения в анализе, что дает возможность поставить правильный диагноз и выписать нужные препараты.

    Все типы лейкоцитов образуются в костном мозге, который находится внутри костей. Он содержит огромное количество незрелых клеток, похожих на те, которые есть у эмбриона. Из них в результате сложного многоступенчатого процесса образуются разные клетки кроветворения, в том числе все виды лейкоцитов.

    Превращение происходит в результате деления незрелых клеток. С каждым этапом они становятся все более дифференцированными и предназначенными для выполнения более конкретных функций. Все стадии, а их может быть до 9, происходят в костном мозге. Исключение составляют лимфоциты. Для полноценного «взросления» им нужно будет дозреть в лимфоидных органах.


    В костном мозге происходит накопление лейкоцитов, а при воспалительном процессе они выходят в кровь и достигают патологического очага. После выполнения своего предназначения, клетки гибнут, а костный мозг образует новые. В норме в кровотоке плавает лишь незначительная часть всех лейкоцитарных запасов организма (до 2%).

    При воспалительном процессе все клетки устремляются к месту его локализации. Запасы нейтрофилов для таких экстренных всплесков находятся на стенках сосудов. Именно это депо дает возможность организму быстро среагировать на воспаление.


    Лимфоциты могут дозреть в Т- или В-клетки. Первые регулируют выработку антител, а вторые распознают чужеродные агенты и нейтрализуют их. Промежуточное развитие Т-клеток происходит в тимусе. Окончательное дозревание лимфоцитов происходит в селезенке и лимфатических узлах. Именно там они активно делятся и превращаются в полноценную иммунную защиту. При воспалении лимфоциты перемещаются в ближайший лимфоузел.

    Важно: механизм образования лейкоцитов очень сложный. Не стоит забывать о важности селезенки и других органов. Например, употребление спиртного оказывает на них негативное влияние.

    Видео — Лейкоциты

    Недостаток лейкоцитов

    Лейкопенией у взрослого человека называют состояние, когда количество лейкоцитов ниже 4*10 9 /л. Это может быть вызвано злокачественными заболеваниями, влиянием облучения, недостатков витаминов или проблемами с функцией кроветворения.

    Лейкопения приводит к бурному развитию различных инфекций, снижению сопротивляемости организма. Человек чувствует озноб, температура тела повышается, появляется упадок сил и истощение. Организм пытается компенсировать недостаток клеток защиты, в результате чего отмечается увеличение селезенки. Такое состояние очень опасно и требует обязательного выявления причины и лечения.


    Важно: хроническую усталость или другие состояния, которые длительно вас беспокоят, нельзя оставлять без внимания. Часто они возникают из-за снижения защитных сил организма.

    Избыток лейкоцитов

    Количество лейкоцитов выше 9*10 9 /л считается превышением нормы и называется лейкоцитозом. Физиологическое увеличение, которое не требует лечения, может быть вызвано приемом пищи, физической активностью, некоторыми гормональными всплесками (беременность, предменструальный период).

    К патологическим состояниям приводят следующие причины лейкоцитоза:

    1. Инфекционные заболевания.
    2. Воспалительные процессы микробной и немикробной этиологии.
    3. Кровопотери.
    4. Ожоги.


    Лечение такого состояния может включать следующие группы препаратов:

    1. Антибиотики. Помогают устранить инфекцию, вызвавшую лейкоцитоз и предотвратить осложнения.
    2. Стероидные гормоны. Быстро и эффективно снимают воспаление, что приводит к снижению выработки лейкоцитов.
    3. Антигистаминные препараты. Также помогают уменьшить воспаление.

    Тактика лечения любых изменений в лейкоцитарной формуле зависит от причины, которая их вызвала.

    Важно: незначительные изменения в лейкоцитарной формуле могут быть временным явлением и даже считаться нормой. Насторожить должны сильные расхождения с допустимыми значениями или отсутствие изменений при повторных анализах.

    О важности лейкоцитов рассказывают детям еще в школе. Эта тема – не преувеличение. Хороший иммунитет обеспечивает здоровье и хорошее качество жизни каждого человека. Чтобы определить состояние иммунной системы, можно сдать анализ крови в период отсутствия заболеваний. Правильно интерпретировать результаты поможет грамотный врач.

    Видео — Что означает повышение лейкоцитов в анализе крови?

    Лейкоциты - это это белые (бесцветные) кровяные тельца. Лейкоциты - ядерные клетки размером 7-20 мк. В покое лейкоциты округлой формы, но обладают амебоидными движениями, они способны проникать сквозь стенки сосудов и выходить из кровяного русла. Нормальное содержание лейкоцитов в крови колеблется от 4000-5000 до 8000- 9000 в 1 мм 3 .

    Различают лейкоциты зернистые, или гранулоциты (содержат в цитоплазме специфическую зернистость), и незернистые, или агранулоциты (рис. 2). В зависимости от характера зернистости при окраске по Романовскому - Гимзе гранулоциты делят на нейтрофильные, эозинофильные и базофильные. У нейтрофильных лейкоцитов мелкая зернистость коричневато-фиолетового цвета. Эозинофильные лейкоциты с обильной крупной оранжево-красной зернистостью и базофильные с крупными темно-фиолетовыми зернами разной величины. гранулоцитов окрашена в розовый цвет, ядра их неправильной формы, иногда в виде изогнутого жгута (палочкоядерные), чаще разделены на дольки, соединенные тонкими перемычками (сегментоядерные).

    Агранулоциты (лимфоциты и моноциты) отличаются базофильной (голубой) цитоплазмой и несегментированным ядром. По сравнению с лимфоцитом (см.) моноцит имеет более крупные размеры (12-20 мк), светлоокрашенное ядро неправильной (чаще подковообразной) формы, дымчато-голубую цитоплазму, иногда с пылевидной красной зернистостью. При заболеваниях крови, кроме перечисленных зрелых форм лейкоцитов, могут появиться незрелые формы (миелоциты, метамиелоциты), недифференцированные и плазматические клетки. Последние имеют эксцентрически расположенное круглое ядро и синюю вакуолизированную цитоплазму, просветляющуюся к ядру. Лейкоциты обладают рядом важных функций, в частности в защите организма (см. Антитела, ), в заживлении ран, межуточном обмене и др.

    Рис. 2. Лейкоциты (окраска по Романовскому - Гимзе): 1 - нейтрофильные миелоциты; 2 - нейтрофильные метамиелоциты (юные); 3 - нейтрофилы палочкоядерные; 4 - нейтрофилы сегментоядерные; 5 - эозинофилы; 6 - базофилы; 7 - лимфоциты; 8 - моноциты; 9 - плазмоциты; 10 - нейтрофил с токсической зернистостью.

    Лейкоциты (от греч. leukos - белый и kytos - клетка) - белые кровяные тельца, один из видов форменных элементов крови. Лейкоциты - округлой формы клетки с ядром и однородной или зернистой протоплазмой. В крови человека различают зернистые лейкоциты - гранулоциты и незернистые лейкоциты - агранулоциты. К гранулоцитам относят лейкоциты с нейтрофильной, эозинофильной и базофильной зернистостью, к агранулоцитам - лимфоциты (см.) и моноциты. Нейтрофильные лейкоциты - нейтрофилы - клетки диаметром около 12 мк. Протоплазма их окрашивается по способу Романовского - Гимзы в розовый цвет, т. е. она оксифильна, а зернышки - в фиолетовый цвет (нейтрофильная зернистость). Ядро богато хроматином, полиморфное; у молодых клеток бобовидной или колбасовидной формы (юные), у других вытянуто в виде палочек, подковы (палочкоядерные) и у наиболее зрелых разделено перетяжками на отдельные сегменты (сегментоядерные). Перетяжки иногда могут быть незаметны, что дало повод некоторым авторам принимать сегменты за отдельные ядра и называть такие клетки полинуклеарами, в противоположность мононуклеарам - большим одноядерным клеткам лимфоидного характера с азурофильной зернистостью. Такое противопоставление следует считать неправильным, так как все лейкоциты в сущности являются мононуклеарами. В настоящее время вместо «полинуклеар» общепринято название «сегментоядерный» лейкоцит. «Юные» нейтрофилы в нормальной крови обычно не встречаются. Появление их говорит о регенераторном сдвиге - ядерный сдвиг «влево» (см. Лейкоцитарная формула).

    Увеличение числа клеток с сегментированным ядром - сдвиг «вправо». При некоторых воспалительных и инфекционных заболеваниях (пневмония, сепсис, гнойные процессы) зерна в протоплазме нейтрофилов более грубые, неравной величины, неравномерно окрашиваются, что принято называть токсической (токсигенной) зернистостью нейтрофилов. При этом обычно наблюдается и ядерный сдвиг. Нередко одновременно с токсической зернистостью в протоплазме нейтрофилов имеются так называемые тельца Деле (точнее - Князькова - Деле) - бледно-голубые комочки различной формы.

    Эозинофильные лейкоциты - эозинофилы - диаметром около 12 мк. Протоплазма их слабо базофильна, окрашивается в синеватый цвет, а зернистость в ней хорошо окрашивается эозином в ярко-розовый цвет. Ядро менее дольчатое, чем у нейтрофила, обычно состоит из двух сегментов. Базофильные лейкоциты - базофилы - диаметром около 8-10 мк с оксифильной протоплазмой, окрашивающейся в розовый цвет. Зерна крупные, различной величины, окрашиваются метахроматически основными красками в темно-фиолетовый цвет. Ядро состоит из 3-4 сегментов и напоминает лист клена.

    Моноцит - наиболее крупная клетка нормальной крови - диаметром 12-20 мк. Ядро нередко расположено эксцентрично, овальной или подковообразной формы, имеет широкопетлистую хроматиновую сеть, окрашивается в красно-фиолетовый цвет. Протоплазма окрашивается в темно-серый цвет с голубоватым оттенком. Иногда удается отметить в протоплазме мелкую азурофильную зернистость.

    Физиология лейкоцитов. Одна из главных функций лейкоцитов - защита организма от микробов и инородных веществ, проникающих в кровь или ткани (функция очищения, обезвреживания). Важное свойство лейкоцитов - их способность к амебоидному движению, особенно характерная для зернистых лейкоцитов и моноцитов. Лейкоциты обладают способностью проходить через стенку сосуда в окружающую соединительную ткань и обратно в сосуд. Лейкоциты, особенно зрелым нейтрофилам, свойственны функция фагоцитоза (см.) и участие в процессах иммунитета. Лейкоциты стимулируют процессы регенерации, активируют заживление ран. Лейкоциты выделяются с секретом желез в пищеварительный тракт, с продуктами воспаления, быстро разрушаясь. Срок жизни лейкоцитов невелик - 2-4-10 дней. Лейкоциты обладают значительной секреторной способностью (выделение алексинов, бактерицидных веществ типа лизоцима), сероиммунологической активностью (образование антител - лейкоцитолизинов, лейкоагглютининов), участвуют в процессах межуточного обмена веществ. Лейкоциты обладают выраженной ферментативной деятельностью, в них обнаружены различные ферменты: оксидаза, амилаза, каталаза, липаза, фосфатаза. Эозинофилам приписывают главным образом дезинтоксикационную функцию, число их увеличивается при аллергических состояниях, гельминтозах, кожных болезнях и уменьшается на высоте инфекционных заболеваний, при отравлениях. Функция базофилов изучена мало, указывают на их участие в образовании гепарина и гистамина. Моноциты обладают фагоцитарной способностью. Оседание лейкоцитов - феномен, аналогичный оседанию эритроцитов (см.).

    Вследствие сложности определения и непостоянства получаемых результатов определение скорости оседания лейкоцитов в клиническую практику не вошло.

    Рассматривая под микроскопом кровь, можно обнаружить довольно крупные клетки с ядрами; выглядят они прозрачными. Это – белые кровяные тельца или лейкоциты.


    ЛЕЙКОЦИТЫ (от греч. leukos – белый и от греч. kytos — вместилище, здесь — клетка), бесцв. клетки крови человека и животных. Все типы Л. (лимфоциты, моноциты, базофилы, эозинофилы и нейтрофилы) имеют ядро и способны к активному амебоидному движению. В организме поглощают бактерии и отмершие клетки, вырабатывают антитела. В 1 мм3 крови здорового человека содержится 4-9 тыс. Л.

    Их количество меняется в зависимости от приема пищи и физической нагрузки. Лейкоциты делятся на гранулоциты (содержащие зернышки, гранулы) и агранулоциты (незернистые лейкоциты).

      Лейкоцитоз (leukocytosis, leukos – белый, cytos – клетка) – патологическая реакция организма, проявляющаяся увеличением содержания лейкоцитов в крови свыше 9´109/л.

    1. Лейкопения (leukopenia, leukos – белый, penia – бедность) – патологическая реакция организма, проявляющаяся уменьшением содержания лейкоцитов в крови ниже 4´ 109/л.

      ГРАНУЛОЦИТЫ, лейкоциты позвоночных ж-ных и человека, содержащие в цитоплазме зерна (гранулы). Образуются в костном мозге. По способности зерен окрашиваться спец. красками делятся на базофилы, нейтрофилы, эозинофилы. Защищают организм от бактерий и токсинов.

      АГРАНУЛОЦИТЫ (незернистые лейкоциты), лейкоциты ж-ных и человека, не содержащие в цитоплазме зерен (гранул). А. — клетки иммунологич. и фагоцитарной системы; делятся на лимфоциты и моноциты.

      Зернитстые лейкоциты делятся на эозинофилы (зерна которых окрашиваются кислыми красителями), базофилы (зерна которых окрашиваются основными красителями), и нейтрофилы (окрашиваются и теми, и другими красителями).

      ЭОЗИНОФИЛЫ, один из типов лейкоцитов. Окрашиваются кислыми красителями, в т. ч. эозином, в красный цвет. Участвуют в аллергич. реакциях организма.

      БАЗОФИЛЫ, клетки, содержащие в цитоплазме структуры, окрашиваемые основными (щелочными) красителями, вид зернистых лейкоцитов крови, а также определ. клетки передней доли гипофиза.

      НЕЙТРОФИЛЫ, (от лат. neuter — ни тот, ни другой и …фил) (микрофаги), один из типов лейкоцитов. Н. способны к фагоцитозу мелких инородных частиц, в т. ч. бактерий, могут растворять (лизировать) омертвевшие ткани.

      Агранулоциты делятся на лимфоциты (клетки с круглым темным ядром) и моноциты (с ядром неправильной формы).

      ЛИМФОЦИТЫ (от лимфа и …цит), одна из форм незернистых лейкоцитов. Выделяют 2 осн. класса Л. В-Л. происходят из фабрициевой сумки (у птиц) или костного мозга; из них формируются плазматич. клетки, вырабатывающие антитела. Т-Л. происходят из тимуса. Л. участвуют в развитии и сохранении иммунитета, а также, вероятно, поставляют питат. в-ва др. клеткам.

      МОНОЦИТЫ (от моно… и …цит), один из типов лейкоцитов. Способны к фагоцитозу; выделяясь из крови в ткани при воспалит. реакциях, функционируют как макрофаги.

      ВИЛОЧКОВАЯ ЖЕЛЕЗА (зобная железа, тимус), центр. орган иммунной системы позвоночных. У большинства млекопитающих расположена в области переднего средостения. Хорошо развита в молодом возрасте. Участвует в формировании иммунитета (продуцирует Т-лимфоциты), в регуляции роста и общего развития организма.

      Лейкоциты сложны по своему строению. Цитоплазма лейкоцитов у здоровых людей обычно розовая, зернистость в одних клетках красная, в других – фиолетовая, в третьих – темно-синяя, а в некоторых окраски нет совсем. Немецкий ученый Пауль Эрлиг обработал мазки крови специальной краской и разделил лейкоциты на зернистые и незернистые. Его исследования углубил и развил Д.Л.Романовский. Он выяснил, какие пути проходят клетки крови в своем развитии. Составленный им раствор для окрашивания крови помог раскрыть многие ее тайны. Это открытие вошло в науку как знаменитый принцип «окраски Романовского». Немецкий ученый Артур Паппенгейн и русский ученый А.Н.Крюков создали стройную теорию кроветворения.

      По количеству содержания в крови лейкоцитов судят о болезни человека. Лейкоциты могут самостоятельно двигаться, проходить через тканевые щели и межклеточные пространства. Самая главная функция лейкоцитов – защитная. Они вступают в борьбу с микробами, поглощают их и переваривают (фагоцитоз); открыт И.И.Мечниковым в 1883 г. Упорными многолетними исследованиями он доказал существование фагоцитоза.

      МАКРОФАГИ (от макро… и …фаг) (полибласты), клетки мезенхимного происхождения у ж-ных и человека, способные к активному захвату и перевариванию бактерий, остатков клеток и др. чужеродных или токсичных для организма частиц (см. Фагоцитоз). К М. относят моноциты, гистиоциты и др.

      МИКРОФАГИ, то же, что нейтрофилы,

      Лейкоцитарная формула процентное соотношение различных форм лейкоцитов в крови (в окрашенном мазке). Изменения лейкоцитарной формулы могут быть типичными для определенного заболевания.

      2. Плазма крови, понятие о сыворотке. Белки плазмы

      Плазма крови – жидкая часть крови. В плазме крови находятся форменные элементы крови (эритроциты, лейкоциты, тромбоциты). Изменения в составе плазмы крови имеют диагностическое значение при различных заболеваниях (ревматизм, сахарный диабет и др.). Из плазмы крови готовят лекарственные препараты (альбумин, фибриноген, гаммаглобулин и др.).\ В плазме крови человека содержится около 100 различных белков. По подвижности при электрофорезе (см. ниже) их можно грубо разделить на пять фракций: альбумин, α 1 -, α 2 -, β- и γ-глобулины . Разделение на альбумин и глобулин первоначально основывалось на различии в растворимости: альбумины растворимы в чистой воде, а глобулины - только в присутствии солей.

      В количественном отношении среди белков плазмы наиболее представлен альбумин (около 45 г/л), который играет существенную роль в поддержании коллоидно-осмотического давления в крови и служит для организма важным резервом аминокислот. Альбумин обладает способностью связывать липофильные вещества, вследствие чего он может функционировать в качестве белка-переносчика длинноцепочечных жирных кислот, билирубина, лекарственных веществ, некоторых стероидных гормонов и витаминов. Кроме того, альбумин связывает ионы Са 2+ и Mg 2+ .

      К альбуминовой фракции принадлежит также транстиретин (преальбумин), который вместе с тироксинсвязывающим глобулином [ТСГл (TBG)] и альбумином транспортирует гормон тироксин и его метаболит иодтиронин.

      В таблице приведены другие свойства важных глобулинов плазмы крови. Эти белки участвуют в транспорте липидов, гормонов, витаминов и ионов металлов, они образуют важные компоненты системы свертывания крови; фракция γ-глобулинов содержит антитела иммунной системы.

      3. Гемопоэз. Факторы эритропоэза, лейкопоэза и тромбоцитопоэза. Понятие о системе крови (Г.Ф. Ланг)

      Гематопоэз это процес генерации зрелых клеток крови, которых за день организм человека производит не много не мало 400 миллиардов. Гематопоэтические клетки происходят от очень небольшого числа тотипотентных стволовых клеток, которые дифференцируются, давая все линии клеток крови. Тотипотентные стволовые клетки наименее специализированы. Более специализированы плюрипотентные стволовые клетки. Они способны дифференцироваться, давая только определенные линии клеток. Различают две популяции плюрипотентных клеток — лимфоидные и миелоидные.


      Эритроциты происходят из полипотентной стволовой клетки костного мозга, которая может дифференцироваться в клетки-предшественицы эритропоэза. Эти клетки морфологически не различаются. Далее происходит дифференцировка клеток-предшественниц в эритробласты и нормобласты, последние в процессе деления теряют ядро, все в большей степени накапливая гемоглобин, образуются ретикулоциты и зрелые эритроциты, которые поступают из костного мозга в периферическую кровь. Железо соединяется с циркулирующим транспортным белком трансферрином, который связывается со специфическими рецепторами на поверхности клеток-предшественниц эритропоэза. Основная часть железа включается в состав гемоглобина, остальная резервируется в виде ферритина. По завершении созревания эритроцит попадает в общий кровоток, срок его жизни составляет примерно 120 дней, затем он захватывается макрофагами и разрушается, главным образом, в селезенке. Железо гема включается в состав ферритина, а также может вновь связываться с трансферрином и доставляться к клетками костного мозга.

      Важнейшим фактором регуляции эритропоэза является эритропоэтин — гликопротеид с молекулярной массой 36000. Он вырабатывается преимущественно в почках под влиянием гипоксии. Эритропоэтин контролирует процесс дифференцироки клеток-предшественниц в эритробласты и стимулирует синтез гемоглобина. На эритропоэз влияют и другие факторы — катехоламины, стероидные гормоны, гормон роста, циклические нуклеотиды. Существенными факторами нормального эритропоэза являются витамин В 12 и фолиевая кислота и достаточное количество железа.

      Лейкопоэз (leucopoesis, leucopoiesis: лейко- + греч. poiesis выработка, образование; син.: лейкогенез, лейкоцитопоэз) - процесс образования лейкоцитов

      Тромбоцитопоэз (thrombocytopoesis; тромбоцит + греч. poiēsis выработка, образование) - процесс образования тромбоцитов.

      Система крови — понятие ввёл российский терапевт Георгий Фёдорович Ланг (1875-1948).

      Обозначает систему, включающую периферическую кровь, органы кроветворения и кроверазрушения, а также нейрогуморальный аппарат их регуляции.

      4. Зубчатый и гладкий тетанус. Понятие о тонусе мышц. Понятие об оптимуме и пессимуме

      В естественных условиях к скелетной мышце из ЦНС поступают не одиночные импульсы, а серия импульсов, следующих друг за другом с определенными интервалами, на которую мышца отвечает длительным сокращением. Такое длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение получило название тетанического сокращения или тетануса. Различают два вида тетануса: зубчатый и гладкий.

      Если каждый последующий импульс возбуждения поступает к мышце в тот период, когда она находится в фазе укорочения, то возникает гладкий тетанус, а если в фазу расслабления — зубчатый тетанус.

      Амплитуда тетанического сокращения превышает амплитуду одиночного мышечного сокращения. Исходя из этого Гельмгольц объяснил процесс тетанического сокращения простой суперпозицией, т. е. простой суммацией амплитуды одного мышечного сокращения с амплитудой другого. Однако в дальнейшем было показано, что при тетанусе имеет место не простое сложение двух механических эффектов, т. к. эта сумма может быть то большей, то меньшей. Н. Е. Введенский объяснил это явление с точки зрения состояния возбудимости мышцы, введя понятие об оптимуме и пессимуме частоты раздражения.

      Оптимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу повышенной возбудимости. Тетанус при этом будет максимальным по амплитуде — оптимальным.

      Пессимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу пониженной возбудимости. Тетанус при этом будет минимальным по амплитуде — пессимальным.

      Тонус
      мышцы — базовый уровень
      активности мышцы, обеспечиваемый её тоническим сокращением .

      В нормальном
      состоянии
      покоя все двигательные единицы различных мышц находятся в хорошо организованной сложной фоновой стохастической активности. В пределах одной мышцы в данный случайный
      момент
      времени одни двигательные единицы возбуждены , другие находятся в состоянии покоя. В следующий случайный момент времени активируются другие двигательные единицы. Таким образом активация двигательных единиц есть стохастическая функция двух случайных переменных — пространства и времени. Такая активность двигательных единиц обеспечивает тоническое сокращение мышцы , тонус данной мышцы и тонус всех мышц двигательной системы . Определенное взаимное отношение тонуса различных групп мышц обеспечивает позу тела .

      В основе управления тонусом мышц и позой тела в покое или при совершении движений решающее значение имеет генеральная стратегия управления в живых
      системах — прогнозирование

      5. Современное биофизическое и физиологическое преставление о механизме возникновения мембранного потенциала и возбуждения

      Каждая клетка в состоянии покоя характеризуется наличием трансмембранной разности потенциалов (потенциала покоя). Обычно разность зарядов между внутренней и внешней поверхностями мембран составляет от -30 до -100 мВ и может быть измерена с помощью внутриклеточного микроэлектрода.

      Создание потенциала покоя обеспечивается двумя основными процессами — неравномерным распределением неорганических ионов между внутри- и внеклеточным пространством и неодинаковой проницаемостью для них клеточной мембраны. Анализ химического состава вне- и внутриклеточной жидкости свидетельствует о крайне неравномерном распределении ионов

      Исследования с применением микроэлектродов показали, что потенциал покоя клетки скелетных мышц лягушки колеблется от -90 до -100 мВ. Такое хорошее соответствие экспериментальных данных теоретическим подтверждает, что потенциал покоя в значительной степени определяется простыми диффузионными потенциалами неорганических ионов.

      Важное значение для возникновения и поддержания мембранного потенциала имеет активный транспорт ионов натрия и калия через клеточную мембрану. При этом перенос ионов происходит против электрохимического градиента и осуществляется с затратой энергии. Активный транспорт ионов натрия и калия осуществляется Na + /K + — АТФазным насосом.

      В некоторых клетках активный транспорт принимает прямое участие в формировании потенциала покоя. Это обусловлено тем, что калий-натриевый насос за одно и то же время больше удаляет ионов натрия из клетки, чем приносит в клетку калия. Это соотношение составляет 3/2. Поэтому калий-натриевый насос называется электрогенным, поскольку он сам создает небольшой, но постоянный ток положительных зарядов из клетки, а потому вносит прямой вклад в формирование отрицательного потенциала внутри нее.

      Мембранный потенциал не является стабильной величиной, поскольку существует много факторов, влияющих на величину потенциала покоя клетки: воздействие раздражителя, изменение ионного состава среды, воздействие некоторых токсинов, нарушение кислородного снабжения ткани и т.д. Во всех случаях, когда мембранный потенциал уменьшается, говорят о деполяризации мембраны, противоположный сдвиг потенциала покоя называют гиперполяризацией.

      Мембранная теория возбуждения — теория, объясняющая возникновение и распространение возбуждения в центральной нервной системе явлением полупроницаемости мембран нейронов, ограничивающих движение ионов одного вида и пропускающих ионы другого вида через ионные каналы.

      6. Скелетная мускулатура как пример пастклеточных структур – симпласт

      Скелетные мышцы входят в структуру опорно-двигательного аппарата, крепятся к костям скелета и при сокращении приводят в движение отдельные звенья скелета.

      Они участвуют в удержании положения тела и его частей в пространстве, обеспечивают движения при ходьбе, беге, жевании, глотании, дыхании и т.д., вырабатывая при этом тепло. Скелетные мышцы обладают способностью возбуждаться под влиянием нервных импульсов. Возбуждение проводится до сократительных структур (миофибрилл), которые, сокращаясь, выполняют двигательный акт — движение или напряжение.

      У человека насчитывается около 600 мышц и большинство из них парные. В каждой мышце различают активную часть (тело мышцы) и пассивную (сухожилие).

      Мышцы, действие которых направлено противоположно, называются антогонистами, однонаправленно — синергистами. Одни и те же мышцы в различных ситуациях могут выступать в том и другом качестве.

      По функциональному назначению и направлению движений в суставах различают мышцы сгибатели и разгибатели, приводящие и отводящие, сфинктеры (сжимающие) и расширители.

      Симпласт – (от греч. syn — вместе и plastos — вылепленный), тип ткани у животных и растений, характеризующийся отсутствием границ между клетками и расположением ядер в сплошной массе цитоплазмы. Напр., поперечнополосатые мышцы у животных, многоядерные протопласты некоторых одноклеточных водорослей.

      7. Регуляция работы сердца (внутриклеточная, гетерометрическая и гомеометрическая). Закон Старлинга. Влияние симпатической и парасимпатической нервной системы на деятельность сердца

      Хотя сердце само генерирует импульсы, вызывающие его сокращение, деятельность сердца контролируется рядом регуляторных механизмов, которые можно разделить на две группы - внесердечные механизмы (экстракардиальные), к которым относится нервная и гуморальная регуляция, и внутрисердечные механизмы (интракардиальные).

      Первый уровень регуляции - экстракардиальный (нервный и гуморальный). Он включает в себя регуляцию главных факторов, определяющих величину минутного объема, частоты и силы сердечных сокращений с помощью нервной системы и гуморальных влияний. Нервная и гуморальная регуляция тесно связаны между собой и образуют единый нервно-гуморальный механизм регуляции работы сердца.

      Второй уровень представлен внутрисердечными механизмами, которые, в свою очередь, могут быть подразделены на механизмы, регулирующие работу сердца на органном уровне, и внутриклеточные механизмы, которые регулируют преимущественно силу сердечных сокращений, а также скорость и степень расслабления миокарда.

      Центральная нервная система постоянно контролирует работу сердца
      посредством нервных импульсов. Внутри полостей самого сердца и в стенках крупных сосудов расположены нервные окончания - рецепторы, воспринимающие колебания давления в сердце и сосудах. Импульсы от рецепторов вызывают рефлексы, влияющие на работу сердца. Существуют два вида нервных влияний на сердце: одни - тормозящие,
      т. е. снижающие частоту сокращений сердца, другие - ускоряющие.

      Импульсы передаются к сердцу по нервным волокнам от нервных центров, расположенных в продолговатом и спинном мозге. Влияния, ослабляющие работу сердца, передаются по парасимпатическим нервам, а усиливающие его работу - по симпатическим.

      Например, у человека учащаются сокращения сердца, когда он быстро встает из положения лежа. Дело в том, что переход в вертикальное положение приводит к накоплению крови в нижней части туловища и уменьшает кровенаполнение верхней части, особенно головного мозга. Чтобы восстановить кровоток в верхней части туловища, от рецепторов сосудов поступают импульсы в центральную нервную систему.

      Оттуда к сердцу по нервным волокнам передаются импульсы, ускоряющие сокращение сердца. Эти факты - наглядный пример саморегуляции деятельности сердца.

      Болевые раздражения также изменяют ритм сердца. Болевые импульсы поступают в центральную нервную систему и вызывают замедление или ускорение сердцебиений. Мышечная работа всегда сказывается на деятельности сердца. Включение в работу большой группы мышц по законам рефлекса возбуждает центр, ускоряющий деятельность сердца. Большое влияние на сердце оказывают эмоции. Под воздействием положительных
      эмоций люди могут совершать колоссальную работу, поднимать тяжести, пробегать большие расстояния. Отрицательные эмоции, наоборот, снижают работоспособность сердца и могут приводить к нарушениям его деятельности.

      Наряду с нервным контролем деятельность сердца регулируется
      химическими веществами, постоянно поступающими в кровь. Такой способ регуляции через жидкие среды,называется гуморальной регуляцией.
      Веществом, тормозящим работу сердца, является ацетилхолин.

      Чувствительность сердца к этому веществу так велика, что в дозе 0,0000001 мг ацетилхолин отчетливо замедляет его ритм. Противоположное действие оказывает другое химическое вещество - адреналин. Адреналин даже в очень малых дозах усиливает работу сердца.

      Например, боль вызывает выделение в кровь адреналина в количестве нескольких микрограммов, который заметно изменяет деятельность сердца. В медицинской практике адреналин вводят иногда прямо в остановившееся сердце, чтобы заставить его вновь сокращаться. Нормальная работа сердца зависит от количества в крови солей калия и кальция. Увеличение содержания солей калия в крови угнетает, а кальция усиливает
      работу сердца. Таким образом, работа сердца изменяется с изменением условий внешней среды и состояния самого организма.

      Закон сердца Старлинга, который показывает зависимость силы сердечных сокращений от степени растяжения миокарда. Этот закон применим не только к сердечной мышце в целом, но и к отдельному мышечному волокну. Увеличение силы сокращения при растяжении кардиомоцита обусловлено лучшим взаимодействием сократительных белков актина и миозина, причем в этих условиях концентрация свободного внутриклеточного кальция (главного регулятора силы сердечных сокращений на клеточном уровне) остается неизменной. В соответствии с законом Старлинга, сила сокращения миокарда тем больше, чем сильнее растянута сердечная мышца в период диастолы под влиянием притекающей крови. Это один из механизмов, обеспечивающих увеличение силы сердечных сокращений адекватное необходимости перекачивать в артериальную систему именно того количества крови, которое притекает к нему из вен.

      8. Кровяное давление в разных отделах сосудистого русла, методика регистрации и определения

      Кровяное давление – гидродинамическое давление крови в сосудах, обусловленное работой сердца и сопротивлением стенок сосудов. Понижается по мере удаления от сердца (наибольшее в аорте, значительно ниже в капиллярах, в венах наименьшее). Нормальным для взрослого человека условно считают артериальное давление 100-140 мм ртутного столба (систолическое) и 70-80 мм ртутного столба (диастолическое); венозное — 60-100 мм водяного столба. Повышенное артериальное давление (гипертония) — признак гипертонической болезни, пониженное (гипотония) сопровождает ряд заболеваний, но возможно и у здоровых людей.

      9. Типы кардиомиоцитов. Морфологические отличия сократительных клеток от проводящих

      Тонкие и длинные

      Эллиптические

      Толстые и длинные

      Длина, мкм

      ~ 60 ё140

      ~ 20

      ~ 150 ё200

      Диаметр, мкм

      ~ 20

      ~ 5 ё6

      ~ 35 ё40

      Объем, мкм 3

      ~ 15 ё45000

      ~ 500

      135000 ё250000

      Наличие поперечных трубочек

      Много

      Встречаются редко или отсутствуют

      Отсутствуют

      Наличие вставочных дисков

      Многочисленные щелевые соединения клеток из конца в конец, обеспечивающие высокую скорость взаимодействия .

      Боковые соединения клеток или соединения из конца в конец.

      Многочисленные щелевые соединения клеток из конца в конец, обеспечивающие высокую скорость взаимодействия.

      Общий вид в составе мышцы

      Большое число митохондрий и саркомеров .

      Пучки мышцы предсердий разделены обширными областями коллагена.

      Меньше саркомеров, меньшая поперечная исчерченность

      10. Перенос газов кровью. Кривая диссоциации оксигемоглобина. Особенности транспорта углекислого газа

      Перенос (транспорт) дыхательных газов , кислорода, O2 и двуокиси углерода, СO2 с кровью — это второй из трёх этапов дыхания : 1. внешнее дыхание , 2. транспорт газов кровью, 3. клеточное дыхание .

      Конечные этапы дыхания, тканевое
      дыхание , биохимическое окисление являются частью метаболизма . В процессе метаболизма образуются конечные продукты , главным из которых является двуокись углерода . Условием
      нормальной жизнедеятельности является своевременное удаление двуокиси углерода из организма.

      Механизмы
      управления переносом двуокиси углерода взаимодействуют с механизмами регулирования
      кислотно-щелочного равновесия крови, регулированием внутренней среды организма в целом .

      11. Дыхание в условиях повышенного и пониженного атмосферного давления. Кессонная болезнь. Горная болезнь

      Кессонная болезнь – декомпрессионное заболевание, возникающее большей частью после кессонных и водолазных работ при нарушении правил декомпрессии (постепенного перехода от высокого к нормальному атмосферному давлению). Признаки: зуд, боли в суставах и мышцах, головокружение, расстройства речи, помрачение сознания, параличи. Применяют шлюз лечебный.

      Горная болезнь – развивается в условиях высокогорья вследствие снижения парциального напряжения атмосферных газов, главным образом кислорода. Может протекать остро (разновидность высотной болезни) или хронически, проявляясь сердечной и легочной недостаточностью и другими симптомами.

      12. Краткая характеристика стенок воздухоносных путей. Типы бронхов, морфофункциональная характеристика мелких бронхов

      Бронхи (от греч. brónchos - дыхательное горло, трахея), ветви дыхательного горла у высших позвоночных (амниот) и человека. У большинства животных дыхательное горло, или трахея , делится на два главных бронхов. Лишь у гаттерии продольная борозда в заднем отделе дыхательного горла намечает парные Б., не имеющие обособленных полостей. У остальных пресмыкающихся, а также у птиц и млекопитающих Б. хорошо развиты и продолжаются внутри лёгких. У пресмыкающихся от главных Б. отходят Б. второго порядка, которые могут делиться на Б. третьего, четвёртого порядка и т.д.; особенно сложно деление Б. у черепах и крокодилов. У птиц Б. второго порядка соединяются между собой парабронхами - каналами, от которых по радиусам ответвляются так называемые бронхиоли, ветвящиеся и переходящие в сеть воздушных капилляров. Бронхиоли и воздушные капилляры каждого парабронха сливаются с соответствующими образованиями др. парабронхов, образуя, таким образом, систему сквозных воздушных путей. Как главные Б., так и некоторые боковые Б. на концах расширяются в так называемые воздушные мешки . У млекопитающих от каждого главного Б. отходят вторичные Б., которые делятся на всё более мелкие ветви, образуя так называемое бронхиальное дерево. Самые мелкие ветви переходят в альвеолярные ходы, оканчивающиеся альвеолами . Помимо обычных вторичных Б., у млекопитающих различают предартериальные вторичные Б., отходящие от главных Б. перед тем местом, где через них перекидываются лёгочные артерии. Чаще имеется только один правый предартериальный Б., который у большинства парнокопытных отходит непосредственно от трахеи. Фиброзные стенки крупных Б. содержат хрящевые полукольца, соединённые сзади поперечными пучками гладких мышц. Слизистая оболочка Б. покрыта мерцательным эпителием. В мелких Б. хрящевые полукольца заменены отдельными хрящевыми зёрнами. В бронхиолях хрящей нет, и кольцеобразные пучки гладких мышц лежат сплошным слоем. У большинства птиц первые кольца Б. участвуют в образовании нижней гортани.

      У человека деление трахеи на 2 главных Б. происходит на уровне 4-5-го грудных позвонков. Каждый из Б. затем делится на всё более мелкие, заканчиваясь микроскопически малыми бронхиолями, переходящими в альвеолы лёгких . Стенки Б. образованы гиалиновыми хрящевыми кольцами, препятствующими спадению Б., и гладкими мышцами; изнутри Б. выстланы слизистой оболочкой. По ходу разветвлений Б. расположены многочисленные лимфатические узлы, принимающие лимфу из тканей лёгкого. Кровоснабжение Б. осуществляется бронхиальными артериями, отходящими от грудной аорты, иннервация - ветвями блуждающих, симпатических и спинальных нервов.

      13. Обмен жиров и его регуляция

      Жиры важный источник энергии в организме, необходимая составная часть клеток. Излишки жиров могут депонироваться в организме. Откладываются они главным образом в подкожной жировой клетчатке, сальнике, печени и других внутренних органах. В желудочно-кишечном тракте жир распадается на глицерин и жирные кислоты, которые всасываются в тонких кишках. Затем он вновь синтезируется в клетках слизистой кишечника. Образовавшийся жир качественно отличается от пищевого и является специфическим для человеческого организма. В организме жиры могут синтезироваться также из белков и углеводов. Жиры, поступающие в ткани из кишечника и из жировых депо, путем сложных превращений окисляются, являясь, таким образом, источником энергии. При окислении 1 г жира освобождается 9,3 ккал энергии. Как энергетический материал жир используется при состоянии покоя и выполнении длительной малоинтенсивной физической работы. В начале напряженной мышечной деятельности окисляются углеводы. Но через некоторое время, в связи с уменьшением запасов гликогена, начинают окисляться жиры и продукты их расщепления. Процесс замещения углеводов жирами может быть настолько интенсивным, что 80% всей необходимой в этих условиях энергии освобождается в результате расщепления жира. Жир используется как пластический и энергетический материал, покрывает различные органы, предохраняя их от механического воздействия. Скопление жира в брюшной полости обеспечивает фиксацию внутренних органов. Подкожная жировая клетчатка, являясь плохим проводником тепла, защищает тело от излишних теплопотерь. Пищевой жир содержит некоторые жизненно важные витамины. Обмен жира и липидов в организме сложен. Большую роль в этих процессах играет печень, где осуществляется синтез жирных кислот из углеводов и белков. Обмен липидов тесно связан с обменом белков и углеводов. При голодании жировые запасы служат источником углеводов. Регуляция жирового обмена. Обмен липидов в организме регулируется центральной нервной системой. При повреждении некоторых ядер гипоталамуса жировой обмен нарушается и происходит ожирение организма или его истощение.

      14. Обмен белков. Азотистое равновесие. Положительный и отрицательный баланс азота. Регуляция обмена белков

      Белки - необходимый строительный материал протоплазмы клеток. Они выполняют в организме специальные функции. Все ферменты, многие гормоны, зрительный пурпур сетчатки, переносчики кислорода, защитные вещества крови являются белковыми телами. Белки состоят из белковых элементов - аминокислот, которые образуются при переваривании животного и растительного белка и поступают в кровь из тонкого кишечника. Аминокислоты делятся на незаменимые и заменимые. Незаменимыми называются те, которые организм получает только с пищей. Заменимые могут быть синтезированы в организме из других аминокислот. По содержанию аминокислот определяется ценность белков пищи. Вот почему белки, поступающие с пищей, делятся на две группы: полноценные, содержащие все незаменимые аминокислоты, и неполноценные, в составе которых отсутствуют некоторые незаменимые аминокислоты. Основным источником полноценных белков служат животные белки. Растительные белки (за редким исключением) неполноценные. В тканях и клетках непрерывно идет разрушение и синтез белковых структур. В условно здоровом организме взрослого человека количество распавшегося белка равно количеству синтезированного. Так как баланс белка в организме имеет большое практическое знамение, разработано много методов его изучения. Регуляция белкового равновесия осуществляется гуморальным и нервным путями (через гормоны коры надпочечников и гипофиза, промежуточный мозг).

      15. Теплоотдача. Способы отдачи тепла с поверхности тепла

      Способность организма человека сохранять постоянную температуру обусловлена сложными биологическими и физико-химическими процессами терморегуляции. В отличие от холоднокровных (пойкилотермных) животных, температура тела теплокровных (гамойотермных) животных при колебаниях температуры внешней среды поддерживается на определенном уровне, наиболее выгодно для жизнедеятельности организма. Поддержание теплового баланс осуществляется благодаря строгой соразмерности в образовании тепла и в ее отдаче. Величина теплообразования зависит от интенсивности химических реакций, характеризующих уровень обмена веществ. Теплоотдача регулируется преимущественно физическими процессами (теплоизлучение, теплопроведение, испарение).

      Температура тела человека и высших животных поддерживается на относительно постоянном уровне, несмотря на колебания температуры внешней среды. Это постоянство температуры тела носит название изотермии. Изотермия в процессе онтогенеза развивается постепенно.

      Постоянство температуры тела у человека может сохранят лишь при условии равенства теплообразования и теплопотери организма. Это достигается посредством физиологических терморегуляции, которую принято разделять на химическую и физическую. Способность человека противостоять воздействию тепла и холода, сохраняя стабильную температуру тела, имеет известные пределы. При чрезмерно низкой или очень высокой температуре среды защитные терморегуляционные механизмы оказывав недостаточными, и температура тела начинает резко падать или повышаться. В первом случае развивается состояние гипотермии, втором- гипертермии.

      Образование тепла в организме происходит главным образом в результате химических реакций обмена веществ. При окислении пищевых компонентов и других реакций тканевого метаболизма образуется тепло. Величина теплообразования находится в тесной связи уровнем метаболической активности организма. Поэтому теплопродукцию называют также химической терморегуляцией.

      Химическая терморегуляция имеет особо важное значение поддержания постоянства температуры тела в условиях охлаждения При понижении температуры окружающей среды происходит увеличение интенсивности обмена веществ и, следовательно, теплобразования. У человека усиление теплообразования отмечается в 1 случае, когда температура окружающей среды становится ниже оптимальной температуры или зоны комфорта. В обычной легко одежде эта зона находится в пределах 18-20°, а для обнаженного человека -28°С.

      Суммарное теплообразование в организме происходит в ходе химических реакций обмена веществ (окисление, гликолиз), что ее составляет так называемое первичное тепло и при расходов энергии макроэргических соединений (АТФ) на выполнение раб (вторичное тепло). В виде первичного тепла рассеивается 60-70% энергии. Остальные 30-40% после расщепления АТФ обеспечивают работу мышц, различные процессы су секреции и др. Но и при этом та или иная часть энергии переход затем в тепло. Таким образом, и вторичное тепло образуется вследствие экзотермических химических реакций, а при сокращении мышечных волокон-в результате их трения. В конечном итоге переходит в тепло или вся энергия, или подавляющая ее часть.

      Наиболее интенсивное теплообразование в мышцах при их сокращении Относительно небольшая двигатели активность ведет к увеличению теплообразования в 2 раза, а тяжелая работа - в 4-5 раз и более. Однако в этих условиях существенно возрастают потери тепла с поверхности тела.

      При продолжительном охлаждении организма возникают непроизвольные периодические сокращения скелетной мускулатуры. При этом почти вся метаболическая энергия в мышце освобождается в виде тепла. Активация в условиях холода симпатической нервной системы стимулирует липолиз в жировой ткани. В кровоток выделяются и в последующем окисляются с образованием большого количества тепла свободные жирные кислоты. Наконец, значение теплопродукции связано с усилением функций надпочечников и щитовидной железы. Гормоны этих желез, усиливая обмен веществ, вызывает повышенное теплообразование. Следует также иметь в виду, что все физиологические механизмы, которые регулируют окислительные процессы, влияют в то же время и на уровень теплообразования.

      Отдача тепла организмом осуществляется путем излучения и испарения.

      Излучением теряется примерно 50-55% шла в окружающую среду путем лучеиспускания за счет инфракрасной части спектра. Количество тепла, рассеиваемого организмом (окружающую среду с излучением, пропорционально площади поверхности частей тела, которые соприкасаются с воздухом, и разностью средних значений температур кожи и окружающей среды. Отдача шла излучением прекращается, если выравнивается температура кожи и окружающей среды.

      Теплопроведение может происходить путем кондукции и испарения. Кондукцией тепло теряется при непосредственном контакте участков тела человека с другими физическими средами. При этом количество теряемого тепла пропорционально разнице средних температур контактирующих поверхностей и времени теплового контакта. Конвекция- способ теплоотдачи организма, осуществляемый путем переноса тепла движущимися частицами воздуха.

      Конвекцией тепло рассеивается при обтекании поверхности тела потоком воздуха с более низкой температурой, чем температура воздуха. Движение воздушных потоков (ветер, вентиляция) увеличивает количество отдаваемого тепла. Путем теплопроведения организм теряет 15-20% тепла, при этом конвекция представляет более обширный механизм теплоотдачи, чем кондукция.

      Теплоотдача путем испарения - это способ рассеивания организмом тепла (около 30%) в окружающую среду за счет его затраты на испарение пота или влаги с поверхности кожи и слизистых дыхательных путей. При температуре внешней среды 20″ испарение влаги у человека составляет 600-800 г в сутки. При переходе в 1 г воды организм теряет 0.58 ккал тепла. Если внешняя темпер превышает среднее значение температуры кожи, то организм отдает во внешнюю среду тепло излучением и проведением, а нас поглощает тепло извне. Испарение жидкости с поверхности происходит при влажности воздуха менее 100%.
      Микроскопические грибы как основные продуценты различных микотоксинов ОБЩЕЕ ПРЕДСТАВЛЕНИЕ О СТРОЕНИИ И ФУНКЦИЯХ НЕРВНОЙ СИСТЕМЫ Функции финансов торговли

      2014-11-07

    Материалы публикуются для ознакомления, и не являются предписанием к лечению! Рекомендуем обратиться к врачу-гематологу в вашем лечебном учреждении!

    Лейкоциты — клетки округлой формы размером 7-20 мк, состоящие из ядра, однородной или зернистой протоплазмы. Их называют белыми кровяными тельцами за отсутствие цвета. А также гранулоцитами за счет наличия в цитоплазме гранул или агранулоцитами за отсутствие зернистости. В спокойном состоянии лейкоциты проникают сквозь стенки сосудов и выходят из кровотока.

    Из-за бесцветной цитоплазмы, непостоянной формы и амебовидного движения лейкоциты называют белыми клетками (или амебами), «плавающими» в лимфе или плазме крови. Скорость лейкоцитов бывает в пределах 40 мкм/мин.

    Важно! Взрослый человек по утрам в крови на голодный желудок имеет соотношение лейкоцитов в 1 мм — 6000-8000. Меняется их численность в течение суток в связи с другим функциональным состоянием. Резкое увеличение уровня в крови лейкоцитов — это лейкоцитоз, снижение концентрации — лейкопения.

    Главные функции лейкоцитов

    Селезенка, лимфоузлы, красный мозг в костях — это органы, где образуются лейкоциты. Химические элементы раздражают и заставляют лейкоциты покидать кровяное русло, проникать сквозь эндотелий капилляров, чтобы быстрее добраться до источника раздражения. Это могут быть остатки жизнедеятельности микробов, распадающихся клеток, все, что можно назвать инородными телами или комплексами антигенов-антител. Белые клетки применяют положительный хемотаксис по отношению к раздражителям, т.е. они обладают двигательной реакцией.

    • формируется иммунитет: специфический и неспецифический;
    • неспецифический иммунитет формируется при участии образующихся антитоксических веществ и интерферона;
    • начинается выработка специфических антител.

    Лейкоциты с помощью собственной цитоплазмы окружают и специальными ферментами переваривают инородное тело, что называется фагоцитозом.

    Важно! Одним лейкоцитом переваривается 15-20 бактерий. Лейкоциты способны выделять важные защитные вещества, заживляющие раны и с фагоцитарной реакцией, а также антитела с антибактериальными и антитоксическими свойствами.

    Кроме защитной функции лейкоцитов, существуют у них и другие важные функциональные обязанности. А именно:

    • Транспортные. Амебообразные белые клетки адсорбируют из лизосомы протеазу с пептидазой, диастазой, липазой, дезоксирибронуклеазой и переносят эти ферменты на себе к проблемным местам.
    • Синтетические. При недостатке в клетках активных веществ: гепарина, гистамина и прочих, белые клетки синтезируют недостающие для жизни и деятельности всех систем и органов биологические вещества.
    • Гемостатические. Лейкоциты помогают крови быстро свернуться лейкоцитарными тромбопластинами, которые они выделяют.
    • Санитарные. Белые клетки крови способствуют рассасыванию клеток в тканях, погибших во время травм, за счет тех ферментов, что переносят на себе из лизосом.

    Сколько длится жизнь

    Живут лейкоциты — 2-4 дня, и процессы их разрушения происходят в селезенке. Короткая продолжительность жизни лейкоцитов объясняется попаданием внутрь организма множества тел, принятых иммунитетом за чужеродные. Фагоцитами они быстро поглощаются. Поэтому увеличиваются их размеры. Это приводит к разрушению и освобождению вещества, вызывающего местное воспаление в сопровождении отека, повышенной температуры и гиперемии в пораженном участке.

    Эти вещества, что вызвали воспалительную реакцию, начинают привлекать к эпицентру действующие свежие лейкоциты. Они продолжают уничтожать вещества и поврежденные клетки, растут и также гибнут. Место, где скопились погибшие белые клетки, начинает гноиться. Тогда подключаются лизосомные ферменты, и включается лейкоцитарная санитарная функция.

    Строение лейкоцитов

    Клетки агранулоцитов

    Лимфоциты

    Лимфобласт в костном мозге продуцирует округлой формы и разных размеров, с крупным круглым ядром лимфоциты. Они относятся к иммунокомпетентным клеткам, поэтому созревают по особому процессу. Они отвечают за создание иммунитета с разнообразными иммунными реакциями. Если их окончательное созревание произошло в тимусе, тогда клетки называют Т-лимфоцитами, если в лимфоузлах или селезенке — В-лимфоцитами. Размер первых (их 80%) меньше размера вторых клеток (их 20%).

    Продолжительность жизни клеток — 90 дней. Они активно участвуют в реакциях иммунитета и защищают организм, используя одновременно также фагоцитоз. Ко всем болезнетворным вирусам и патологическим бактериям клетки проявляют неспецифическую резистентность — одинаковое воздействие.